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Abstract

A large class of multimedia programs for embedded sys-
tems manipulate data represented as dense matrices. In
this paper we revisit the classical optimization of scalar
replacement of array elements and pointer accesses; this
optimization allocates array elements to registers, reduc-
ing memory traffic. We generalize the state-of-the-art al-
gorithm, by Carr and Kennedy [CK94], improving it to
handle simultaneously both conditional control-flow and
inter-iteration data reuse. Our algorithm operates within
the same assumptions of the classical one (perfect de-
pendence information), and has the same limitations (in-
creased register pressure). It is, however, optimal in the
sense that within each code region where scalar promo-
tion is applied, given sufficient registers, each memory lo-
cation is read/written at most once.

1 Introduction

The goal of scalar replacement (also called register pro-
motion) is to identify repeated accesses made to the same
memory address, either within an iteration or across iter-
ations, and to remove the redundant accesses by keeping
the data in registers. This optimization was devised in the
contex of FORTRAN programs manipulating dense ma-
trices, which exhibit regular array accesses. Many C em-
bedded programs manipulating data and media streams
exhibit similar access patterns. Scalar replacement allo-
cates array elements in registers, replacing repeated mem-
ory accesses with register file accesses. The algorithm we
propose can take advantage of hardware support such as
predication, conditional moves, and rotating register files,
but can also be implemented purely in software.

We focus in this paper on promotion within the inner-
most loop bodies, but the ideas we present are applica-
ble to wider code regions as well. The state-of-the-art al-
gorithm for scalar replacement was proposed in 1994 by

Steve Carr and Ken Kennedy [CK94]1. This algorithm
handles two special instances of the scalar replacement
problem very well: (1) repeated accesses made within the
same loop iteration in code having arbitrary conditional
control-flow, and (2) code with repeated accesses made
across iterationsin the absence of conditional control-
flow. For (1) the algorithm relies on partial redundancy
elimination (PRE), while for (2) it relies on dependence
analysis and rotating scalar values. That algorithm how-
ever cannot handle optimally all cases involving a combi-
nation of both conditional control-flow and inter-iteration
reuse of data.

We propose a simple algorithm which generalizes and
simplifies the Carr-Kennedy algorithm in an optimal way.
The optimality criterion is the number of dynamically exe-
cuted memory accesses; after application of our algorithm
on a code region no memory location is read/written more
than once in that region. Also, after promotion, no mem-
ory location is read or written if it was not in the original
program, i.e., our algorithm does not perform speculative
promotion. Our algorithm operates under the same
assumptions as the Carr-Kennedy algorithm, that is, it
requires perfect dependence information to be applicable.

The key idea of the algorithm is to let the compiler cre-
ate for each value to be scalarized a 1-bit runtime flag vari-
able indicating whether the scalar value is “valid”. The
compiler also creates code that dynamically updates the
flag; the flag is then used to detect and avoid redundant
loads and to indicate whether a store has to occur to up-
date a modified value at loop completion. This algorithm
ensures that only the first load of a memory location is
executed and only the last store takes place. This algo-
rithm relies on a generalization of the technique of pred-
icated partial redundancy elimination (PPRE) proposed
by Scholz et al. [SMH03b]: in the same way that the
Carr-Kennedy algorithm generalizes PRE to reuse data
across remote iterations, our algorithm generalizes PPRE
to work even in the presence of unanalyzable control-flow.

1In this paper we do not consider speculative promotion, which has
been extensively studied since then.
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for (i)
*p += i;

(a)

tmp = *p;
for (i)

tmp += i;
*p = tmp;

(b)

Figure 1: Sample program with loop invariant memory
accesses and its optimization by register promotion.

We describe the algorithm by a series of examples.
In Section 2 we show how the algorithm handles memory
operations from loop-invariant addresses. In Section 3.3
we show how to also optimize loads and stores whose ad-
dresses are induction variables. In Section 8, we quantify
the impact of an implementation of this algorithm when
applied to the innermost loops of a series of C programs.

This paper makes several contributions: (1) it in-
troduces a new register-promotion algorithm based on
PPRE; (2) it introduces a linear-time term-rewriting algo-
rithm for inter-iteration register promotion in the presence
of control-flow; (3) it describes (in Section 5) a novel al-
gorithm based on predicate manipulation to identify and
remove loop-invariant accesses; and (4) it evaluates the
implementation of this algorithm in an experimental com-
piler.

Conventions: We present all the optimization exam-
ples as source-to-source transformations of schematic C
program fragments. For simplicity of the exposition we
assume that we are optimizing the body of an innermost
loop. We also assume that none of the scalar variables in
our examples have their address taken. We writef(i)
to denote an arbitrary expression involvingi , which has
no side effects. We writefor(i) to denote a loop hav-
ing i as a basic induction variable. For pedagogical pur-
poses, the examples we present all assume that the code
has been brought into a canonical form through the use of
if-conversion[AKPW83]. However, the algorithm from
Section 4 operates on code with arbitrary control-flow.
The implementation we evaluate in Section 8 uses if-
conversion and predication.

2 Loop-invariant Addresses

2.1 No Control-flow

Figure 1 shows a simple example (a) and how it is trans-
formed (b) by the classical scalar promotion algorithm.
Assumingp cannot point toi , the key fact is*p always
loads from and stores to the same address, therefore*p
can be transformed into a scalar value. The load is lifted
to the loop pre-header, while the store is moved after the

loop. (The latter is slightly more difficult to accomplish if
the loop has multiple exits going to multiple destinations.
Our implementation handles these as well.)

2.2 Loads and Control-flow

However, the simple algorithm is no longer applicable to
the slightly different example in Figure 2(a). Lifting the
load or store out of the loop may be unsafe with respect to
exceptions: one cannot lift a memory operation out of a
loop it if may never be executed within the loop. To opti-
mize this case we can employ the technique of PPRE, by
maintaining avalid bit in addition to thetmp scalar, as
shown in Figure 2(b). Thevalid bit indicates whether
tmp indeed holds the value of*p . Thevalid bit is ini-
tialized tofalse. A load from*p is performed only if the
valid bit is false. Either loading from or storing to*p
sets thevalid bit to true.

The valid flag within an iteration is the dynamic
equivalent of theavailability dataflow information for the
loaded value, which is the basis of classical PRE. When
PRE can be applied statically, it is certainly better to do
so. The problem with Figure 2 is that the compiler can-
not statically summarize when condition(i&1) is true,
and therefore has to act conservatively, assuming that the
loaded value is never available. Computing the availabil-
ity information at run-time eliminates this conservative
approximation. Maintaining and using runtime dataflow
information makes sense when we can eliminate costly
operations (e.g., memory accesses) by using inexpensive
operations (e.g., Boolean register operations).

2.3 Loop-invariant Addresses for Stores

This algorithm generates a program which is optimal with
respect to the number of loads within each region of code
to which promotion is applied (if the original program
loads from an address, then the optimized program will
load from that address exactly once), but may execute one
extra store:2 if the original program loads the value but
never stores to it, thevalid bit will be true, enabling the
postlude store. To treat this case as well, adirty flag, set
on writes, has to be maintained, as shown in Figure 2(c).3

This program will forward the value of*p through the
scalartmp between iterations arbitrarily far apart. Note
that PPRE alone is unable to optimize redundant stores.

2However, this particular program is optimal for stores as well.
3To simplify the presentation, the examples in the rest of the paper

will not include thedirty bit. However, its presence is required for
achieving an optimal number of stores. Thedirty bit may also be
required for correctness, if the value is read-only and the writes within
the loop are always dynamically predicated “false.”
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for (i)
if (i & 1)

*p += i;

(a) Hard example.

/* prelude */
tmp_valid = false;
for (i) {

/* load from *p */
if ((i & 1) && !tmp_valid) {

tmp = *p;
tmp_valid = true;

}
/* store to *p */
if (i & 1) {

tmp += i;
tmp_valid = true;

}
}
/* postlude */
if (tmp_valid)

*p = tmp;

(b) Loop-invariant loads.

/* prelude */
tmp_valid = false;
tmp_dirty = false;

for (i) {
/* load from *p becomes: */
if ((i & 1) && !tmp_valid) {

tmp = *p;
tmp_valid = true;

}

/* store to *p becomes */
if (i & 1) {

tmp += i;
tmp_valid = true;
tmp_dirty = true;

}
}

/* postlude */
if (tmp_dirty)

*p = tmp;

(c) Loop-invariant stores.

Figure 2:A small program that is not amenable to classical register promotion and its optimization.

for (i = 2; i < N; i++)
a[i] = a[i] + a[i-2];

(a)

/* pre-header */
a0 = a[0]; /* invariant a0 = a[i-2] */
a1 = a[1]; /* a1 = a[i-1] */
for (i = 2; i < N; i++) {

a2 = a[i]; /* a2 = a[ i ] */
a2 = a0 + a2;
a[i] = a2;

/* Rotate scalar values */
a0 = a1;
a1 = a2;

}

(b)

Figure 3: Sample program before and after optimization
by register promotion using the Carr-Kennedy algorithm.

3 Scalar promotion

3.1 The Carr-Kennedy Algorithm

Figure 3(b) illustrates the result of applying the classical
Carr-Kennedy [CCK90] inter-iteration register promotion
algorithm to Figure 3(a). In general, reusing a value af-
ter k iterations requires the creation ofk distinct scalar
values, to hold the simultaneously live values ofa[i]
loaded fork consecutive values ofi . This quickly cre-

ates register pressure, and thus heuristics are usually used
to decide whether promotion is beneficial. Since regis-
ter pressure has been very well addressed in the litera-
ture [CCK90, Muc97, CMS96, CW95], we will not fur-
ther discuss it in this text.

An extension to the Carr-Kennedy algorithm [CK94]
allows it to handle control flow; by using PRE on the loop
body it achieves optimality for values reusedwithin the
same iteration. However, in general it can not promote
valuesacrossiterations in the presence of control-flow.
The compiler has difficulty in reasoning about the inter-
vening updates between accesses made in different iter-
ations in the presence of control-flow (more precisely, it
won’t be able to promote values if dependence distances
are not “consistent”).

3.2 Partial Redundancy Elimination (PRE)

Before presenting our solution let us note that even the
classical PRE algorithm (without the support of special
register promotion) is quite successful in optimizing loads
made inconsecutiveiterations. Thegcc compiler, which
doesnot have a register promotion algorithm, optimizes
Figure 4(a) as in Figure 4(b). Using PREgcc manages to
reuse the load fromptr2 one iteration later.

The PRE algorithm (and its generalization, PPRE) is
unable to achieve the same effect if data is reused in any
iteration other than the immediately following iteration or
if there are intervening stores. In such cases an algorithm
like Carr-Kennedy is necessary to remove the redundant
accesses. Notice that the use ofvalid flags achieves the
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do {
*ptr1++ = *ptr2++;

} while(--cnt && *ptr2);

(a) before

tmp = *ptr2;
do {

*ptr1++ = tmp;
ptr2++;
if (--cnt) break;
tmp = *ptr2;
if (! tmp) break;

} while(1);

(b) after

Figure 4:Sample program optimized by gcc using PRE.

same degree of optimality as PREwithin an iteration, but
at the expense of maintaining run-time information.

3.3 Removing All Redundant Loads

The classical algorithm is unable to promote all memory
references guarded by a conditional, as in Figure 5(a). It
is, in general, impossible for a compiler to check when
f(i) is true in both iterationi and in iterationi-2 , and
therefore it cannot deduce whether the load froma[i]
can be reused asa[i-2] two iterations later.

Register promotion has the goal of only executing the
first load and thelast store of a variable. Our algorithm
for handling loop-invariant data is immediately applicable
for promoting loads across iterations, since it performs a
load as soon as possible. By maintaining availability in-
formation at runtime, usingvalid flags, our algorithm
can transform the code to perform a minimal number of
loads as in Figure 5(b). (Applying constant propagation
and dead-code elimination will simplify this code by fur-
ther removing the unnecessary references toa2 valid .)

3.4 Removing All Redundant Stores

Stores should not be performed if their value will be
overwritten in a subsequent iteration. In the presence of
control-flow it is not obvious how to deduce whether the
overwriting stores in future iterations will take place. For
the example in Figure 6(b), (which is the result of apply-
ing the algorithm as described so far to Figure 6(a)), we
want to avoid storing toa[i+2] , since that store will
be overwritten two iterations later by the store toa[i] .
However, this is not true for the last two iterations of
the loop. Since, in general, the compiler cannot gener-
ate code to test loop-termination several iterations ahead,

for (i = 2; i < N; i++)
if (f(i))

a[i] = a[i]+a[i-2];

(a) Strided memory accesses.

a0_valid = false;
a1_valid = false;
a2_valid = false;
for (i) {

fi = f(i);

/* load a[i-2] */
if (fi && !a0_valid) {

a0 = a[i-2];
a0_valid = true;

}

/* load a[i] */
if (fi && !a2_valid) {

a2 = a[i];
a2_valid = true;

}

/* store a[i] */
if (fi) {

a2 = a0 + a2;
a[i] = a2;
a2_valid = true;

}

a0 = a1; a1 = a2;
a0_valid = a1_valid;
a1_valid = a2_valid;
a2_valid = false;

}

(b) Optimizing strided loads.

Figure 5:Optimizing strided loads.

it looks as if both stores must be performed in each itera-
tion. However, we can do better than that by performing,
within the loop, only the store toa[i] , which certainly
will not be overwritten. The loop in Figure 6(c) does ex-
actly that. The loop body never overwrites a stored value
but may fail to correctly update the last two elements of
arraya. Fortuitously, after the loop completes, the scalars
a0 , a1 hold exactly these two values. So we can insert
a loop postlude to fix the potentially missing writes. (Of
course,dirty bits should be used to prevent useless up-
dates.)

4 The register promotion algorithm

The hard work consists in computing the data depen-
dences and deciding whether promotion is applicable; any
traditional method can be applied for this purpose. We
only describe the code transformations for achieving pro-
motion. In general, for each reference toa[i+ j] (for
a compile-time constantj) we maintain a scalart j and
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for (i) {
a[i]++;
if (f(i))

a[i+2] = a[i];
}

(a) Program with strided stores.

a0_valid = true;
a0 = a[0]; /*=a[i]*/
a1_valid = false;
a2_valid = false;
for (i) {

fi = f(i);

/* load a[i] */
if (!a0_valid)

a0 = a[i];

/* store a[i] */
a0=a0+1;
a[i] = a0;

/* store a[i+2] */
if (fi) {

a2 = a0;
a[i+2] = a2;
a2_valid = true;

}

/* Rotate */
a0 = a1;
a1 = a2;
a0_valid = a1_valid;
a1_valid = a2_valid;
a2_valid = false;

}

(b) Redundant stores remain after
optimizations.

a0_valid=true;
a0 = a[0]; /*=a[i]*/
a1_valid=false;
a2_valid=false;

for (i) {
fi = f(i);

/* load a[i] */
if (!a0_valid)

a0 = a[i];

/* store a[i] */
a0=a0+1;
a[i] = a0;

/* store a[i+2] */
if (fi) {

a2 = a0;
/* a[i+2] may be

overwritten */
a2_valid = true;

}

a0 = a1;
a1 = a2;
a0_valid = a1_valid;
a1_valid = a2_valid;
a2_valid = false;

}

if (a0_valid)
a[i] = a0;

if (a1_valid)
a[i+1] = a1;

(c) Removing all redundant stores
from (b).

Figure 6:Optimizing strided stores.

a valid bit t jvalid . The bits are all initialized to 0 in
the loop prelude. Then scalar replacement just makes the
following replacements:

Ld a[i+ j] → t j=t jvalid?t j :a[i+ j];t jvalid=1
St a[i+ j]=e → t j = e; t jvalid=1

Furthermore, all stores except the generating store4

are removed; instead compensation code is added “af-
ter” the loop appending for eacht j a statement “if
(t jvalid) a[i+ j] = t j”. Code to rotate the scalars
and flags is added at the end of each iteration. It is very
important to notice that the presence of predication or con-
ditional moves enables the above code transformations to
be madewithout introducing additional branches.

Complexity: the algorithm, aside from the dependence
analysis, is linear in the size of the loop (we assume that
only a constant number of scalar values is created).

Correctness and optimalityfollow from the following
invariant: the t jvalid flag is dynamically “true” ifft j

4According to the terminology in [CCK90], a generating store is the
one writing toa[i+ j] for the smallestj promoted.

represents the contents of the memory location it scalar-
izes.

5 Handling loop-invariant predi-
cates

The register promotion algorithm described above can be
improved by recognizing loop-invariant predicates5. If
the disjunction of the predicates guarding all the loads
and stores with the same address contains a loop-invariant
subexpression, then the initialization load can be lifted
out of the loop guarded by that subexpression. Fig-
ure 7(a) illustrates such a case. Herec1 andc2 stand for
loop-invariant expressions. The basic algorithm described
above, which doesn’t optimize loop-invariant predicates
specially, generates the code in Figure 7(b). By using the
fact thatc1 andc2 are loop-invariant the code can be op-
timized as in Figure 7(c). This optimization is mostly ef-
fective when applied to loop-invariant memory accesses.

5Recall that we assume that the code has been if-converted.
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for (i) {
if (c1) *p += 1;
if (c2) *p += 2;
if (f(i)) *p += i;

}

(a) Program with loop-invariant
predicates.

tmp_valid = false;
for (i) {

/* first load from *p */
if (! tmp_valid && c1) {

tmp = *p;
tmp_valid = true;

}

/* first store to *p */
if (c1) {

tmp += 1;
tmp_valid = true;

}

/* 2nd load from *p */
if (! tmp_valid && c2) {

tmp = *p;
tmp_valid = true;

}

/* 2nd store to *p */
if (c2) {

tmp += 2;
tmp_valid = true;

}

fi = f(i);

/* 3rd load from *p */
if (fi && !tmp_valid) {

tmp = *p;
tmp_valid = true;

}

/* 3rd store to *p */
if (fi) {

tmp += i;
tmp_valid = true;

}
}
if (tmp_valid)

*p = tmp;

(b) Optimization according to described
algorithm.

/* prelude */
tmp_valid = c1 || c2;
if (tmp_valid)

tmp = *p;

for (i) {
/* 1st load *p redundant */

/* 1st store to *p */
if (c1)

/* tmp_valid is true */
tmp += 1;

/* 2nd load *p redundant */

/* 2nd store to *p */
if (c2)

tmp += 2;

fi = f(i);

/* 3rd load from *p */
if (fi && !tmp_valid) {

tmp = *p;
tmp_valid = true;

}

/* 3rd store to *p */
if (fi) {

tmp += i;
tmp_valid = true;

}
}

/* postlude */
if (tmp_valid)

*p = tmp;

(c) Lifting loop-invariant components.

Figure 7:Optimizing loop-invariant guarding predicates.

The programs in Figure 7(b) and (c) both execute the
same number of loads and stores, and thus, by our opti-
mality criterion are equally good. However, (c) executes
fewer total instructions.

We can also lift operations out of the loop when the
disjunction of all conditions guarding loads or stores from
*p is weaker than some loop-invariant expression, even
when none of the conditions is itself loop-invariant. Fig-
ure 8(a) shows such an example. The disjunction of all
predicates is(f(i)||!f(i)) which is “true”, and thus
the load from*p can be unconditionally lifted out of the
loop, generating the result in Figure 8(b).

The general algorithm for lifting initializations out of
the loop is the following: let us assume that each state-
ment s is controlled by predicateP (s). Then for each
promoted memory locationa[i+ j] :

(1) Define the predicatePj = ∨sj P (sj), wheresj ∈
{statements accessinga[i+ j] }.
(2) Write Pj as the union of two predicates,P inv

j ∨P var
j ,

whereP inv
j is loop-invariant andP var

j is loop-dependent.

(3) In prelude initializet j valid = P inv
j .

(4) In prelude initialize t j=t j valid?a[i 0+j]:0 ,
wherei 0 is the initial value ofi in the loop.
(5) The predicate of each statementP (sj) is strengthened
to P (sj) ∧ ¬P inv

j .

6 Hardware support

While our algorithm does not require any special hard-
ware support, certain hardware structures can improve its
efficiency.
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for (i) {
if (f(i))

*p += 1;
else

*p = 2;
}

(a) Program without loop-invariant predi-
cates.

tmp = *p;
for (i) {

fi = f(i);
if (fi)

tmp += 1;
if (!fi)

tmp = 2;
}
*p = tmp;

(b) Afer complete optimization.

Figure 8: More optimization of loop-invariant guarding
predicates.

Rotating registers were introduced in the Cydra 5
architecture [DHB89] to support software pipelining.
These are used on Itanium for traditional register promo-
tion [DKK+99], to shift all the scalar values in one cycle.

Rotating predicate registersas in the Itanium can ro-
tate the “valid” flags.

Software valid bits can be used to reduce the overhead
of maintaining thevalid bits. If a value is reusedk it-
erations later, then our algorithm requires the use of2k
different scalars:k valid bits andk values. A software-
only solution is to pack thek valid bits into a single inte-
ger6 and to use masking and shifting to manipulate them.
This makes rotation very fast, but testing and setting more
expensive, a trade-off that may be practical on a wide ma-
chine having “free” scheduling slots.

Predicated data[RC03] has been proposed for an em-
bedded VLIW processor: predicates are not attached to
instructions, but to data itself, as an extra bit of each regis-
ter. Predicates are propagated through arithmetic, similar
to exception poison bits. The proposed architecture sup-
ports rotating registers by implementing the register file
as an actual large shift register. These architectural fea-
tures would make thevalid flags essentially free both
in space and in time.

6Most likely promotion across more iterations than bits in an integer
requires too many registers to be profitable.

7 Related work

The canonical register promotion papers are by Steve Carr
et al.: [CCK90, CK94]. Duesterwald et al. [DGS93] de-
scribes a dataflow analysis for analyzing array references;
the optimizations based on it are conservative: only busy
stores and available loads are removed; they notice that
the redundant stores can be removed and compensated by
peeling the lastk loop iterations, as shown by us in Sec-
tion 3.4. Lu and Cooper [LC97] study the impact of pow-
erful pointer analysis in C programs for register promo-
tion. Sastry and Lu [SJ98] introduce the idea of selective
promotion for analyzable regions. None of these algo-
rithms simultaneously handles both inter-iteration depen-
dences and control-flow in the way suggested in this pa-
per. [SJ98, LCK+98] show how to use SSA to facilitate
register promotion. [LCK+98] also shows how PRE can
be “dualized” to handle the removal of redundant store
operations.

Bod́ık et al. [BGS99] analyzes the effect of PRE on
promoting loaded values and estimates the potential im-
provements. The idea of predicating code for dynamic
optimality was advanced initially by Bodı́k [BG97], and
was applied for partial dead-code elimination. Scholz et
al. [SMH03a, SMH03b] use the technique of predication
for simplifying partial redundancy elimination, creating
PPRE.

In this paper we dualize PPRE enabling it to handle
stores as well, and we extend its usage in the style of Carr
and Kennedy, to handle multiple iterations. We quantify
the effectiveness of the technique by actual measurements
on a wide range of C programs.

Schemes that use hardware support for register promo-
tion such as [PGM00, DO94, OG01] are radically differ-
ent from our proposal, which is software-only.

Muchnick [Muc97] gives an example in which a load
can be lifted out of a loop because it occurs on both
branches of anif statement (which would perform the
optimization in Figure 8), but he doesn’t describe a gen-
eral algorithm for solving the problem optimally.

8 Experimental evaluation

8.1 Expected Performance Impact

The scalar promotion algorithm presented here is optimal
with respect to the number of loads and stores executed,
but this may not necessarily lead to improved performance
for four reasons:

(1) the optimized code uses more registers to hold the
scalar values and flags, and thus may cause more spill
code, or interfere with software pipelining [CW95].
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(2) the optimized code contains more computations
than the original program, in maintaining the flags. The
optimized program may end-up being slower than the
original, depending, among other things, on the frequency
with which the memory access statements are executed
and whether the predicate computations are on the critical
path. For example, if none of the memory accesses is exe-
cuted dynamically, all the code inserted by our algorithm
is overhead. In practice, profiling information and heuris-
tics should be used to select the loops which will benefit
most from this transformation.

(3) scalar promotion usually removes memory accesses
which mostly hit in the cache, thus its benefit is limited.
However, in modern architectures not all cache accesses,
not even L1 cache hits, are cheap. For example, on the In-
tel Itanium 2 some L1 cache hits may cost as much as 17
clock cycles [CL03]. Register promotion trades-off band-
width to the load-store queue for bandwidth to the register
file, which is always bigger.

(4) by predicating memory accesses, operations which
were originally independent, and could be potentially is-
sued in parallel, become now dependent through the pred-
icates. This could increase the dynamic critical path of
the program, especially when memory bandwidth is not a
bottleneck.

8.2 Performance Measurements

In this section we present measurements of our reg-
ister promotion algorithm. The algorithm was com-
pletely implemented in the CASH C compiler [BG03],
and a detailed description of our implementation, based
on a Static-Single Assignment representation [CFR+91],
can be found in [BG04]programs from three bench-
mark suites: Mediabench [LPMS97], SpecInt95 and
SpecInt2000. The program compilation is fully auto-
mated: no source-code changes are made to the standard
input benchmarks. We present data for all the programs
which ran on our simulation infrastructure.

Our implementation has the following limitations: it
does not usedirty bits, and thus is not optimal with
respect to the number of stores. Second, it only lifts loop-
invariant predicates to guard the initializer, such as in Fig-
ure 7, but not as in Figure 8. As a simple heuristic to
reduce register pressure, we do not scalarize a value if it
is not reused for 3 iterations. The compiler uses a flow-
sensitive intra-procedural pointer analysis, which affects
the precision of the disambiguation.

Table 1 shows how often scalar promotion can be
applied. It separates promotion according to address
kind (loop-invariant versus strided) and according to
the control-flow constraints (o, from “old”, indicating
whether the code could be handled by the traditional algo-

Variables Variables
Bench Inv Str Bench Inv Str

o n o n o n o n
adpcme 0 0 0 0 go 40 53 2 2
adpcmd 0 0 0 0 m88ksim 23 10 1 4
gsme 1 1 1 0 compress 0 0 1 0
gsmd 1 1 1 0 li 1 0 1 1
epic e 0 0 0 0 ijpeg 5 1 9 5
epic d 0 0 0 0 perl 6 0 0 1
mpeg2e 1 0 1 0 vortex 22 20 1 0
mpeg2d 4 3 0 0
jpeg e 3 0 7 5 gzip 20 0 1 0
jpeg d 2 1 7 5 vpr 7 2 0 0
pegwit e 6 0 3 1 gcc 11 40 5 2
pegwit d 6 0 3 1 mcf 0 0 0 0
g721e 0 0 2 0 twolf 1 2 0 0
g721d 0 0 2 0 parser 20 3 3 5
pgp e 24 1 5 0 vortex 22 20 1 0
pgp d 24 1 5 0 bzip2 2 2 8 0
rasta 3 0 2 1 gap 1 0 18 1
mesa 44 4 2 0

Table 1:How often scalar promotion is applied.

rithm, andn, from “new”, indicating theadditionalcases
handled only by our improved version). For some bench-
marks, such asgo , vortex andgcc , the new algorithm
is essential for uncovering most of the opportunities.

Figure 9 shows the decrease in the number of loads and
stores respectively resulting from the application of our
algorithms; the baseline is the program with no memory
optimizations applied. These numbers are independent on
the actual target architecture. We are countingall memory
accesses in the program, and not just the optimized loops.
The bottom bar shows the percentage reduction obtained
by using only the PRE optimizations from [BG03], and no
inter-iteration register promotion. The top bar shows the
additional percentage decrease from using the algorithms
in this paper. We have included both bars since some of
the accesses can be eliminated by both algorithms, and
the algorithms in [BG03] must be executed in order to en-
able register promotion in CASH. For 8 programs register
promotion alone removes more than 1% in the number
of loads, with a maximum of 36% for gsme. There are
5 programs for which register promotion removes more
than 1% of the stores, with an impressive maximum of
53.5% for 124.m88ksim. The biggest reductions can be
attributed to lifting loop-invariant memory accesses out
of loops.

Figure 10 shows the impact of the optimizations on
the actual program running time. Unfortunately, CASH’s
back-end for a traditional CPU is still under development,
so we have evaluated this performance using Spatial Com-
putation [BVCG04]. Spatial Computation implements
programs directly as hardware circuits. For the purposes
of this evaluation, it can be seen as an approximation for
a very wide dynamically scheduled processor. We use a
traditional, bandwidth-limited memory system, connected
through a load-store queue and an L1 cache with a 4-

8



Figure 9: Percentage reduction in the number of (left) dynamic loads and (right) dynamic stores resulting from the
application of our memory optimizations.

Figure 10:Percentage reduction in the execution time due
to application of our memory optimizations.

cycles hit time. The other parameters of the memory sys-
tem are as follows: L1D is a 16K 4-way associative, L2 is
a unified cache with 256K, 2-way associative, with a la-
tency of 64 cycles, and the main memory has a latency of
128 cycles, sustaining a throughput of 1 word every four
cycles. We use the cache simulator from the SimpleScalar
processor simulator [BA97].

The speed-ups range from a 1.1% slowdown for
equake , to a maximum speed-up of 14% forgsm e.
There is a fairly good correlation of speed-up and the
number of removed loads. The number of removed stores
seems to have very little impact on performance, indicat-
ing that the load-store queue contention caused by stores
is not a problem for performance (since stores complete
asynchronously, they do not have a direct impact on end-
to-end performance). 5 programs have a performance im-
provement of more than 5%. Since most operations re-

moved are relatively inexpensive, because they have good
temporal locality, the performance improvement is not
very impressive. Register promotion alone causes a slight
slow-down for 4 programs, while being responsible for a
speed-up of more than 1% for 7 programs.

Interestingly, our algorithm provides better results for a
faster memory system (e.g., with a perfect L1 cache with
a latency of 2 cycles thegsm e speed-up becomes 18%).
This effect occurs because in a slow memory system the
improvement obtained by eliminating a load hitting in L1
is smaller than in a system with faster memory.

9 Conclusions

We have described a scalar promotion algorithm which
eliminates all redundant loads and stores even in the pres-
ence of conditional control flow. The key insight in our al-
gorithm is that availability information, traditionally com-
puted only at compile-time, can be more precisely evalu-
ated at run-time and used to predicate redundant memory
accesses. We transform memory accesses into scalar val-
ues and perform the loads only when the scalars do not al-
ready contain the correct value, and the stores only when
their value will not be overwritten. Our approach sub-
stantially increases the number of instances when register
promotion can be applied.

As the computational bandwidth of processors in-
creases, such optimizations may become more advanta-
geous. In the case of register promotion, the benefit of
removing memory operations sometimes outweighs the
increase in scalar computations to maintain the dataflow
information.
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