

Adopt Algorithm for Distributed Constraint Optimization

Pragnesh Jay Modi

Information Sciences Institute & Department of Computer Science University of Southern California http://www.isi.edu/~modi

Distributed Optimization Problem

"How do a set of agents optimize over a set of alternatives that have varying degrees of global quality?"

Examples

- allocating resources
- constructing schedules
- planning activities

Difficulties

- No global control/knowledge
- Localized communication
- Quality guarantees required
- Limited time

Approach

- Constraint Based Reasoning
 - Distributed Constraint Optimization Problem (DCOP)
- Adopt algorithm
 - First-ever distributed, asynchronous, optimal algorithm for DCOP
 - Efficient, polynomial-space
- Bounded error approximation
 - Principled solution-quality/time-to-solution tradeoffs

Constraint Representation

Why constraints for multiagent systems?

- Constraints are natural, general, simple
 - Many successful applications
- Leverage existing work in AI
 - Constraints Journal, Conferences
- Able to model coordination, conflicts, interactions, etc...

Key advances

- Distributed constraints
- Constraints have degrees of violation

Distributed Constraint Optimization (DCOP)

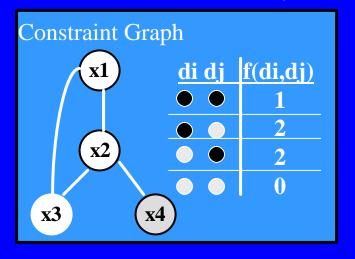
Given

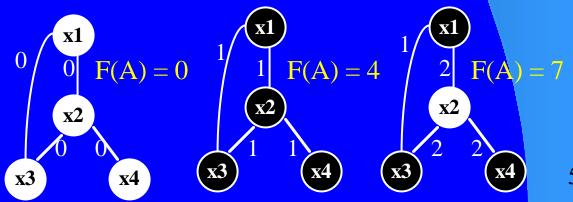
- Variables $\{x1, x2, ..., xn\}$, each assigned to an agent
- Finite, discrete domains D1, D2, ..., Dn,
- For each xi, xj, valued constraint fij: Di x Dj \rightarrow N.

Goal

• Find complete assignment A that minimizes F(A) where,

$$F(A) = \sum f_{ij}(d_i,d_j), x_i \leftarrow d_i, x_j \leftarrow d_j \text{ in } A$$





Existing Methods

Theoretical guarantee	Optimization	Branch and Bound (Hirayama97)	?
	Satisfaction		Asynchronous Backtracking (Yokoo92)
	No guarantee		Iterative Improvement (Yokoo96)
		Synchronous Executi	Asynchronous on Model

Desiderata for DCOP

Why is distributed important?

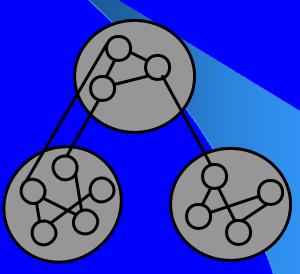
- Autonomy
- Communication cost
- Robustness (central point of failure)
- Privacy

Why is asynchrony important?

- Parallelism
- Robust to communication delays
- No global clock

Why are theoretical guarantees important?

- Optimal solutions feasible for special classes
- Bound on worst-case performance



loosely connected communities

State of the Art in DCOP

Why have previous distributed methods failed to provide asynchrony + optimality?

- Branch and Bound
 - Backtrack condition when cost exceeds upper bound
 - Problem sequential, synchronous
- Asynchronous Backtracking
 - Backtrack condition when constraint is unsatisfiable
 - Problem only hard constraints allowed
- Observation Previous approaches backtrack *only* when suboptimality is proven

Adopt: Asynchronous Distributed Optimization

First key idea -- Weak backtracking

Adopt's backtrack condition – when lower bound gets too high

Why lower bounds?

- allows asynchrony
- allows soft constraints
- allows quality guarantees

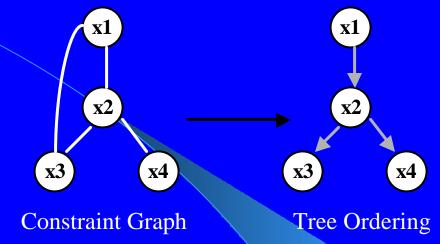
Any downside?

- backtrack *before* sub-optimality is proven
- solutions need revisiting
 - Second key idea -- Efficient reconstruction of abandoned solutions

USC SOUTHERN CALIFORNIA agents@USC

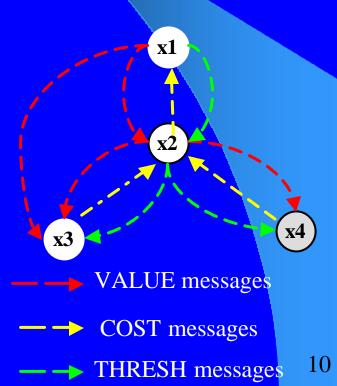
Adopt Algorithm

- Agents are ordered in a tree
 - constraints between ancestors/descendents
 - no constraints between siblings



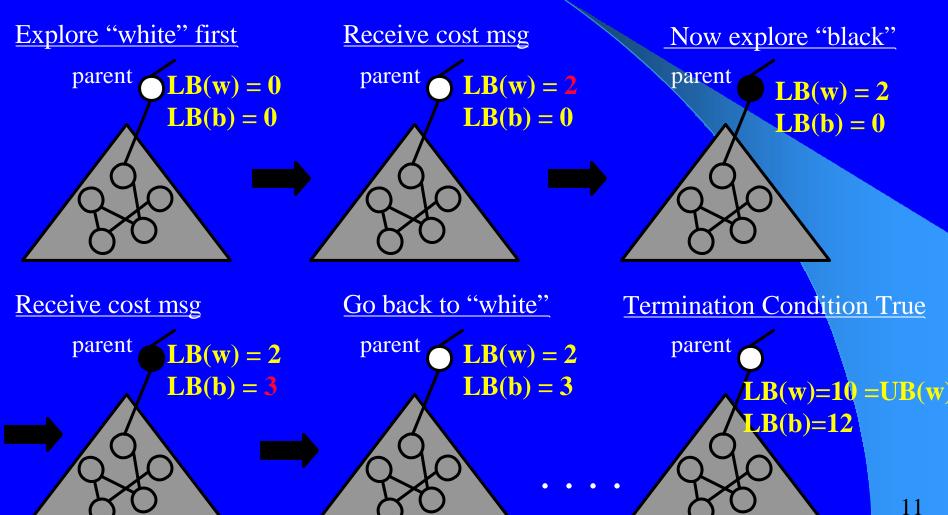
Basic Algorithm:

- choose value with min cost
- Loop until termination-condition true:
 - When receive message:
 - choose value with min cost
 - send VALUE message to descendents
 - send COST message to parent
 - send THRESHOLD message to child



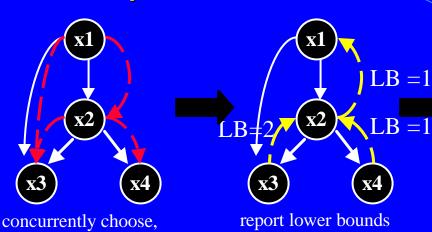
Weak Backtracking

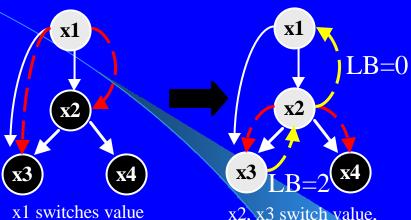
Suppose parent has two values, "white" and "black"



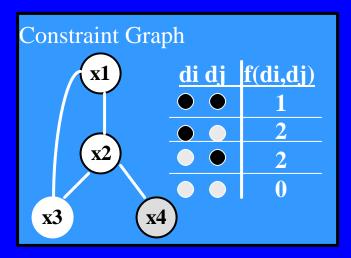
Example

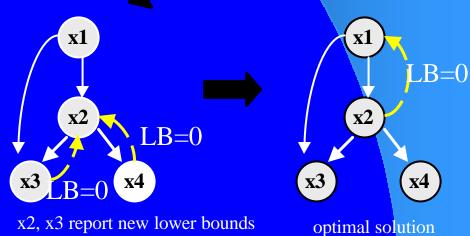
send to descendents





x2, x3 switch value,
report new lower bounds
Note: x3's cost message to x2
is obsolete since x1 has changed
value, msg will be disregarded





Revisiting Abandoned Solutions

Problem

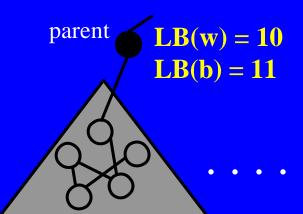
- reconstructing from scratch is inefficient
- remembering solutions is expensive

- backtrack thresholds polynomial space
- control backtracking to efficiently re-search

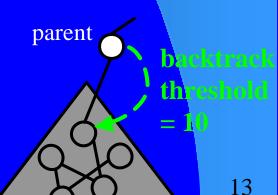
Parent informs child of lower bound:

Explore "white" first parent LB(w) = 10LB(b) = 0

Now explore "black"



Return to "white"

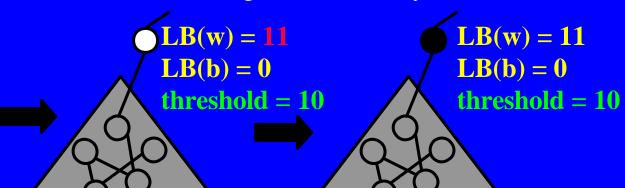


Backtrack Thresholds

Suppose agent i received threshold = 10 from its parent

Now try black

Receive more cost msgs



Key Point: Don't
change value until
LB(current value) >
threshold.

children

thresh = ?

parent

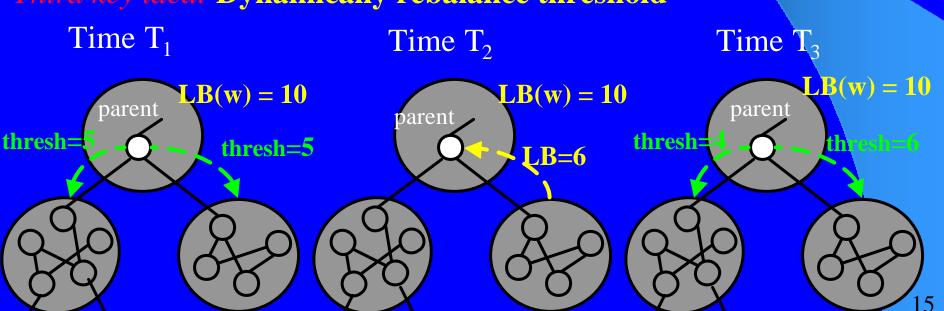
thresh = ?

multiple

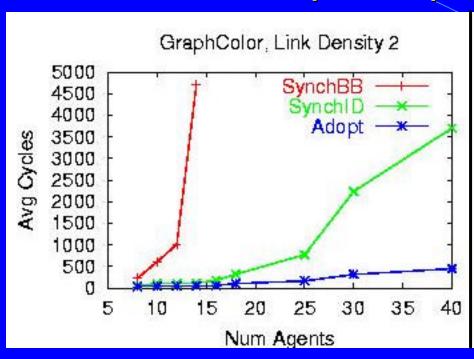
children

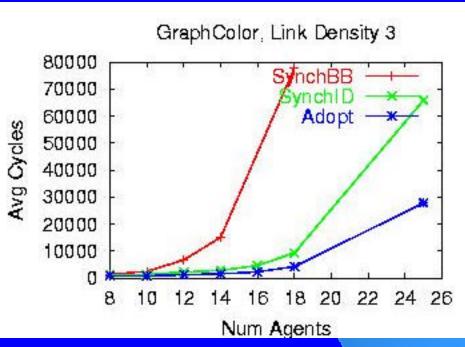
 $LB(\mathbf{w}) = 10$

How to correctly subdivide threshold?



Evaluation of Speedups

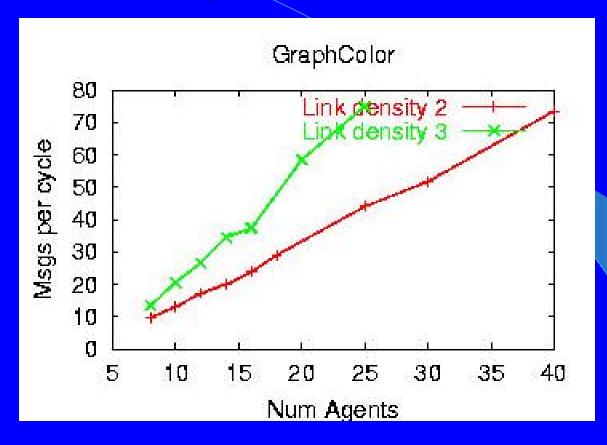




Conclusions

- Adopt's lower bound search method and parallelism yields significant efficiency gains
- Sparse graphs (density 2) solved optimally, efficiently by Adopt.

Number of Messages



Conclusion

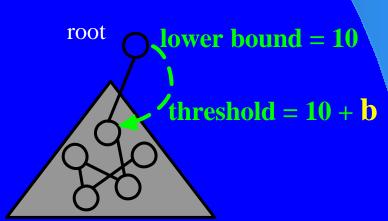
- Communication grows linearly
 - only local communication (no broadcast)

Bounded error approximation

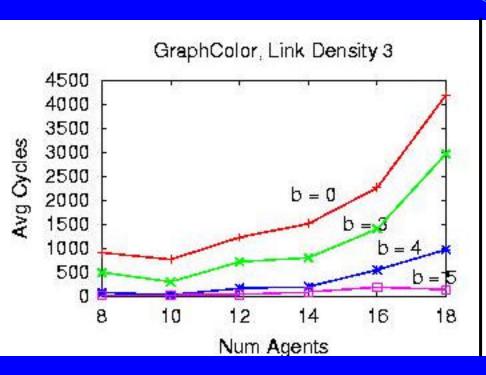
- Motivation Quality control for approximate solutions
- Problem User provides error bound b
- Goal Find any solution S where

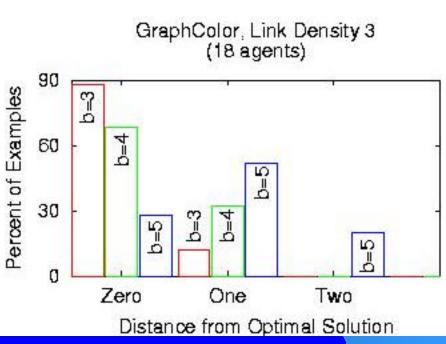
 $cost(S) \le cost(optimal\ soln) + b$

• Fourth key idea: Adopt's lowerbound based search method naturally leads to bounded error approximation!



Evaluation of Bounded Error





Conclusion

- Time-to-solution decreases as **b** is increased.
- Plus: Guaranteed worst-case performance!

Adopt summary - Key Ideas

- First-ever optimal, asynchronous algorithm for DCOP
 - polynomial space at each agent
- Weak Backtracking
 - lower bound based search method
 - Parallel search in independent subtrees
- Efficient reconstruction of abandoned solutions
 - backtrack thresholds to control backtracking
- Bounded error approximation
 - sub-optimal solutions faster
 - bound on worst-case performance