Adopt Algorithm for Distributed Constraint Optimization

Pragnesh Jay Modi

Information Sciences Institute & Department of Computer Science
University of Southern California
http://www.isi.edu/~modi

Distributed Optimization Problem

“How do a set of agents optimize over a set of alternatives that have varying degrees of global quality?”

Examples
- allocating resources
- constructing schedules
- planning activities

Difficulties
- No global control/knowledge
- Localized communication
- Quality guarantees required
- Limited time
Approach

- Constraint Based Reasoning
 - Distributed Constraint Optimization Problem (DCOP)
- Adopt algorithm
 - First-ever distributed, asynchronous, optimal algorithm for DCOP
 - Efficient, polynomial-space
- Bounded error approximation
 - Principled solution-quality/time-to-solution tradeoffs

Constraint Representation

Why constraints for multiagent systems?

- Constraints are natural, general, simple
 - Many successful applications
- Leverage existing work in AI
 - Constraints Journal, Conferences
- Able to model coordination, conflicts, interactions, etc…

Key advances

- Distributed constraints
- Constraints have degrees of violation
Distributed Constraint Optimization (DCOP)

Given
- Variables \{x_1, x_2, \ldots, x_n\}, each assigned to an agent
- Finite, discrete domains D_1, D_2, \ldots, D_n,
- For each \(x_i, x_j\), valued constraint \(f_{ij}: D_i \times D_j \rightarrow \mathbb{N}\).

Goal
- Find complete assignment \(A\) that minimizes \(F(A)\) where
 \[F(A) = \sum f_{ij}(d_i, d_j), \quad x_i \leftarrow d_i, x_j \leftarrow d_j \text{ in } A\]

Constraint Graph

Existing Methods

<table>
<thead>
<tr>
<th>Optimization</th>
<th>Branch and Bound (Hirayama97)</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satisfaction</td>
<td>Asynchronous Backtracking (Yokoo92)</td>
<td></td>
</tr>
<tr>
<td>No guarantee</td>
<td>Iterative Improvement (Yokoo96)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Synchronous Asynchronous Execution Model</td>
<td></td>
</tr>
</tbody>
</table>

Theoretical guarantee
Desiderata for DCOP

Why is distributed important?
- Autonomy
- Communication cost
- Robustness (central point of failure)
- Privacy

Why is asynchrony important?
- Parallelism
- Robust to communication delays
- No global clock

Why are theoretical guarantees important?
- Optimal solutions feasible for special classes
- Bound on worst-case performance

State of the Art in DCOP

Why have previous distributed methods failed to provide asynchrony + optimality?

- Branch and Bound
 - Backtrack condition - when cost exceeds upper bound
 - Problem – sequential, synchronous
- Asynchronous Backtracking
 - Backtrack condition - when constraint is unsatisfiable
 - Problem - only hard constraints allowed

- Observation Previous approaches backtrack only when sub-optimality is proven
Adopt: Asynchronous Distributed Optimization

First key idea -- Weak backtracking

- Adopt’s backtrack condition – when lower bound gets too high

Why lower bounds?
- allows asynchrony
- allows soft constraints
- allows quality guarantees

Any downside?
- backtrack before sub-optimality is proven
- solutions need revisiting
 - Second key idea -- Efficient reconstruction of abandoned solutions

Adopt Algorithm

- Agents are ordered in a tree
 - constraints between ancestors/descendents
 - no constraints between siblings

- Basic Algorithm:
 - choose value with min cost
 - Loop until termination-condition true:
 - When receive message:
 - choose value with min cost
 - send VALUE message to descendents
 - send COST message to parent
 - send THRESHOLD message to child
Weak Backtracking

- Suppose parent has two values, “white” and “black”

Explore “white” first

Receive cost msg

Now explore “black”

Receive cost msg

Go back to “white”

Termination Condition True

Example

concurrently choose, send to descendents
report lower bounds
x1 switches value
x2, x3 switch value, report new lower bounds
Note: x3’s cost message to x2 is obsolete since x1 has changed value, msg will be disregarded

Constraint Graph
Revisiting Abandoned Solutions

Problem
- reconstructing from scratch is inefficient
- remembering solutions is expensive

Solution
- backtrack thresholds – polynomial space
- control backtracking to efficiently re-search

Parent informs child of lower bound:

Explore “white” first

<table>
<thead>
<tr>
<th>parent</th>
<th>LB(w) = 10</th>
<th>LB(b) = 0</th>
</tr>
</thead>
</table>

Now explore “black”

<table>
<thead>
<tr>
<th>parent</th>
<th>LB(w) = 10</th>
<th>LB(b) = 11</th>
</tr>
</thead>
</table>

Return to “white”

| parent | backtrack threshold = 10 |

Backtrack Thresholds

- Suppose agent i received threshold = 10 from its parent

Explore “white” first

<table>
<thead>
<tr>
<th>agent i</th>
<th>LB(w) = 0</th>
<th>LB(b) = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>threshold = 10</td>
<td></td>
</tr>
</tbody>
</table>

Receive cost msg

<table>
<thead>
<tr>
<th>agent i</th>
<th>LB(w) = 2</th>
<th>LB(b) = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>threshold = 10</td>
<td></td>
</tr>
</tbody>
</table>

Stick with “white”

<table>
<thead>
<tr>
<th>agent i</th>
<th>LB(w) = 2</th>
<th>LB(b) = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>threshold = 10</td>
<td></td>
</tr>
</tbody>
</table>

Receive more cost msgs

<table>
<thead>
<tr>
<th>agent i</th>
<th>LB(w) = 11</th>
<th>LB(b) = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>threshold = 10</td>
<td></td>
</tr>
</tbody>
</table>

Now try black

<table>
<thead>
<tr>
<th>agent i</th>
<th>LB(w) = 11</th>
<th>LB(b) = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>threshold = 10</td>
<td></td>
</tr>
</tbody>
</table>

Key Point: Don’t change value until LB(current value) > threshold.
Backtrack thresholds with multiple children

How to correctly subdivide threshold?

Third key idea: Dynamically rebalance threshold

Time T_1
Time T_2
Time T_3

Evaluation of Speedups

Conclusions

- Adopt’s lower bound search method and parallelism yields significant efficiency gains
- Sparse graphs (density 2) solved optimally, efficiently by Adopt
Number of Messages

Conclusion
• Communication grows linearly
 • only local communication (no broadcast)

Bounded error approximation

• Motivation Quality control for approximate solutions
• Problem User provides error bound \(b \)
• Goal Find any solution \(S \) where
 \[
 \text{cost}(S) \leq \text{cost(optimal soln)} + b
 \]

• Fourth key idea: Adopt’s lower-bound based search method
 naturally leads to bounded error approximation!
Evaluation of Bounded Error

Conclusion

- Time-to-solution decreases as b is increased.
- Plus: Guaranteed worst-case performance!

Adopt summary – Key Ideas

- First-ever optimal, asynchronous algorithm for DCOP
 - polynomial space at each agent

- Weak Backtracking
 - lower bound based search method
 - Parallel search in independent subtrees

- Efficient reconstruction of abandoned solutions
 - backtrack thresholds to control backtracking

- Bounded error approximation
 - sub-optimal solutions faster
 - bound on worst-case performance