
SOMA: A Tool for Synthesizing and Optimizing Memory
Accesses in ASICs

Girish Venkataramani, Tiberiu Chelcea
Seth Copen Goldstein
Carnegie Mellon University

Pittsburgh, USA

{girish,tibi,seth}@cs.cmu.edu

Tobias Bjerregaard

TU Denmark
Lyngby, Denmark

tob@imm.dtu.dk

ABSTRACT
Arbitrary memory dependencies and variable latency memory sys-
tems are major obstacles to the synthesis of large-scale ASIC sys-
tems in high-level synthesis. This paper presents SOMA, a synthe-
sis framework for constructing Memory Access Network (MAN)
architectures that inherently enforce memory consistency in the
presence of dynamic memory access dependencies. A fundamen-
tal bottleneck in any such network is arbitrating between concur-
rent accesses to a shared memory resource. To alleviate this bot-
tleneck, SOMA uses an application-specific concurrency analysis
technique to predict the dynamic memory parallelism profile of
the application. This is then used to customize the MAN archi-
tecture. Depending on the parallelism profile, the MAN may be
optimized for latency, throughput or both. The optimized MAN
is automatically synthesized into gate-level structural Verilog us-
ing a flexible library of network building blocks. SOMA has been
successfully integrated into an automated C-to-hardware synthe-
sis flow, which generates standard cell circuits from unrestricted
ANSI-C programs. Post-layout experiments demonstrate that ap-
plication specific MAN construction significantly improves power
and performance.
Categories and Subject Descriptors: B.5.2 [RTL Implementa-
tion]: Automatic Synthesis from ANSI-C; B.4.3 [I/O and Data
Communications]: Topology
General Terms: Design, Performance, Experimentation.
Keywords: High-level synthesis, memory synthesis.

1. INTRODUCTION
When all data dependencies are statically explicit in the source

specification, today’s HLS tools have shown great promise in syn-
thesizing high-performance circuits by extracting parallelism. How-
ever, large-scale applications with numerous memory references
continue to present an obstacle in HLS for two main reasons: (1) In
a hierarchical memory system, accesses may have variable latency,
e.g. in the event of a cache miss. Hence, these cannot be stati-
cally scheduled. (2) More importantly, [10] finds that, on average,
even the state-of-the-art pointer alias analysis can statically dis-
ambiguate only about 60% of all memory dependencies in C pro-
grams. Hence, the circuit must support a dynamic synchronization
mechanism to guarantee memory consistency at all times. Many

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’05, Sept. 19–21, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-161-9/05/0009 ...$5.00.

HLS tools deal with the first issue by imposing a fixed, worst-case
(and often unacceptable) access time for memory operations [28,
18]. For the second issue, they restrict the input specs to statically
explicit memory dependencies (for example, pointer aliasing is dis-
allowed in System-C [16]).

The motivation behind this paper is to introduce techniques to
allow unconstrained memory access dependencies in the source
specification. To this end, we introduce SOMA, a framework for
Synthesizing and Optimizing Memory Accesses. SOMA can be
embedded within any HLS flow (like System-C, for example), thus
expanding the capabilities of the tool. SOMA synthesizes a mem-
ory access network (MAN) that provides for pipelined, arbitrated
access to shared memory resources, and for data items from mem-
ory to be reliably routed to their appropriate destinations. For dy-
namic memory dependency support, the MAN implements a syn-
chronization mechanism that dynamically resolves dependencies,
while sustaining high levels of memory parallelism.

The input to SOMA is a specification in which all potential mem-
ory dependencies are explicit (Section 3). A vital challenge in ar-
chitecting the MAN (described in Section 4) is the construction of
an optimal access network that routes potentially concurrent mem-
ory requests from numerous initiation points to a shared memory.
We present a formal analysis framework to characterize the perfor-
mance of different access network topologies for a given memory
access concurrency profile. Using this information, we describe a
heuristic to predict the application’s dynamic memory parallelism
profile and to finally construct an optimized MAN topology (Sec-
tion 5). This topology is then automatically synthesized using our
flexible library of network building blocks. As a demonstration of
its use, SOMA has been integrated into CASH [25], an automated
HLS toolflow that synthesizes unrestricted ANSI-C programs into
pipelined, clockless circuits. However, the techniques described
here can be easily adapted to other (e.g., synchronous) implemen-
tations as well. Post-layout experiments reveal the usefulness of
our concurrency analysis, and the robustness of the heuristic in im-
proving the MAN performance (Section 6).

2. RELATED WORK
HLS tool support for applications with memory references can

be classified into the following four broad categories:
1. Memory Size Estimation and Mapping: A vast body of

work examines the ideal sizing of memory modules in order to cus-
tomize them to the particular application’s needs [26, 19, 30, 12].
Séméria [21] described how data structures in ANSI-C can be allo-
cated into separate memories. In particular, they present an imple-
mentation of the malloc/free constructs in C used for dynamic
memory allocation.

2. Memory redundancy elimination: Kolson [13] uses Tree
Height Reduction to consider memory access latencies and redun-
dancies in forming a schedule. Recent work by Stitt [23] shows

 *ptr = result; // str1

lod2

str1

A_arr_sink B_arr_sink _sinkUnknown

B_arr_sourceA_arr_source _sourceUnknown

lod1 lod3

 else

 return result;

int A_arr[100], B_arr[100];

}

int foo(int* ptr,int idx,int offs){
 int result = A_arr[idx]+ // lod1
 B_arr[idx]; // lod2
 if (idx)
 result += *(ptr+offs); // lod3

Figure 1: An example demonstrating explicit memory dependency
representation

how words recently read from memory can be reused.
3. Access ordering and access scheduling: A huge body of

work in HLS systems addresses the problem of static scheduling
in memory-intensive applications [5, 28, 9, 20, 18]. Most of these
efforts start with a control-data flow graph like specification, where
memory references are explicitly marked (i.e. statically disam-
biguated). They differ in the static scheduling algorithm used, and
may even assume that memory accesses incur fixed latencies [28,
18]. There are also some efforts that consider both memory access
scheduling and memory allocation together [17, 22].

4. Tool support: A number of C-like toolflows [4, 6, 7, 27,
11, 8] define synthesizable subsets of C, but they all require static
memory reference disambiguity. This limitation is also present in
flows that start from System-C [16].

The first two categories are orthogonal to the focus of our work,
and can be used in conjunction with our techniques. A commonal-
ity in the last two is that they all perform static scheduling and rely
on statically disambiguated memory references. Static scheduling
of dynamically dependent memory operations results in overly con-
servative schedules, and hence none of the above techniques ad-
dress this problem.

Our work differs from all of the above in that the proposed HLS
techniques support input specifications in which memory references
cannot be statically disambiguated. Our input specification ex-
plicitly represents potential memory dependencies, which also be-
comes a runtime synchronization construct. Hence, all memory
accesses are dynamically scheduled once their dependencies have
been dynamically disambiguated. To our knowledge, we are the
first to propose HLS techniques to handle these concepts.

3. DEPENDENCY REPRESENTATION
The input specification to SOMA explicitly encodes may depen-

dencies between memory references. A may dependency exists be-
tween any two references that cannot be proven to be independent.
Alias analysis is used to eliminate false dependencies, and assigns
memory accesses to unique location sets [29]. In the worst-case,
when nothing can be statically disambiguated, there will exist a
single location set representing the entire memory block.

The input specification is a flow-graph in which nodes represent
unique memory accesses in the source program and edges repre-
sent (synchronization-)tokens. A token between two accesses indi-
cates that both may be assigned to the same location set at runtime.
Thus, the flow-graph explicitly represents a partial-ordering of ac-
cesses through tokens. At runtime, the execution semantics of a
memory access node is equivalent to dataflow execution semantics.
A memory access is initiated only after it receives tokens along all
its input edges. After accessing memory, tokens are released to all
its successors. Thus, memory accesses are, in essence, dynami-
cally scheduled, which is a necessary requirement in any synthesis
framework supporting memory access dependencies that can only
be dynamically disambiguated.

Figure 1 shows a simple example of this representation. In the
C code, there are essentially three location sets, arrays A arr and
B arr, and the rest of the memory block, represented as Unknown.
Special source and sink nodes represent the synchronization bound-
aries with the rest of the application. The accesses, lod1 and lod2,

store

+

load Access
Tree

Token
Tree

Value
Tree

+

store

load

enabling
token

address

value

address
synthesized as

Memory
Station

P
or

t t
o

M
em

or
y

address

value

address

MAN

Figure 2: An abstraction of the MAN architecture

reference different location sets (A arr and B arr respectively),
and therefore the representation does not introduce any edge be-
tween them. Nothing is known about ptr, and hence it is associ-
ated with Unknown. To preserve memory coherency, we must as-
sume that it can point to either of the other two location sets. Closer
examination reveals that lod3 need not synchronize with lod1 or
lod2 since they are all memory-reads. Similarly, we need not syn-
chronize lod3 with str1 because they occur in different branches of
the if-else statement. But, we need to synchronize lod1 and
lod2 with str1. Elimination of redundant dependencies in this rep-
resentation is important and has been addressed in [2], but is or-
thogonal to the focus of this paper.

4. MAN ARCHITECTURE
This section describes how a dependency-annotated token graph

can be synthesized into a dependency-coherent memory access net-
work (MAN). For ease of explanation, we assume that all accesses
are to a shared, central, single-ported memory. The framework pro-
posed in this paper can be extended to cover systems with multi-
ported memories, or multiple, distributed memories.

The MAN architecture addresses three specific goals. It must
(1) support multiple, potentially concurrent accesses to the shared
memory; (2) route data read from memory to its appropriate des-
tinations; and (3) guarantee memory consistency. The MAN im-
plements an input port for each static memory reference in the pro-
gram. Hence, it must be scalable as the number of references can
be numerous. Figure 2 illustrates the architecture of the proposed
MAN. It consists of three trees: an access tree routes requests to
memory, arbitrating amongst concurrent accesses to provide se-
quential access to the memory station, which is the interface to
memory; the value tree routes the memory responses (i.e. load-
values) to their appropriate destinations, and the token tree routes
synchronization-tokens, used for memory consistency. Dynamic
synchronization is achieved by releasing the token associated with
an access to its consumers, from the root of the access tree, since
access-order from this point to memory can be guaranteed.

4.1 MAN building blocks
The MAN is characterized by dynamic scheduling, which im-

plies that all communication within it and with the outside world
is asynchronous in nature. At the circuit level, however, the MAN
can be realized as a synchronous implementation, as a GALS ar-
chitecture, or, as we have done in this work, as a clockless or self-
timed implementation. Clockless circuits are characterized by the
absence of a global synchronization signal. They are data driven,
and all flow control is handled by local handshaking mechanisms.
We make use of the 4-phase bundled-data protocol that uses control
signals, request (req) and acknowledge (ack) [24], to implement the
communication handshake.

In a single-ported monolithic memory, the construction of the
value and token trees is simple since no congestion can occur. Each
tree-node is implemented as a handshake-demultiplexer element,
and the route to the destination is encoded in the data itself. The

HS

cntrl

R

E

G

Figure 3: Handshake-multiplexer implements an access tree node.

access tree, on the other hand, is more complex since it must sup-
port arbitration between potentially concurrent accesses. Conges-
tion among concurrent accesses degrades performance consider-
ably, but the performance cost overhead can be minimized by cus-
tomizing the tree topology to the application.

An access tree node is an arbitrating handshake-multiplexer as
shown in Figure 3. The register at the output allows for pipeline-
parallelism in the tree. Since the timing between the arrival of con-
current inputs is unknown in a clockless implementation, special
circuitry is needed to arbitrate between these. The key control sig-
nal for this is enable. When input requests arrive, any req causes
enable to go high; this locks all signals to the right of the mutual
exclusion elements [24] and starts the arbitration phase. The inputs
are arbitrated according to a static priority. This design is based
on [3], but is optimized for throughput, and first used in [1].

The access tree node is characterized by its forward latency and
cycle time. The forward latency is the latency through the node
when there is no congestion, while the cycle time is the minimum
time between servicing two concurrent inputs. These parameters
are functions of the number of inputs and the bit width. We can
characterize the worst-case values of the forward latency (Fj) and
cycle time (Cj) of a j-input multiplexer, for a given bit width, as:

Fj = λ + β log2 j (1)
Cj = τ + γ log2 j (2)

The constants, λ and τ scale logarithmically with the bit width of
the data path. The j-dependent term arises from the need to drive
and merge internal signals that scale with the number of inputs.
We have evaluated the constants (in terms of logic levels) to be
λ = 15 + log4 B, τ = 22 + log4 B, and β = γ = 4.5, where B is
the bit width.

Note that (1) and (2) are analytical approximations based on the
circuit architecture. In a real implementation the parameters do not
follow such a smooth curve; e.g., when going from 8 to 9 inputs,
the parameters may jump as an extra logic level is added in internal
buffering. Nevertheless, functions (1) and (2) are of great use in
understanding our heuristic, as will become clear in the following
section.

5. TREE CONSTRUCTION
In this section, we first describe the cost functions used to eval-

uate the performance of a given access tree topology, and then use
these results in a heuristic that constructs an application-specific

tree. We limit the scope to balanced trees, as they are easier to for-
mally reason about. Later, we will discuss the impact of creating
asymmetric trees as well.

A balanced tree can be characterized by [k, {b1, ..., bk}], where
k is the number of levels in the tree, and bi is the number of children
at the ith level, level 1 being the root. Hence, the number of inputs
to the leaves is given by N =

Qk
i=1 bi. Using (1), we define the

forward latency of an uncongested tree, T (k, b1, .., bk), as:
Ftree = Fb1 + ... + Fbk

= (λ + β log2 b1) + ... + (λ + β log2 bk)
= kλ + β log2 N (3)

5.1 Problem Analysis
Given an application with N memory accesses, we want to (a)

determine the k and {b1, ..., bk} parameters that define the optimal
tree for this application, and to (b) assign the N accesses optimally
to the leaf level. The goal is to minimize the performance cost of
accessing memory through the tree.

Consider the trivial case where a single access makes its way
through an uncongested tree. Then, the access-latency through
the tree is Ftree. Now, assume that the next access is initiated
after an interval of tnext, and that both accesses have separate
routes through the tree, meeting only at the root. Then, the sec-
ond access will reach the root tnext time units after the first ac-
cess. If tnext ≥ Cb1 (the cycle time of the root node) then no
congestion will occur between the two accesses, and the latency of
the second access through the tree is also Ftree. The total cost
overhead of accessing the memory through the tree, defined as
the total time spent waiting for memory requests being routed, is
given by Cost = (Ftree + tnext), if tnext < Ftree, and by
Cost = (2 × Ftree), if tnext ≥ Ftree. In both cases, Cost is op-
timized by minimizing Ftree, and we call such accesses mutually
non-concurrent.

If tnext < Cb1 the delay of the second access through the tree
becomes dependent on the cycle time Cb1 of the root node, because
the accesses collide at the root. Such colliding accesses are said to
be mutually concurrent. The total cost overhead is now given by
Cost = (Ftree + Cb1). A group of accesses are said to be mutu-
ally concurrent if tnext < Cb1 for every two successive accesses.
Under the assumption that the root is the bottleneck for mutually-
concurrent accesses, a group of w such accesses has a total cost
overhead of the forward latency through the tree for the first access,
plus the cycle time of the root for the following (w − 1) accesses.

Cost = Ftree + (w − 1)× Cb1 (4)
From (3), we see that Ftree is always smallest for a 1-level tree.

However, this means that b1 = N in (4), resulting in an increased
Cb1 compared with a multi-level tree. Hence, minimizing Cost
involves a trade-off between the size of the root node and the depth
of the tree. In Section 5.3, we will show how this trade-off is related
to the application profile.

In the rest of this analysis, we divide all accesses in an applica-
tion into groups of mutually concurrent accesses, a non-concurrent
access forming a group of its own. Furthermore, we make the as-
sumption that the separation between non-concurrent accesses is
greater than the forward latency of the tree: tnext ≥ Ftree. This
simplifies the calculation of the total cost overhead of an applica-
tion significantly, as it is now independent of tnext. The total cost
can now be calculated by summing up (4) for each group of con-
current accesses i ∈ {1, 2, . . . , n}.

Costtotal =
P

Costi (5)

5.2 Tree Topology Selection
We will now analyze how we can use this Cost model to find the

optimal tree topology. The goal of this analysis is to determine how
we can trim the search space for an application with N memory

references. We find an upper-bound for the number of tree levels
k, for a given N , and we show that we do not need to look beyond
some k = k′ to find the optimal tree topology. In a nutshell, we
want to draw a relationship between N and k that defines a smaller
search space.

We start by analyzing a k = 1 level tree. From (3), we see that
this is optimal when most accesses are mutually non-concurrent
with each other. We will now find a cross-over point N = N1,
for which this 1-level tree is no longer optimal. We assume that all
accesses are mutually concurrent, as this corresponds to the worst
case. An N -input, k = 2 level tree with r2 inputs at the root will
be more optimal than the 1-level tree, iff:

Ftree2 + (N − 1)× Cr2 < Ftree1 + (N − 1)× CN

Ftree2 − Ftree1 < (N − 1)× (CN − Cr2)
2λ + β log2 N − (λ + β log2 N) < (N − 1)× (CN − Cr2)

λ < (N − 1)× (CN − Cr2)
λ < (N − 1)× log2(N/r2)

N1, the lower-bound of N that satisfies this inequality, can be
found if we use a lower-bound for r2. Hence, by fixing r2 = 2, we
can solve for N to find N1. This solution tells us that for upto N1

accesses, we never need to search beyond a 1-level tree topology
for optimality. Hence, we have bounded the search space for upto
N1 accesses. Now, let us determine N2, the lower-bound of N for
which the optimal tree is always 1 or 2 levels. For N concurrent
accesses, a 3-level tree with r3 inputs at the root is more optimal
than the 2-level tree iff:

Ftree3 − Ftree2 < (N − 1)× (Cr2 − Cr3)
λ < (N − 1)× (Cr2 − Cr3)

We solve for N to find N2, and observe that the inequality will
never be satisfied as long as r2 ≤ r3. This means that the 2-level
tree is always better than a 3-level tree. However, the Cost model
holds only under the crucial assumption that root node is always
the bottleneck during any burst of concurrent access activity. There
are two cases under which this assumption breaks down:
1. The lower-level node experiences congestion while the root is
not busy. This, however, is controllable since it depends on how we
assign accesses to leaves. As we show later on, careful assignment
of accesses to leaves ensures that this condition is easily avoided.
2. If the entire 2nd level (ie. the level below the root) is not fast
enough to keep the root node busy, then the bottleneck is not in
the root. For example, with an r2-input root, we would need N/r2

inputs at each node of the second level of a 2-level tree. The root
for such a tree is not the bottleneck if:

r2 × Cr2 < CN/r2 (6)
The value of N = N2 for which (6) is just satisfied determines

the upper-bound of the search space for 1 and 2 levels. Hence, for
any N > N2, the search space would have to include 3-level trees.
We can determine N2 by using a lower-bound for r2(= 2). We can
easily extend these arguments to k = 3 and higher level trees, and
determine the various N = Nk that form the upper-bound in the
search space for k.

Applying (2), with a bitwidth of B = 64 bits and r2 = 2, in
(6) we find N < 375. This implies that to keep a 2-input root
node busy requires level-2 nodes with 187 or fewer inputs. Of
course, the analytical model in (2) is an approximation, and the
actual cycle times are affected by other factors outside the scope
of this model, like wire loads. However, post-layout simulations
show that a 32-input node has a small enough cycle time to keep a
2-input root node busy. The cycle time ratio, C32/C2, of these two
nodes is measured in the simulation to be 1.85. This corresponds
very closely with the cycle time ratio when computed in terms of
logic levels as cycle ratio = 52/28 = 1.86, while (2) predicts
47.5/29.5 = 1.61.

We have established that for any given k, there exists some upper-
bound Nk, such that the optimal tree has k or fewer levels if the
number of concurrent accesses is Nk. As a corollary, for a given

A

PX

Y

B

(a) (b)

Accesses

1

2

3

4

1

2

1

1

A

X P

Y

B

Width
Time
Step

Figure 4: (a) ASAP schedule creates the (b) Concurrency Table (C-
Table): all accesses within a row are deemed mutually concurrent,
while accesses from different rows are mutually non-concurrent

N ′, we can also find an upper-bound k′ for the search space.

5.3 Tree Construction Heuristic
This section describes a heuristic algorithm that explores the de-

sign space to find the best tree topology for a given application with
N accesses. First, we need to classify the N accesses into groups
of mutually concurrent memory accesses. Typically, a detailed ex-
ecution schedule is necessary to find this concurrency information.
However, since the circuits are dynamically scheduled, we can only
predict a possible runtime schedule. A good estimate of the sched-
ule requires detailed analysis of all communication patterns and
control paths in not just the MAN, but also in the rest of the circuit.
However, the token graph, described in Section 3, is an excellent
starting point since any two accesses connected by an edge in this
graph are guaranteed to be non-concurrent.

Given a token graph, the heuristic creates an ASAP 1 schedule
as shown in Figure 4a. Using this schedule, we form a Concur-
rency Table (C-Table) in which all accesses scheduled in the same
time-step, form a row of the C-Table (Figure 4b). Since they are
scheduled concurrently, each row forms a group of mutually con-
current accesses. This approach to finding concurrency relations
is accurate in most cases, eg. except for (X,P) and (Y,P), all other
concurrency relations in the table are accurate.

Next, we compute the upper-bound tree-depth k for the given N
as per our analysis in Section 5.2. We only need to search tree
topologies with k or fewer levels to find the optimal tree. For
a given tree-depth, we explore the number of inputs at each tree
level using the values, {2, 4, 8, 16, 32}. We start by fixing the
inputs of the root node, and then walk down the tree fixing the
inputs at the lower levels. For each topology explored, we com-
pute the cost overhead for a given row (with w accesses) in the
C-Table,according to (4). The total cost overhead is computed ac-
cording to (5), by adding up the costs of each row. Finally, we pick
the tree topology with the lowest cost.

We now examine the time complexity of this heuristic. For a
given tree-depth, if we choose the input-size of the root to be b1 =
r1, then the choices at the next level are limited to N/r1, and to

N
r1.r2

in the level after that and so on. Hence, for a given k, the
complexity of the heuristic is O(Nk). In practice, k is small (≤ 2
in our benchmarks). Using our analysis from the previous section
and results from node simulations, we have observed that the cycle-
time of an 8-input node is almost equivalent to that of a 2-input
node. Since, a level of 32-input nodes is sufficient to keep both of
these busy, for k = 2, we can support upto N = 256. Since, k
scales logarithmically compared to N , the complexity of our algo-
rithm is tractable.
Access-to-leaf assignment. As noted before, it is essential to as-
sign accesses to leaves in such a way that concurrent accesses meet
only at the root. This can be enforced if a balanced leaf-assignment

1ALAP was also tried, but does not perform as well.

Benchmark Kernel Static Total Heur.
Refs Top. Better

gsm e Short term 5 12 85%
analysis filtering

gsm d Short term 6 12 100%
synthesis filtering

pgp d mp smul 7 12 100%
pgp e mp smul 7 12 100%
adpcm e adpcm coder 10 17 74%
adpcm d adpcm decoder 9 17 100%
jpeg e jpeg fdct islow 32 27 100%
mpeg2 d idctcol 35 27 74%
mpeg2 e dist1 43 27 93%
jpeg d jpeg idct islow 68 27 92%

Table 1: List of the benchmark kernels synthesized and the num-
ber of static memory accesses within each kernel. The 4th col-
umn shows the number of reference topologies explored and the
5th shows the percentage of these that are inferior in overall per-
formance in comparison with the heuristic

is made for the accesses within a given C-Table row; all accesses
within each row are distributed evenly amongst all leaves. As we
show in Section 6, this heuristic sufficiently enforces our assump-
tion that all congestion occurs at the root node. We also note that
this strategy does not unduly increase wirelength, which is a con-
cern in deep sub-micron technologies.
Criticality. The heuristic is easily modified to bias some accesses
that are on the dynamic critical path of execution. If static analy-
sis reveals criticality for the accesses, then this information can be
used in three ways - (a) during topology selection, the total cost
overhead of a C-Table is now computed as a weighted total, where
a row’s weight is the sum of the criticalities of accesses in the row;
(b) the tree nodes support static priorities, which can directly be
used to bias critical accesses during access-to-leaf assignment. (c)
we can bias a critical access by building asymmetric trees, with
shorter paths to the root for the critical accesses. However, since
the number of tree levels is usually small, the benefit is limited.

6. EXPERIMENTAL RESULTS
This section evaluates the quality of our tree construction heuris-

tic, and the assumptions that the heuristic makes. We have inte-
grated SOMA into CASH [25], an HLS flow that automatically
synthesizes clockless, standard-cell circuits in a [180nm/2V] tech-
nology, from un-annotated, unrestricted ANSI-C programs [25].
All results reported are extracted from post-layout simulations. Our
benchmarks are the most frequently executed kernels from the Me-
diabench [15] suite. The second column of Table 1 lists these ker-
nels and the third column lists the number of static memory refer-
ences present in them. The latter is the number of input ports to the
access tree of the MAN, and gives us a feel for its complexity.

In order to evaluate our heuristic, we performed a set of reference
experiments in which we construct simple, n-ary balanced trees.
The accesses are randomly assigned to the leaves of the tree. To
explore the design space, we varied n to be any of {2, 4, 8, 16, 32}.
We compared the performance of these trees against the one con-
structed using our heuristic. In Table 1, the 4th column shows the
number of different reference topologies generated, and the 5th col-
umn shows the fraction of these that were inferior to the heuristic
topology in terms of overall performance. On average, the heuristic
performs better than 90% of all reference experiments.

Tree Congestion. First, we evaluate the congestion in the tree dur-
ing periods of high memory parallelism. When a burst of concur-
rent memory accesses are initiated, congestion is fundamental and
cannot be avoided. However, we can differentiate between three
types of congestion depending on where in the tree they occur:

Figure 5: Throughput: the shaded region marks the throughput
space achieved by the random topologies, while the trendline shows
the throughput of the heuristic.

1. Root congestion: is ideal since it means that the concurrent ac-
cesses have moved freely up the tree, and are only serialized at the
point of exit from the tree; hence, the tree allows for maximal con-
currency when the accesses meet each other at the root.
2. Higher-level congestion: Congestion occurs at a given tree node
at level, m, only when all tree nodes on the path from level m to
the root (i.e., nodes at levels {1, . . . , m}) also experience conges-
tion. This is also desirable since it implies that arbitration is being
pipelined, and allows for maximal parallelism until the point of se-
rialization.
3. Lower-level congestion only: is bad because we have serialized
the concurrent accesses far too early; this wastes the tree resources
and can degrade performance. In fact, this is antithetical to the first
assumption in our analysis in Section 5.2.

We computed the dynamic congestion in the trees by examining
the post-layout simulation traces. Our observation is that there is no
type 3 congestion in any of the trees constructed by our heuristic.
This confirms our claim that we can easily meet the first assumption
in our analysis. In contrast, type 3 congestion in the reference trees
account for about 15% of all congestion.

Throughput. From the traces, we identify bursts of w accesses,
and note the time interval, t, between the time the first access enters
the tree and the last one exits the tree. Throughput for each burst is
then w

t
. The average throughput across all bursts is shown in Fig-

ure 5 in terms of Mega-accesses per second. The shaded region of
the graph shows the space occupied by the reference experiments,
and the trendline shows the performance of the heuristic tree. No-
tice that the heuristic constructs the best trees most of the time,
and its throughput is better than the average reference topology by
about 25%. There are two interesting results here:
1. One of the reference topologies for the jpeg d kernel, has bet-
ter throughput than the heuristic. However, the overall system per-
formance is better for the heuristic because the reference topology
experiences a lot of bad congestion.
2. adpcm e is the only kernel for which the heuristic makes some
bad decisions. Our analysis of the C-Table for this kernel reveals
that a two-level tree with four input root nodes is the best topology,
since it expects four accesses to be mutually concurrent most of the
time. This is a consequence of using a simple scheduling heuristic
that only examines the memory-dependencies in the token graph.
Although four accesses can be mutually concurrent in this graph,
inspection of the entire dataflow graph that encodes all data de-
pendencies reveals that there exist data dependencies between the
accesses; sure enough, the dynamic concurrency is at most two.
Hence, analyzing the complete dependency context is important to
make better concurrency predictions, and we are currently incorpo-
rating this into our heuristic.

Summary. The heuristic presented in this paper improves perfor-
mance of the baseline MAN architecture. To provide the reader
with some context, we compared the performance of the automat-
ically synthesized kernel to that of a superscalar processor run-
ning the same C program. The superscalar core was simulated in
MASE [14] using a 600 MHz clock at 2V. The geometric mean of
performance speedup (over the processor) of the presented bench-
marks aggregated across all randomly generated reference experi-
ments is about 1.86x, while kernels synthesized with the heuristic
tree construction are about 2.13x faster than the core. In terms of
energy-delay, the heuristic construction is about two orders of mag-
nitude better than the superscalar, and about 20% better than the
aggregate of the reference MAN topologies. Although the com-
parison with the superscalar core illustrates the performance of the
MAN against a standard implementation, we would have ideally
liked to compare the MAN against other existing solutions for syn-
thesizing unconstrained memory accesses. However, to our knowl-
edge, no other HLS tool tackles this problem.

7. CONCLUSIONS
We have presented, SOMA, a framework for synthesizing and

optimizing unconstrained memory accesses in high-level synthesis.
Given an input graph representation that explicitly specifies may-
dependencies, we can synthesize a distributed memory access net-
work (MAN) architecture to provide access to and from memory.
The architecture is scalable and inherently provides a synchroniza-
tion mechanism that maintains memory consistency in the context
of memory-ordering dependencies that are known only at runtime.

The design space for MAN topologies is large, and for opti-
mality it must match the memory parallelism profile of the ap-
plication. We have presented a concurrency-based analysis of the
MAN topology’s performance. The analysis shows that the design
space of MAN topologies for a given application can be bounded.
This allows our heuristic tree construction algorithm to explore this
smaller space by predicting the dynamic memory parallelism of the
application, and then selecting the best topology for the application.

While the MAN described here is synthesized as a clockless cir-
cuit, there’s nothing intrinsic in SOMA that prevents us from im-
plementing it synchronously. In fact, a GALS-like solution may
be attractive in some cases. Thus, the SOMA framework can be
directly embedded within HLS tools that synthesize circuits from
abstractions like C, e.g., System-C, thereby expanding the tool’s
capability to support arbitrary memory access references.

8. ACKNOWLEDGMENTS
We want to thank the reviewers for their helpful and thorough

comments. This research is funded in part by the National Sci-
ence Foundation under Grants No. CCR-0224022 and No. CCR-
0205523, by DARPA under contracts N000140110659 and 01PR07586-
00, the Semiconductor Research Corporation and an equipment
grant from Intel Corporation.

9. REFERENCES
[1] T. Bjerregaard and J. Sparsø. A scheduling discipline for

latency and bandwidth guarantees in asynchronous
network-on-chip. In Async. IEEE, 2005.

[2] M. Budiu and S. C. Goldstein. Optimizing memory accesses
for spatial computation. In International ACM/IEEE
Symposium on Code Generation and Optimization (CGO),
pages 216–227, March 23–26 2003.

[3] A. Bystrov, D. J. Kinniment, et al. Priority arbiters. In Async,
pages 128–137. IEEE Comput. Soc., 2000.

[4] C Level Design, http://www.cleveldesign.com/. C2HDL.
[5] G. Corre, E. Senn, et al. Memory accesses management

during high level synthesis. In CODES+ISSS, pages 42–47.
ACM, 2004.

[6] CoWare, http://www.coware.com/. N2C.
[7] Frontier Design, http://www.frontierd.com/. A—rt Builder.
[8] A. Ghosh, J. Kunkel, et al. Hardware synthesis from c/c++.

In DATE, page 82. ACM, 1999.
[9] P. Gupta and A. C. Parker. Smash: a program for scheduling

memory-intensive application-specific hardware. In ISSS,
pages 54–59. IEEE Computer Society, 1994.

[10] M. Hind and A. Pioli. Evaluating the effectiveness of pointer
alias analyses. Science of Computer Programming,
39(1):31–55, January 2001.

[11] T. Kambe, A. Yamada, et al. A c-based synthesis system,
bach, and its application (invited talk). In ASP-DAC, pages
151–155. ACM, 2001.

[12] P. G. Kjeldsberg, F. Catthoor, et al. Storage requirement
estimation for optimized design of data intensive
applications. ACM Trans. Des. Autom. Electron. Syst.,
9(2):133–158, 2004.

[13] D. J. Kolson, A. Nicolau, et al. Integrating program
transformations in the memory-based synthesis of image and
video algorithms. In ICCAD, pages 27–30. IEEE Computer
Society, 1994.

[14] E. Larson, S. Chatterjee, et al. MASE: A novel architecture
for detailed microarchitectural modeling. In ISPASS,
November 4–6 2001.

[15] C. Lee, M. Potkonjak, et al. MediaBench: a tool for
evaluating and synthesizing multimedia and communications
systems. In Micro-30, pages 330–335, 1997.

[16] S. Y. Liao. Towards a new standard for system level design.
In CODES, pages 2–6. ACM, 2000.

[17] C.-G. Lyuh and T. Kim. Memory access scheduling and
binding considering energy minimization in multi-bank
memory systems. In DAC, pages 81–86. ACM, 2004.

[18] G. Mittal, D. C. Zaretsky, et al. Automatic translation of
software binaries onto fpgas. In DAC, pages 389–394. ACM,
2004.

[19] S. Y. Ohm, F. J. Kurdahi, et al. A comprehensive estimation
technique for high-level synthesis. In ISSS, pages 122–127.
ACM, 1995.

[20] J. Park and P. C. Diniz. Synthesis of pipelined memory
access controllers for streamed data applications on
fpga-based computing engines. In ISSS, pages 221–226.
ACM, 2001.

[21] L. Séméria, K. Sato, et al. Synthesis of hardware models in C
with pointers and complex data structures. IEEE TVLSI,
2001.

[22] J. Seo, T. Kim, et al. An integrated algorithm for memory
allocation and assignment in high-level synthesis. In DAC,
pages 608–611. ACM, 2002.

[23] G. Stitt, Z. Guo, et al. Techniques for synthesizing binaries to
an advanced register/memory structure. In FPGA, pages
118–124. ACM, 2005.

[24] I. Sutherland. Micropipelines: Turing Award Lecture.
Comm. of the ACM, 32 (6):720–738, June 1989.

[25] G. Venkataramani, M. Budiu, et al. C to asynchronous
dataflow circuits: An end-to-end toolflow. In IWLS, pages
501–508, June 2004. (full paper).

[26] I. M. Verbauwhede, C. J. Scheers, et al. Memory estimation
for high level synthesis. In DAC, pages 143–148. ACM,
1994.

[27] K. Wakabayashi. C-based synthesis experiences with a
behavior synthesizer, cyber. In DATE, page 83. ACM, 1999.

[28] W. Wang, T. K. Tan, et al. A comprehensive high-level
synthesis system for control-flow intensive behaviors. In
GLSVLSI, pages 11–14. ACM, 2003.

[29] R. P. Wilson and M. Lam. Efficient context-sensitive pointer
analysis for C programs. In PLDI.

[30] Y. Zhao and S. Malik. Exact memory size estimation for
array computations without loop unrolling. In DAC, pages
811–816. ACM, 1999.

	Introduction
	Related Work
	Dependency Representation
	MAN Architecture
	MAN building blocks

	Tree Construction
	Problem Analysis
	Tree Topology Selection
	Tree Construction Heuristic

	Experimental Results
	Conclusions
	Acknowledgments
	REFERENCES -9pt

