Deep Gamblers: Learning to Abstain with Portfolio Theory
Liu Ziyin (U. Tokyo), Zhikang T. Wang (U. Tokyo), Paul Pu Liang (CMU), Ruslan Salakhutdinov (CMU), Louis-Philippe Morency (CMU), Masahito Ueda (U. Tokyo)

Classification and the Inadequacy of nll loss
Want to find: \(\theta = \text{arg} \max \Pr(Y|\theta) \)
In practice, minimize negative log loss (nll loss):
\[
\min_{\theta} -\log p(Y|\theta)
\]

Toy Example: Image Rotation

Proposed Method: The Gambler’s Loss
\[
\max E \log(S) = \max \sum_{i=1}^{m} p_i \log(a_i b_i + b_0)
\]

Intuition: Prediction as Horse Race
Horse Race with Reservation
- \(m \) horses
- Betting strategy: \(\sum_{i=1}^{m} b_i \rightarrow \sum_{i=0}^{m} b_i \)
- Chance of winning: \(p_i \)
- Payoff if we bet on the winning horse: \(a_i \)
- Return after winning: \(S = a_i b_i \rightarrow a_i b_i + b_0 \)
Objective: maximize doubling rate:
\[
\max W = \max E \log(S) = \max \sum_{i=1}^{m} p_i \log(a_i b_i + b_0)
\]
- Classification Problem = Betting problem with Reservation with \(a = 1, b_9 = 0 \)
- Classification Problem \(\leq \) Betting problem with Reservation

Toy Example: Identifying Disconfident Images

SOTA Performance on Selective Classification

The Learned Representation is Better Separable

Surprising Benefit
- Training with gambler’s loss reduces overfitting
- Improved performance when noisy labels are present

Paper:
Code: