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ABSTRACT

Asynchronous circuits are increasingly attractive as low power or
high-performance replacements to synchronous designs. A key part
of these circuits are asynchronous micropipelines; unfortunatelly,
the existing micropipeline styles either improve performance or de-
crease power consumption, but not both. Very often, the pipeline
register plays a crucial role in these cost metrics. In this paper we
introduce a new register design, called self-resetting latches, for
asynchronous micropipelines which bridges the gap between fast,
but power hungry, latch-based designs and slow, but low power,
flip-flop designs. The energy-delay metric for large asynchronous
systems implemented with self-resetting latches is, on average, 41%
better than latch-based designs and 15% better than flip-flop de-
signs.

Categories and Subject Descriptors

B.5.1 [Register-Transfer-Level Implementation]: Design

General Terms

Design,Performance,Measurement
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1. INTRODUCTION
As technology shrinks and problems of clock distribution and

timing closure become increasingly difficult, asynchronous circuits
become more attractive, since they offer a modular design paradigm
where different sub-circuits of a design can be easily integrated,
without the need for retiming. To achieve this effect, asynchronous
designs are essentially constructed from a series of pipeline stages
which perform synchronization through local handshaking.

The importance of finding energy and performance efficient pipe-
line structures and seamlessly integrating them with standard tool-
flows is reflected in a wide body of literature on the subject. One
integral aspect of these pipeline styles is the choice of the pipeline
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data storage unit, which can dramatically influence both perfor-
mance and energy efficiency. Whereas synchronous registers con-
tain only data storage elements, an asynchronous storage unit (ASU)
consists of both storage- (latches, flip-flops) and control elements.

Latch-based ASUs are very common in asynchronous micro-
pipelines [12, 4, 3, 13] since they are fast: the latches are nor-
mally open, and thus eliminate the control overheads associated
with opening them. However, precisely because of this, glitches
are allowed to pass through the latch, leading to large energy con-
sumption overheads. Using edge-triggered D flip-flop (ETDFF)
ASUs [14, 10] eliminates glitches, but introduces additional latency
overheads on the control paths. As a result circuit performance suf-
fers and the energy-delay metric may be even worse than a corre-
sponding latch-based design.

In this paper we propose self-resetting (SR) latches, a novel ASU,
which combines the performance of latch-based designs (by al-
lowing for early data-passing) and the low-energy consumption of
ETDFF-based designs (by filtering out glitches). The proposed
ASU implementation can easily be integrated with a number of ex-
isting pipeline styles.

SR-latches have been integrated into an existing synthesis flow [14,
1] which synthesizes high-level specifications into pipelined asyn-
chronous circuits. The results of simulating Mediabench kernels in-
dicate that the self-resetting latch implementations have an energy-
delay metric which is, on average, 41% better than that of the
latch-based designs and 15% better than that of ETDFF designs.
Furthermore, the SR-latch implementations are, on average, only
14% slower than the corresponding latch-based implementations
but 13% faster than ETDFF designs.

In the next section we present some background information on
asynchronous pipelines and ASU styles, as well as compare our
proposed design with existing designs. Section 3 discusses the im-
plementation of the self-resetting latches, and its timing constraints.
Section 4 shows a characterization of the proposed designs, both for
performance and for energy. Finally, Section 5 concludes the paper.

2. BACKGROUND
Asynchronous modules communicate on channels, using a hand-

shaking communication protocol; a very common protocol is the 4-
phase bundled-data handshaking [10]. A bundle-data channel con-
nects a producer and a consumer, and consists of a data bus, used
for transferring data items, encoded with one wire per bit, and two
control signals, Req and Ack. The producer starts the hanshake by
placing a new data item on the Data bus and raising Req; the con-
sumer acknowledges using the data item by raising the Ack signal.
Then, the two control signals are reset to zero in the same order.

A typical asynchronous pipeline stage is shown in Figure 1. It
consists of two main blocks: the functional unit (FU) and the con-
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Figure 1: A typical pipeline stage
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Figure 2: Typical storage unit implementations for asynchronous
pipelines: (a) Latch-based and (b) ETDFF-based.

trol unit (CU). The FU computes the result of the stage; it consists
of a combinational block, which implements the actual computa-
tion (e.g. an adder), and a matched delay (usually a chain of invert-
ers) that signals to the CU when the result is ready. The CU con-
trols the communication with the successor and predecessor stages.
When the FU has produced a new data item, the CU waits until the
successor stages are ready to receive the new data item, stores it in
the register, and signals to the consumers its availability.

Latch-based (Figure 2a) and an ETDFF-base implementation (Fig-
ure 2b) are two common implementations of the ASU. The latch-
based ASUs are fast, but result in increased energy consumption.
The critical path in the ASU is from trigger↑ to Done↑ (closing
the latches) and goes through a single delay matching a D-latch. As
the latches are normally open, data items are available to the con-
sumers as soon as they are computed; however, glitches are also
passed this way, which results in increased power consumption.

The ETDFF ASU’s filter out all glitches, but are slow. The criti-
cal path (trigger↑ to Done↑) goes through a completion detection
circuit, which checks for equality between the the data item before
the storage elements and the data item after the storage elements,
and synchronizes this comparison with a delayed version of the
“trigger” signal. ETDFF’s are normally closed, and data is passed
to the consumers only on the last moment (hence the completion
detection); thus, all glitches are filtered out, and energy consump-
tion is decreased.

In contrast, our proposed self-resetting latches exhibit low-latency
as in the latch-based implementations and filter out glitches as in
the ETDFF-based implementations.

2.1 Related Work
Since the seminal work of Sutherland [13], an impressive num-

ber of asynchronous pipeline elements have been proposed. They
can be categorized as either coarse-grained (each stage operates at
the level of “functional units”) or fine-grained (stages operate at the
bit level).

Fine-grained pipeline structures were introduced by Williams [15],
and improved on in [11, 8, 9, 6, 7, 16, 17]. These pipeline templates
are usually implemented using dynamic logic, which provides in-
trinsic storage capability, but are not amenable to automatic syn-
thesis with existing commercial standard-cell CAD tools.
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Figure 3: The implementation of the Self-Resetting ASU.

Coarse-grained pipeline structures are implemented with stan-
dard gates [13, 12, 4, 3], and are thus amenable for manipulation
with standard CAD tools. Of these, [13, 12] communicate using
2-phase handshaking. The ASUs in [13] are implemented using
slow pass-capture logic. Interestingly, the ASU’s in [12] commu-
nicates internally using 4-phase handshaking; however, the design
uses normally open latches, and is thus energy hungry. Finally, the
ASUs in [4, 3] are latch-based. Starting from the extremely simple
handshake controller of [13] (just a C-element) the authors of [4,
3] present several variants of the handshake controllers based on
the pipeline occupancy; the protocol of these controllers controls
the data validity on the pipeline latches. This approach results in
slow controllers, and thus degraded performance. In contrast, the
proposed self-resetting latches do not require any modifications in
the pipeline handshake controllers, and they can be used with any
4-phase pipelining style.

3. SELFRESETTING LATCHES
This section presents the implementation of self-resetting latches

and discusses how a pipeline stage needs to be modified to work
with SR latches.

3.1 Storage Unit Implementation
To understand the behavior of self-resetting latches, we have to

analyze when the input data item to an ASU is passed to its output
and when the data item is kept stable (i.e., stored). Latch-based
ASUs are open by default and thus continuously pass data from in-
puts to outputs; they will store the data item (i.e., close) only when
the “trigger” control input to the storage unit is raised. ETDFF-
based ASUs are always closed and data is passed and stored only
on the positive edge of the “trigger” input.

In contrast, self-resetting latches are controlled by two separate
events: one for opening the latches to pass data items and one for
closing them to store the data items. This separation achieves two
goals. First, by controlling when the ASU becomes open, is is pos-
sible to filter out glitches, while still passing data items early. Sec-
ond, by having a separate event for closing the storage elements, all
the control overheads associated with ETDFF style can be avoided,
since data items are already present at the output.

Figure 3a shows the new interface of the storage unit. Notice
that in comparison with the implementations in Figure 2, the self-
resetting ASUs have an extra input, “En”. This input opens the
latches, whereas the “trigger” input now only closes them. The
other interfaces are the same: “Din” and “Dout” are data buses,
and “Done” indicates when the data item on “Dout” is safe to use.

Figure 3b shows the architecture of an ASU implemented with
self-resetting latches. The storage elements are D-latches. In ad-
dition, the proposed architecture also has a small controller which
controls the D-latches, a matched delay for the storage elements,
and a C element.
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Figure 4: A pipeline stage with SR Latches.

The SR-latch works as follows. On the rising edge of the “En”
signal the SR controller opens the latches by raising the “EnSR”
signal. This signal goes through a delay which matches the delay
through the latches and becomes an input to the C element. After
a while, the positive edge of the “trigger” signal is synchronized in
the C element with the delayed “EnSR” to produce the “Done” sig-
nal transition. Once this occurs, the SR controller immediately low-
ers the “EnSR” signal, thus closing the latches. As will be shown in
Section 4, it is possible, though not desirable, to have the “trigger”
event come earlier than the “En” event: the ASU will still function
correctly, but its latency will increase.

Figure 3c shows the signal-transition graph (STG [2]) specifica-
tion for the SR controller. The specification follows the behavior
described above. This specification can be synthesized with Pet-
rify [2] to obtain the final implementation. In STMicro 180nm
technology, the controller can be implemented with 8 gates. The
controller occupies 46% of the area of a 1-bit ASU, but for a 32-bit
ASU, the control overhead is only 6.5%. In the synthesized Medi-
abench kernels (Section 4), the total area overhead is only 7% over
latch-based implementations.

The design has two one-sided timing constraints: the matched
delay has to match the delay through the latches, and the controller
must meet the minimum pulse width (i.e. EnSR == 1) constraints
for the latches. Any timing violations can be eliminated by increas-
ing the matched delay, at the price of decreased performance.

3.2 Pipeline Implementation
Figure 4 shows the modified generic pipeline stage that uses an

SR-based ASU. Notice that the only modification to the architec-
ture of the pipeline is that the output of the matched delay is routed
to the “En” input of the self-resetting latch.

A pipeline stage with the SR-latch works exactly as a pipeline
stage with latch- or ETDFF-based implementations. Since the out-
put of the matched delay is the “En” input to the ASU, the latches in
the SR-based ASU are now open only after the result has reached
its final value – and thus all the glitches present in a latch-based
implementation are eliminated. In addition, since the latches are
opened early, this implementation avoids the overheads of ETDFF
implementations.

When using SR-based ASU’s in a pipeline, there is an additional
constraint that needs to be met. The SR controller has an unac-
knowledged transition from En ↓ to En ↑, which means that the
time separation between these events needs to be larger than the
internal state changes in the controller. In practice, these events are
separated by an entire handshaking cycle, which is typically larger
than the delay through the controller (2 gates). This constraint can
be met by increasing the matched delay of the functional unit.

4. RESULTS
This section presents several experimental results which charac-

terize the performance and energy efficiency of self-resetting latch-
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Figure 5: The latency of a 1-bit Self-Resetting Latch as a function
of the time difference (in ps) between “En” and “Trigger” inputs.
If negative, “En” arrives before “Trigger”.

based implementations. All experiments were performed post-layout
using the 180nm STMicro Electronics library. We will first charac-
terize the latency of SR latches, and then show the results of inte-
grating SR latches into complex systems.
Latency Characterization. As mentioned in Section 3, the delay
through the SR latch depends on the timing difference between the
positive edge of “En” (to open latches) and the positive edge of
“trigger” (to close the latches). We have performed an experiment
in which we have varied the arrival of “trigger” and “En” inputs
to a stand-alone single-bit SR latch. Figure 5 displays the latency
through a 1-bit ASU as a function of this difference. For compari-
son, Figure 5 shows the latency of a 1-bit latch-based ASU (130ps),
of a 1-bit ETDFF-based ASU (350ps), and the delay of the SR latch
(255ps) when the difference is that of the handshake controller.

The SR latch works correctly in either case (“trigger” before
“En”, or vice-versa), but its latency varies dramatically. If “En”
arrives at least 260ps before “trigger”, then the ASU has a mini-
mum latency (90ps – just the C element). In this case, the latency
of the SR latch is even lower than that of a 1-bit latch ASU (130ps).
After this, the delay increases steadily, until the difference between
the two is zero. Once the delay has reached its peak (360ps), it
decreases slightly and stabilizes at 310ps when “trigger” arrives at
least 30ps after “En”. In this case, the SR latch will incur all the
penalties of an ETDFF implementation (opening the latches on the
critical path) – and, in fact, the latency of the SR latch is close to
that of an ETDFF-based ASU (350 ps).

This experiment shows the possibility of some interesting op-
timizations involving SR latches. First, to increase performance,
the SR latches can be opened before the FU starts computing; this
comes at the expense of increased power consumption. Second, to
slow down pipeline stages (for example, to avoid complex arbitra-
tion to a shared resource, one of the callers can be slowed down;
thus, the other caller can win arbitration faster) the “En” signal can
be tapped from “trigger”, which would produce maximum latency
through the ASU.
System-Level Impact. To fully evaluate the impact of the SR
latches on performance and energy consumption, we have inte-
grated them into the synthesis flow of [1]. We have synthesized
and simulated several kernels from the Mediabench [5] suite.

Figure 6 shows the speed ratio of the ETDFF-based and SR-
based implementations vs. the latch-based implementations for
several kernels from Mediabench benchmarks. The SR-based im-
plementations are between 7.1% and 21.8% slower than the latch-
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Figure 6: Speed ratio of ETDFF-based and SR-based implemen-
tations vs. latch-based implementations. A value greater than 1
means the design is slower.
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Figure 7: Energy-delay ratio of ETDFF-based and SR-based im-
plementations vs. latch-based implementations. A value greater
than 1 means that the design is less efficient.

based designs (14.3% on average). In contrast, the ETDFF-based
designs are between 15.5% and 47.8% slower, with an average of
27.3%. This experiment confirms that, if speed is the most impor-
tant cost metric in the design, then the latch-based pipeline imple-
mentations should be used.

Figure 7 shows the energy-delay ratio between the ETDFF-based
and SR-based implementations vs. the latch-based implementa-
tions for the same kernels from Mediabench. The SR-based imple-
mentations are on average 41.4% better than the latch-based imple-
mentations, and 26.8% better than the ETDFF-based implementa-
tions. These results show several interesting characteristics.

First, note that the SR-based design has very good energy-delay
for the six largest benchmarks in the set (jpeg, mpeg2, and pegwit,
both encoding and decoding for each): the energy-delay is between
0.15 and 0.6 of the latch-based energy delay, even if their speed is
13% to 21% smaller. The power savings for these benchmarks are
substantial (11x for mpeg2 d).

Second, for four benchmarks (g721 d, g721 e, gsm e, and pgp d),
the latch-based design is more energy–delay efficient. The first two
benchmarks do not have loops and the the SR implementations do
not reduce power, but are slower. For the other two, the power
savings are not large enough to offset the decrease in performance.

Finally, these experiments show that the SR implementations are
more energy–delay efficient than the ETDFF implementations. In
turn, the ETDFF implementations are also on average more en-
ergy efficient than the latch-based implementations, but for a large
number of benchmarks, they perform poorly. This suggests that the
SR implementations are a more suitable energy–delay alternative
to latch-based implementations than ETDFF-based ones.

5. CONCLUSIONS
Existing latch implemenations for asynchronous pipeline sys-

tems have several shortcomings: either they are optimized for speed
or for power. This paper introduces a novel storage unit implemen-
tation style, called self-resetting latches, which decreases power
consumption, while avoiding performance penalties. Our experi-
ments have shown that, in large systems, the benefits of using self-
resetting latches can yield an average of 41.4% energy-delay im-
provement over corresponding latch-based implementations. These
results are encouraging and can be further improved by investigat-
ing the proposed pipeline optimizations which take advantage of
the variable latency of SR-latches.
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