
Appears in 2002 IEEE Symposium on Field-
Programmable Custom Computing Machines, April
2002.

Mobile Memory: Improving memory locality in very large
reconfigurable fabrics

Rong Yan and Seth C. Goldstein
Carnegie Mellon University

fyanrong,sethg@cs.cmu.edu

Abstract

As the size of reconfigurable fabrics increases we can
envision entire applications being mapped to a reconfig-
urable device; not just the code, but also the memory.
These larger circuits, unfortunately, will suffer from the
problem of a growing memory bottleneck. In this paper
we explore how mobile memory techniques, inspired by
cache-only memory architectures, can be applied to help
solve this problem. The basic idea is to move the mem-
ory to the location of the accessor. Using both an ana-
lytical model and simulation we investigate several differ-
ent memory movement algorithms. The results show that
mobility can, on average, decrease memory latency 2x;
which translates into speedup of about 15%.

1 Introduction

As reconfigurable fabrics grow in capacity and speed we
can start to think about executing entire applications on
them. In the past, FPGAs may have contained the code
and some temporary memory for a kernel, or maybe even
the code for an entire application, but never the code and
memory for an entire application. However, with the ad-
vent of million-gate FPGAs that also include substantial
memory resources we can begin to think of using this rich
resource to overcome the processor-memory gap. Fur-
thermore, some researchers are beginning to look at al-
ternative implementation technologies which will produce
multi-billion gate FPGAs [4]. Recent work has shown that
such systems will be able to store entire applications and
data sets on a single die.

When looking at such a system the main obstacle to
high performance is memory latency [4]. Even in the best
of all worlds, where memory addresses are known at com-
pile time and all the memory can fit on a single chip, the
latency to access memory from one part of the chip to an-
other imposes a substantial delay. In this paper we exam-
ine how technology borrowed from shared memory mul-
tiprocessors can be applied to very large reconfigurable
fabrics to reduce the cost of memory accesses. Specifi-

cally, we look at whether techniques used in cache-only
memory architectures [3] (COMA) can be applied to re-
configurable devices to reduce memory latency when en-
tire applications are mapped to the reconfigurable device.

The motivation for this work came from looking at the
behavior of programs compiled to a reconfigurable fabric
with 1010 gates [4]. Each program was converted into a
circuit and mapped to the reconfigurable device. Further-
more, the memory was also mapped to the reconfigurable
device. Figure 1 shows an example of a very small pro-
gram mapped to such a device. Each square represents
a cluster of the underlying device. The shading of the
squares indicates how much of the area is taken up by
instructions. A white square contains only code; a dark
square contains only data. The edges show communica-
tion patterns. The edge width is the logarithm of the num-
ber of messages sent across the edge. The edge color in-
dicates the mix of types of messages: dark edge indicates
memory reads only, while lighter edges indicates con-
trol transfers, with intermediate shadings for edges which
carry mixed traffic. Despite the graph being very small, it
exhibits some typical features for all our programs, like
the big “stars”: code regions which touch most of the
memory of the program. “Stars” are bad, because there
is no way to place all adjacent nodes close to the star’s
center node; some have to be remote. “Hot” memory lo-
cations, which are touched by a lot of basic blocks, are
less common. This lead us to wonder if we couldn’t im-
prove the total performance by dynamically moving the
memory closer to the location where it was accessed. In
other words, to treat all the memory as a COMA system,
moving memory to accessors on demand.

We investigate several different methods for imple-
menting mobile memory systems. We find, that there is a
potential to significantly speed-up applications with sim-
ple methods. In the next section of the paper we describe
some of the work done in COMA systems; the ancestors
to our mobile memory system. In Section 3 we define the
problem and describe the different techniques that we in-
vestigate. In Section 4 we develop an analytical model to
determine the best possible behavior that we can expect

1



Figure 1: A placed graph for g721 e.

from mobile memory systems. In Section 5 we evaluate
the different techniques using various simulations.

2 Background

The work which most inspired our study occurred around
a decade ago in the context of multiprocessor systems.
Cache-Only Memory Architectures (COMA) [3, 6, 5]
were introduced as an alternative to message passing and
shared memory architectures. In a COMA, virtual pages
have no physical ”home”, and main memory acts as a
huge cache. The hardware transparently migrates and
replicates the data to the current accessor, adapting dy-
namically to the memory access pattern and hopefully
placing the data closer to the subsequent accessors. As
an alternative of COMA, Verghese [11] has augmented
NUMA-RC machines with additional operating system
support for dynamic page migration, aimed at reducing
the remote memory access latencies.

Although these techniques are aimed at multiproces-
sors they have much in common with the very large re-
configurable fabrics we are considering. In fact, if we
treat each little piece of code on our fabric as a proces-
sor, then we implement, on a single fabric a massively
parallel system. However, very large reconfigurable fab-
rics have many advantages over multiprocessor systems:
a more flexible topology, faster signalling, more available
bandwidth, and the ability to create custom memory con-
trollers.

2.1 Compilation

We treat very large reconfigurable fabrics (VLRFs) as a
mixture of configurable logic blocks, memory arrays, and
routing. We are necessarily abstract because our aim is
to create a compilation framework for these fabrics that
scale to large applications and large fabrics. The com-
pilation process starts by partitioning the application into
a collection of threads. Each thread is a sequence of in-

structions ending in a split-phase operation. An operation
is deemed to be a split-phase operation if it has an un-
predictable latency. For example, memory references and
procedure calls are all split-phase operations. Thus, each
thread, similar in spirit to a Threaded Abstract Machine
(TAM) thread [2], communicates with other threads asyn-
chronously using split-phase operations. This partitioning
allows the CAD tools to concentrate on mapping small
isolated netlists. Furthermore, this model, which we call
the split-phase abstract machine (SAM) model, has all the
mechanisms required to support thread-based parallelism.

Unlike a traditional thread model, where a thread is
associated with a processor when executing, each SAM
thread will be a custom “processor.” While it is possible
for a thread to be complex and load “instructions” from
its local store, the intention is that it remains fairly sim-
ple, implementing only a small piece of a procedure. This
allows the threads to act either in parallel or as a series of
sequential processes. It also reduces the number of timing
constraints on the system.

The SAM model is a simplification of TAM which sup-
ports multithreading. However, unlike in TAM, we use
our model only as a way of partitioning large sequential
programs in space on VLRFs. So, while SAM can sup-
port parallel computation, a parallelizing compiler is not
necessary. The performance of this model rests on the
ability to create custom processors. Later, as the compiler
technology becomes more mature, the inherently parallel
nature of the model can be exploited.

The SAM model explicitly hides many important de-
tails. For example, it neither addresses dynamic routing
of messages nor allocation of stacks to the threads. Once
an application has been turned into a set of cooperating
SAM threads it is mapped to a more concrete architec-
tural model which takes these issues into account. The
mapping process will, when required, assign local stacks
to threads, insert circuits to handle stack overflow, and
create a network for routing messages with runtime com-
puted addresses. For messages with addresses known at
compile time it will route signals directly.

2.2 Target fabric

Once an application has been partitioned into a collec-
tion of SAMs, we estimate the area and simulate the ap-
plications using the simplest SAM model, i.e., only one
thread executes at a time. We perform no special opti-
mizations aimed at reconfigurable fabrics, e.g., we have
not pipelined loop bodies, etc. We assume a 2-d mesh for
communication and do not add overhead for routers. We
define one unit area of our fabric to be the size required to
implement a 32-bit adder. We then assume that it takes the
same amount of area to implement 32 bits of memory. We
intentionally underestimate the amount of space required

2



Figure 2: Classification of Memory Access Pattern

to implement each memory word. We use the extra space
to hold the circuits needed to access the memory; essen-
tially amortizing the cost of the memory units over all the
memory words. Floating point units, multipliers, etc. are
all scaled appropriately. We group one hundred units into
a cluster. In Figure 1 each square is a cluster.

We assume that the underlying fabric can execute an
elementary 32-bit operation (e.g., add, or) in one cycle.
Write operations are asynchronous and take one cycle.
In other words, no acknowledgment is returned when the
write completes. We distinguish two kinds of read oper-
ations: local and remote. A local read takes place com-
pletely within one cluster. A remote read crosses clusters.
Local reads take one cycle. Remote reads take one cy-
cle to initiate and then time proportional to the round trip
Manhattan distance between the accessor cluster and the
cluster of the memory location.

3 Mobile Memory

Mobile memory aims at reducing memory latency by ex-
ploiting locality at runtime. A traditional approach to re-
ducing memory locality is to introduce caches which are
close to the processors and duplicate the contents of the
main memory. We do away with the main memory and
utilize the reconfigurable fabric to make all of memory a
set of distributed caches. However, we do not ever dupli-
cate memory. By avoiding memory duplication we elim-
inate the cost of maintaining coherency. The question we
set out to ask is whether this approach, moving memory,
but never duplicating it, is fruitful in the context of very
large reconfigurable fabrics.

An example where mobile memory by itself is not ben-
eficial is when the memory access pattern has a ping-
pong character to it. For example, when two proces-
sors, A and B, alternate accesses to a particular memory
location. Memory access patterns have been well stud-
ied [12, 1, 10]. Memory access patterns can be classi-
fied into one of three types: migratory, group, or unpre-
dictable.

Migratory access pattern: occurs when a memory loca-
tion is accessed primarily by a single accessor. This
pattern is shown in the first sequence in Figure 2,
where processor ’a’ makes most of the memory ac-
cesses to a particular location. This pattern is the

best candidate for mobile memory since the cost of
migrating the memory to a processor is recouped by
repeated accesses from that same processor.

Group access pattern: occurs when a memory location
is accessed by a small group of processors. Sequence
2 in Figure 2 exhibits the group access pattern. If
only two processors are involved then this devolves
into the ping-pong access pattern. For this pattern
migrating memory may or may not be beneficial.

Unpredictable access pattern: When the memory refer-
ence string is not one of the above two types we call
it unpredictable. When the memory references are
unpredictable, migrating the memory to a particular
accessor will not provide any benefit.

As we will see later, most memory locations exhibit
either migratory or group access patterns. We thus design
our mobile memory system around these two patterns.

3.1 Policies

A mobile memory system has three main design axes:
when, where, and how much.

When determines when to move the memory. What trig-
gers the migration. In all of the systems we analyze,
the trigger is the reference by a remote processor.
One could imagine other triggers based on prefetch-
ing or the behavior of neighboring memory.

Where determines the destination of a memory migra-
tion. The optimal destination is not necessary any of
the previously accessors. In the case of the unpre-
dictable access pattern it may be a completely new
location. In the case of the group access pattern it
may be the centroid of the group of accessors. With-
out omniscience we must use the historical access
pattern to make a decision about the future access
pattern. We examine several different heuristics and
also analyze how much history should be kept for
choosing the best destination location.

How much refers to how much memory should be
moved at once. Since many programs exhibit both
temporal and spatial memory locality it can be bene-
ficial to move groups of memory words together. We
briefly examine moving more than a single word.

We now present three simple, but effective, policies for
mobile memory. In the following, N is the amount of
history we keep.

Greedy The greedy policy moves the memory so that it
is co-resident with the most recent accessing proces-
sor. This policy preforms well if the memory access

3



pattern is migratory. Otherwise, it performs poorly
for two reasons. First, it moves memory too often.
Second, it can actually increase the total latency by
moving memory away from future accessors.

N-best The N-best policy keeps track of the last N acces-
sors. It tries to work well for both the migratory and
group access patterns. Under this policy the mem-
ory is moved to the processor, among the last N, that
minimizes the total memory access time assuming
the access pattern were to repeat itself. This policy
devolves into the greedy policy if N = 0. As N in-
creases this policy tends to migrate memory less, re-
ducing unnecessary memory movement, but slowing
down the benefit for the migratory access pattern.

Centroid The centroid policy moves memory to the cen-
troid of the previous N accesses. Unlike the N-best
policy it does not require that the memory be co-
located with one of the previous accessors. This pol-
icy is likely to move the memory more often than
N-best, but to move it far less each time. As with the
N-best policy, when N = 0 this degrades into the
greedy policy.

3.2 Costs

Mobile memory does not come for free. We divide the
cost of implementing mobile memory into five areas:
statistics gathering, decision support, directories, move-
ment, and pressure.

In order to implement the N-best and Centroid policies,
we must keep track of the previous N accessors. This
data can probably not be kept on a per word basis. In-
stead we group together all the words in a cluster and have
them share the same history information. Thus, we actu-
ally implement a system where the destination of an indi-
vidual memory word is a function of the cluster’s N last
accessors, not the word’s last N accessors. The source
for history information is another interesting issue. Mem-
ory words can collect the history information in different
ways. Three possible history information collection meth-
ods are investigated:

Home indicates each memory word uses the history in-
formation of its home cluster, and updates the home
cluster’s history when the memory word is moved.

New-Cluster indicates each memory word uses the his-
tory of the cluster to which it is moved. It updates the
destination cluster’s history with the current accessor
when the word is moved.

Copy-History The moved word brings the history of
its current cluster with it to the cluster to which it
moves. Otherwises this method is the same as the
New Cluster method.

The decision support hardware is also shared by all the
words in a cluster. For N-best the amount of hardware
needed is prohibitively expensive. For the centroid policy
the hardware scales linearly with the amount of history
used. For a history of N accessors, 2(N + 1) adders and
2 dividers are necessary.1

The cost of the directories scales with the amount of
memory in the system. Furthermore, there is a latency
cost when a memory word has moved, a processor will
send a request to the memories’ home location, only to
have it forwarded to its current location. Turning a round-
trip access time into the time to goto the directory, the
new location, and then back to the accessor. To capture
this cost, we assume each cluster maintains two directo-
ries. One is the home directory, which contains the infor-
mation for memory words whose home location are this
cluster. The other is the local directory that contains the
memory words which is recently accessed by this clus-
ters. The home directory cannot discard any of its entries
at runtime, however, the local directory can be more flex-
ible, because it can discard any data when necessary. We
use First-In-First-Out(FIFO) algorithm to manage the re-
placement of local directory entries. Moreover, when the
information of the accessee is missing in current local di-
rectory, the accessor will check the home directory and
update the information of accessee into its local directory.

Actually moving the memory has a cost in provid-
ing enough bandwidth to accommodate extra information.
When prefetching is used to move more than the requested
amount of memory this requires more bandwidth.

Finally, there is the cost of making room for mobile
memory. When memory is moved from one location to
another there must be room at the target to accommodate
the new memory. As the total amount of allocated mem-
ory in system increases, the memory pressure increases.
At some point room will have to made for mobile mem-
ory by evicting memory back to its home location. One
way to reduce the chances that eviction will take place is
to reserve a portion of memory near all the processors to
hold mobile memory. This will cause the entire circuit to
grow increasing the latency for all operations.

4 Analytical Model

In this section, we derive two lower bounds. One which
determines the lower bound on the number of cycles
needed to perform memory accesses and the other which
determines the total application speedup that could be ex-
pected as a function of memory access time. These lower
bounds will help to evaluate our heuristics.

1If (N+1) is a power of 2, the dividers are unnecessary.

4



4.1 Minimal memory cycles

As discussed previously, it is not possible to completely
eliminate all the memory latency in an application. For
example, when a memory location is accessed with the
ping-pong pattern the memory overhead is impossible to
reduce using mobile memory. So, here we use an off-line
algorithm to determine the minimum number of cycles
needed to perform all the memory accesses in a program.
We first examine the off-line algorithm for moving only
the requested word, then we look at moving more than
one word at a time.

In calculating the minimum we assume that there are no
extra costs introduced by the mobile memory policy. In
other words, the cost of a read is proportional to the round
trip time plus one cycle to initiate the read. The extra costs
of mobility are all zero, i.e., the cost of deciding where to
move the memory, the cost of moving the memory, the
cost of finding room for the memory are all zero.

We further decompose the problem into calculating for
each memory word the minimal number of memory cy-
cles needed to access that word. Considering a single
memory word M , if it has been accessed n times in to-
tal during the runtime, its accessor string can be rep-
resented as A1; :::; An. Thus, the problem can be re-
duced to this: minimize the total memory access cyclesP

t(Mem(At;M)) for each memory word. We derive
the minimum using the following dynamic programming
algorithm:

1. In the following, we only consider the memory refer-
ence to a single memory word M . M can be moved
to any cluster after each memory access. Each clus-
ter is identified with a unique integer, whereCi refers
to cluster i.

2. Traverse the memory access in the reference se-
quence. Define Memj

t as the minimal accumulated
memory cycles for the first t accesses, ifM is in clus-
ter Cj after the access from At.

(a) Iterate though all clusters to calculate the
Memj

t . Suppose M is in cluster i before the
access from At and prepared to move to cluster
j afterwards. We assume the memory move-
ment executes as follows: accessor At sends a
signal to cluster i, M moves from cluster i to
cluster j, and cluster j sends back the data to
accessor At. Then we have

Memj
t = mini(Memi

t�1
+Mem(At; Ci)

+Mem(Ci; Cj) +Mem(Cj ; At))

where Mem(x; y) is the number of cycles
needed for memory access between x and y.

(b) Let Memt = minj(Memj
t) be the minimal

number of cycles needed to access M up to the
access from At. Plus,Memn is the minimal
number of cycles to access M .

We can get the minimal memory access cycles,
MemMIN by adding minimal access cycles over all
memory words together. As we will see in Section 5 our
heuristics are often very competitive with this offline min-
imum. However, by increasing the amount of memory
moved on each request, we can lower the total memory
access time. A very loose lower-bound when n words
are moved together is Mem0

MIN = MemMIN=n. This
bound is not that useful, but shows that when you access
more than one word at a time, you can improve on the
offline algorithm.

4.2 Memory Access Speedup and Total
Speedup

Here we examine how significant memory access time is
to total performance. We approximate this by examining
how much of the memory latency is on the execution’s
critical path. We call c the application’s critical commu-
nication ratio, which is the ratio of memory accesses that
are on the critical path. As c approaches one, the percent-
age of memory accesses on the critical path increase and
thus reducing memory access cycles benefits the overall
performance dramatically.

The model includes several parameters: MV , BASE,
MIN are respectively total memory access cycles with
a specified mobile memory policy, baseline memory cy-
cles without mobile memory and the minimal memory
cycles achievable by mobile memory. f is the optimiza-
tion factor of memory access cycles, defined by f =
MV�MIN
BASE�MIN

. A ratio close to 0 indicates that the exist-
ing moving policy is good at exploiting reference locality
and reducing large portion of memory latency.

Then we can write the memory access speedup and total
speedup as

Speedupmem =
BASE

MV
=

BASE

MIN + f � (MV �MIN))

Speeduptotal =
TotalBASE
TotalMV

=
1

(1� c) + c=Speedupmem

This model gives us more theoretical insight. f is
the only parameter changed with different memory mov-
ing policies in the model. In the limit, when the mem-
ory access performance is fully optimized (f = 0), the
total speedup reaches its lower bound ((1 � c) + c �
MIN=BASE)�1. With larger memory ratio c and lower
minimal distance MIN , this lower bound becomes lower
and therefore memory mobility will be more profitable.

5



5 Results

In this section we present the results of our limit study on
mobile memory in very large reconfigurable fabrics. We
evaluate the performance of several different heuristics.
For the most part we are optimistic and assume the cost of
implementing mobile memory is insignificant.

5.1 Simulation Methodology

The basis for our simulations is a trace-based simulator
developed to study very large reconfigurable fabrics. Ap-
plications are compiled using gcc (with -O2 optimization)
and instrumented with ATOM [8] to produce a memory
access trace along with the information of control trans-
fer. Using this information the application is placed in
space on a two-dimensional reconfigurable fabric. (See
[4] for details.) We implement the different mobile mem-
ory algorithms in our simulator.

All applications were run to completion in our sim-
ulation. Table 1 presents the 12 applications used
in this study and some of their overall characteristics.
The programs are the ones from MediaBench [7] and
SpecInt95 [9] that could be run in our simulator. The last
column of Table 1 shows the application’s critical com-
munication ratio. The higher this number the more per-
formance improvement we should expect.

In all the experiments presented below we collect his-
tory information on a per cluster basis. When a memory
word moves to a new cluster, it can use the history of ei-
ther the new clusters or its home cluster as its own. In
most of our experiments the memory word will use the
information from its home cluster. We first present data
where the signal propagation time is 1 cluster per cycle.
Later we show how slowing down the clock affects perfor-
mance as we examine a system with a propagation time of
5 cycles per cluster. Finally, we assume that the hardware
necessary to implement the algorithm is contained in the
memory clusters. This is overly optimistic for N-best, and
within reason for the greedy and centroid policies.

5.2 Basic Policies

To get a feeling of how the mobile memory performs, we
can compare the results of Figure 3 and Figure 4. These
two figures show the breakdown of execution time with-
out mobile memory Figure 3 and when using greedy pol-
icy Figure 4. By exploiting more memory locality, mobile
memory considerably reduces the portion of idle time and
hides more memory latency. Consequently, mobile mem-
ory achieves better performance than the baseline.

Figure 5 shows the simulated memory access cycles for
the different mobile memory policies and average perfor-
mance over all the benchmarks . For each application

Figure 3: Breakdown of execution time when no memory
movement.

Figure 4: Breakdown for execution time when greedy pol-
icy is used and communication delay is one cycle.

Figure 5: Normalized memory access cycles for different
policies (N = history depth)

we compare five different policies: Nomove, indicates the
base case where memory is not mobile, Greedy, indicates
the greedy policy, N-best (N=2), indicates the N-best pol-
icy with a history of two, Centroid (N=2), is the centroid
policy with a history of two, and offline; indicates the re-
sult of using the offline algorithm. Each bar in the fig-
ure represents the total access time normalized to the base
case.

6



Benchmark Source # of inst. # of Memory Op. Critical ratio

Adpcm d Media 6070419 517719 0.13
Adpcm e Media 8224114 517719 0.06
jpeg d Media 6136507 1152922 0.16
mpeg2 d Media 12797633 2119373 0.45
jpeg e Media 19759189 4011225 0.39
gsm d Media 85631813 8057881 0.07
129.compress SPEC 56426146 12123830 0.45
g721 Q e Media 269339817 21722179 0.07
g721 Q d Media 254421686 22178927 0.05
130.li SPEC 245501297 56895759 0.54
gsm e Media 3348820690 73954764 0.05
132.ljpeg SPEC 1878366 332756525 0.52

Table 1: Benchmark Information

Figure 6: Total execution cycles for different moving poli-
cies normalized to the base case. (N = history depth)

Our first observation from Figure 5 is that mobile mem-
ory can dramatically reduce the memory access time. As
seen in the figure all the mobile moving policies reduce
memory access time in all but two cases. Among our poli-
cies, the Centroid policy is best as it reduces memory ac-
cess time significantly. The greedy policy performs poorly
for g721 Q d and g721 Q e as it suffers from thrash-
ing problem generated by the group access pattern. The
NBest and Centroid policies address this problem by be-
ing more conservative about moving memory and in the
later case moving it to a better position.

We also observe from Figure 5 that our heuristics ap-
proach the offline algorithm. In six benchmarks, the
greedy algorithm is only 1%-5% worse than the offline
algorithm.

A reduction in memory access time translates to an im-
provement in performance as shown in Figure 6. Again,
the bars are normalized to the base case. The total im-
provement in running time is dictated by both the critical
ratio (shown in Table 1) and the improvement in memory
access time. Thus, programs like mpeg2 d and 130.li with
high critical ratios and substantial reductions in memory

Figure 7: Normalized memory moving distance for differ-
ent moving policies. (N = history depth)

access times show dramatic improvements. While, gsm d
which has a large reduction in memory cycles has only a
2% reduction in the total running time because its critical
communication ratio is only 0.07.

Figure 7 examines the relative amount of memory
movement for the three heuristics. Notice that the N-best
and Centroid polices move memory less often due to their
conservative approach towards deciding whether to move
memory.

In summary we see that the Centroid moving policy
works quite well. It approaches the performance of the
offline algorithm while keeping the total memory move-
ment down. We now look at several different aspects of
the Centroid policy.

5.3 Sensitivity to History

The amount of history information kept influences the per-
formance of the algorithm in two ways. More history
should lead to more accurate decision. However, it will
require more hardware and impose additional costs on the
memory system. Figure 8 shows how the effectiveness

7



Figure 8: Comparison of different amounts of history on
the performance of the Centroid policy. Bars show the
normalized cycle count. N = size of history.

Figure 9: Normalized memory access cycles when up-
dating history with the information from different sources.
All the memory words in a cluster share the same history.
Centroid policy is used with a history of 2

of the centroid policy changes as we vary the amount of
history kept. Each bar in Figure 8 represents the memory
access cycles normalized to the greedy policy. Interest-
ingly, there is no apparent trend relating performance to
history sizes. In fact, the performance of the policy seems
relatively insensitive to the amount of history kept. For
the following experiments we choose a history size of 2.

We also examine the effect of different information
sources. Figure 9 compares how the different history in-
formation sources affect the performances. Each bar in
Figure 9 represents the memory access cycles normalized
to the baseline. Three possible history information collec-
tion methods are investigated: Home, indicates home pol-
icy, New Cluster, indicates new-cluster policy, and Copy
History, indicates copy-history policy. In three of our
benchmarks, 130l̇i, g721 Q d and g721 Q e, New Clus-
ter and Copy History produce poorer performance than
Home, but in other benchmarks, these three have compa-
rable performances. Although home policy has best per-
formance, it have to obtain the home clusters’ history for
each memory movement , which hurts its performance.

Figure 10: Normalized cycle counts for different block
sizes using the centroid policy.

Figure 11: The effect on total execution time when room
for mobile memory is made by dilating the original graph.
The dilation factor indicates the amount the graph is ex-
panded in each dimension.

5.4 Sensitivity to the granularity of move-
ment

Until this point we have examined a system in which only
the requested word is moved. Figure 10 shows the ef-
fect of moving the requested word and at the same time
moving some adjacent words with it. As can be seen in
the figure, increasing the block size can either improve or
degrade the performance of the system depending on the
spatial locality exhibited in the program.

5.5 Sensitivity to Implementation Cost

Mobile memory has an implementation cost that we thus
far have not addressed. To get a feel for the effect of intro-
ducing extra hardware and making room for directories,
and the moved memory we examine how the system per-
forms when we expand the graph. Figure 11 shows how
the Centroid policy behaves as we expand the graph in
each dimension. In other words, the worst case situation
we see here is when we expand the graph by a factor of 9
in size, 3x in each direction. We see that mobile memory

8



Figure 12: The effect on memory access time with differ-
ent sizes of local directory. Greedy policy is used.

Figure 13: Memory access cycles for different moving
policies(N = history depth) (5 cycles / cluster)

works well even when the amount of area is expanded by
a factor of 4x. When it is expanded by a factor of 9x it
outperforms the base case for five applications.

We also take a look at the effect of local directory sizes.
Larger directories can increase the chance of finding the
memory information in local directory, and reduces the la-
tency caused by checking the home directory. Figure 12
shows how the greedy policy performs when we increased
the size of local directory. Each bar is normalized by
the baseline performance. Memory access cycles often
go down when increasing the size of local directory. But
some exceptions do happen, which can be explained away
by the well-known ”Belady anomalies” when using the
First-In-First-Out algorithm to manage the directory. Note
that most of the performance can be obtained with small
directories.

5.6 Slowing down the clock

Figure 13 and Figure 14 shows the effect of reducing the
signal propagation speed from 1 cycle per cluster to 5 cy-
cles per cluster. The results indicate that mobile memory
is even more important in this case as the critical ratio is

Figure 14: Total execution cycles for different moving
policies(N = history depth) (5 cycles / cluster)

higher, i.e., memory latency is more often on the critical
path.

6 Conclusions

Very large reconfigurable fabrics are becoming a reality.
With current offerings in the many millions of gates and
chips expected in the near future with fifty million or more
gates we will soon see entire applications mapped to re-
configurable devices. These devices will have the logic
and memory necessary to implement mobile memory. In
this paper we have shown that mobile memory has the
potential to dramatically improve the performance of ap-
plications when they are mapped to very large reconfig-
urable fabrics. We determine that even a simple heuristic
will always outperform a system without mobile memory
and that the performance of these heuristics is quite close
to that of the perfect off-line algorithm.

The limit study described in the this paper opens up a
large area of research. We plan on developing a real im-
plementation and more closely examining the costs of mo-
bile memory. Furthermore, it appears that mobile mem-
ory in and of itself may not be sufficient for high perfor-
mance. We plan on looking at how replication may be
implemented along with mobile memory.

Finally, VLRFs have a significant advantage to multi-
processor systems in that the policy used at any one lo-
cation can be tailored to the particular needs of that loca-
tion. Thus, if the compiler can determine that a particular
accessor, or memory location, needs to use mobility or
replication, it can include that, and otherwise it can use a
simpler system. In this way, the full power of reconfig-
urability can be brought to bear on the memory latency
problem.

9



Acknowledgments

We thank Mihai Budiu for implementing the very large
reconfigurable fabric simulation code. We would also like
to thank other members of Phoenix group for their stimu-
lating discussions and helpful hints. This work was sup-
ported in part by DARPA contract number N00014-01-1-
0659.

References
[1] T. Chilimbi. Efficient representations and abstractions for

quantifying and exploiting data reference locality. In ACM
SIGPLAN Conference on Programming Language Design
and Implementation, pages 191–202, June 2001.

[2] D. E. Culler, S. C. Goldstein, K. E. Schauser, and T. von
Eicken. TAM — a compiler controlled threaded abstract
machine. Journal of Parallel and Distributed Computing,
18:347–370, July 1993.

[3] Fredrik Dahlgren and Josep Torrellas. Ieee computer. Jour-
nal of Parallel and Distributed Computing, 32(6):72–79,
June 1999.

[4] Seth Copen Goldstein and Mihai Budiu. NanoFabrics:
Spatial Computing Using Molecular Electronics. In Pro-
ceedings of the 28th International Symposium on Com-
puter Architecture 2001, 2001.

[5] E. Hagerstern, A. Landin, and S. Haridi. Ddm - a cache
only memory architecture. IEEE Computer, 25(9):44–54,
September 1992.

[6] Kendall Square Research Inc. Ksr technical summary.
Technical report, Kendall Square Research Corporation,
Waltham, MA, 1992.

[7] Chunho Lee, Miodrag Potkonjak, and William H.
Mangione-Smith. Mediabench: a tool for evaluating and
synthesizing multimedia and communications systems. In
Micro-30, 30th annual ACM/IEEE international sympo-
sium on Microarchitecture, pages 330–335, 1997.

[8] A. Srivastava and A. Eustace. a system for building cus-
tomized program analysis tools. In Proceedings of the SIG-
PLAN ’94 Conference on Programming Language Design
and Implementation, 1994.

[9] Standard Performance Evaluation Corp. SPEC CPU95
Benchmark Suite, 1995.

[10] Simon C.Steely Susanne M.Balle. Analyzing memory ac-
cess patterns of programs on alpha-based architectures.
Digital Technical Journal, 9(4), 1997.

[11] Ben Verghese, Scott Devine, Anoop Gupta, and Mendel
Rosenblum. OS support for improving data locality on CC-
NUMA compute servers. Technical Report CSL-TR-96-
688, Computer System Laboratory, Stanford University,
1996.

[12] Zhichen Xu, James R. Larus, and Barton P. Miller. Shared
memory performance profiling. In Principles Practice of
Parallel Programming, pages 240–251, 1997.

10


