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ABSTRACT

An effective method for focusing optimization effort on the most
important parts of a design is to examine those elements on the crit-
ical path. Traditionally, the critical path is defined at the RTL level,
as the longest path in the combinational logic between clocked reg-
isters. In this paper, we present a system-level timing analysis tech-
nique to define the concept of a Global Critical Path (GCP), for pre-
dicting system-level performance. We show how the GCP can be
used as a theoretical and practical tool for understanding, summa-
rizing and optimizing the behavior of highly concurrent self-timed
circuits. We formally define the GCP and show how it can be con-
structed using a discrete event model and hardware profiling tech-
niques. The GCP provides valuable insight into the control-path
behavior of circuits and in finding system-level bottlenecks. We
have incorporated the GCP construction and analysis framework
into a high-level synthesis and simulation toolchain, thus enabling
complete automation in modeling, analysis and optimization.

Categories and Subject Descriptors
B.8.2 [Performance and Reliability]: Performance Analysis and
Design Aids

General Terms
Design, Measurement, Performance

Keywords
Global critical path, System modeling, Hardware profiling

1. INTRODUCTION
An effective method for optimizing the most important parts of

a design is to focus on the elements on the critical path. Typically,
the critical path is defined as the longest path in a directed acyclic
graph (DAG). In synchronous circuits, for example, the critical path
usually refers to the longest path in the combinational logic (which
is a DAG) between two clocked registers. This “local” notion of
critical path has been the backbone of many CAD techniques.

Computing the critical path at the system-level is difficult due
to the presence of cycles. Several approaches have been proposed
which use Petri-Nets and marked graph based models [3, 10, 9].
However, they all assume that the system is completely determinis-
tic and has no conditional behavior (called choice). However, most
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realistic systems cannot be built based on these simplified assump-
tions. For example, without choice, we cannot support MUX-like
behavior, and without non-determinism we cannot support arbitra-
tion or loops with dynamic bounds.

We propose a framework for computing a system-level Global
Critical Path (GCP) for realistic systems exhibiting all forms of
conditional choice and non-determinism. We introduce profiling
techniques, used with great success in the software world [8], for
analyzing relative timing relations between signal transitions dur-
ing hardware simulation. The challenge in hardware profiling is
scalability, since there are potentially millions of signal transitions
in a realistic system. We address this by modeling only key control
events in the circuit. We show that this only slightly increases sim-
ulation time (about 7% in practice) and still captures the essential
features of the circuit. Using the results of profiling, we formally
define the concept of the GCP for the given circuit execution.

Using GCP to analyze a circuit has both strengths and limita-
tions. A strength of our approach is that the GCP is computed
deterministically, employing neither heuristics nor approximations.
Our methods are light-weight and are fully integrated into an auto-
mated high-level synthesis flow [2]. Since GCP is a profiling-based
approach, it inherits the weaknesses of all profiling approaches: the
results are input-specific and changing the inputs may result in a
different GCP. Thus, the users must be careful about chosing a rep-
resentative input vector. In this paper, we focus on a particular
control-path architecture based on asynchronous four-phase hand-
shaking, but there are no fundamental reasons why our technique
cannot be adapted to other design methodologies, including syn-
chronous designs.

The main research contribution of this paper is a formal defini-
tion of the GCP for system-level timing analysis. We define the
GCP and describe a simple, event-based model for capturing the
timing relations between key control signal transitions (§ 3). The
simplicity of the model results in an efficient and scalable approach
to computing the GCP. We present a methodology to construct the
GCP which combines the system-level event model with hardware
profiling (§ 4). We show how this methodology is incorporated into
a high-level synthesis toolchain by instrumenting a gate-level sim-
ulator to automatically compute the GCP for large asynchronous
circuits generated by the toolchain. We show how the GCP can be
analyzed and used within an optimization toolflow (§ 5). Through
an exhaustive analysis, we show that there are very few possible
classes of critical paths, and this knowledge can be used in simpli-
fying the complexity of existing optimizations.

2. RELATED WORK
At the system-level, the critical cycle of execution has been shown

to be the longest cycle in the system [3, 10, 9]. But this result is
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Figure 1: Typical asynchronous pipeline stage interfaces: (a) an adder with a fanout of two and its circuit implementation, (b) an arbiter stage and (c) a 1-hot mux stage.

applicable only to a limited class of circuits — those that exhibit
no choice, and are completely deterministic systems. While some
attempts to deal with deterministic chocie have been made [14, 6],
analyzing systems with non-deterministic behavior is undecidable.
In fact, in the presence of choice, Xie et. al. note that random
simulation is the only known analysis technique [14].

Our work focuses on defining the GCP in the presence of non-
determinism and arbitrary forms of choice, and we extend the con-
cept of the critical cycle to the GCP, which may contain several
critical cycles in sequence. We address non-determinism by em-
ploying profiling analysis during hardware simulation. Given a
trace of event firing times, we show how the GCP can be efficiently
and accurately constructed using an algorithm proposed by Fields
et al. [4].

3. SYSTEM MODELING
Our system model is used for defining the timing relations be-

tween various circuit events and for capturing concepts such as
choice and non-determinism. In § 4 we use these concepts to con-
struct the GCP. We begin with a formal definition of the GCP.

3.1 GCP: A Formal Definition
Unlike most of the traditional concepts of critical path, which are

static notions, the GCP summarizes the time-evolution of a circuit.
We represent the circuit to be analyzed by a graph, G = (V, E),
which may include cycles (V are vertices, and E ⊆ V × V are
edges). Time is denoted by T , and time steps by ti ∈ T . A timed
graph [14], G × T , is a sequence of “snapshots” of the state of the
circuit elements of G over time. The nodes of G × T are pairs
(n, ti), where n ∈ V .

The edges of the timed graph, G × T , represent the set of sig-
nal transitions, denoted by E ⊆ (V × T )2 . If there is a sig-
nal transition leaving node n1 at t1 and reaching node n2 at t2—
where (n1, n2) ∈ E—then (n1, t1) → (n2, t2) ∈ E . Observe
that the timed graph G × T is acyclic, since t1 < t2 for every
edge (n1, t1) → (n2, t2). We assign to each signal transition
edge a length, which is the time difference between the two events:

||(n1, t1) → (n2, t2)||
def
= (t2 − t1) > 0. Finally, we define the

Global Critical Path (GCP) as the longest path of events in the
timed DAG G×T , given by the sequence of edges, (nGCP

1 , tGCP
1 ) →

(nGCP
2 , tGCP

2 ) → . . . → (nGCP
last , tGCP

last ).

3.2 Events and Behaviors
This section describes how we model the behavior of self-timed

circuits to capture the GCP. The salient features of the model are:
(a) it is a precise, concise model for capturing timing relations be-
tween signal transitions, (b) it focuses only on the set of signals that
determine overall circuit state, i.e., key control signals, and ignores
the non-essential datapath and control signals, (c) it naturally cap-
tures choice and non-determinism, and (d) the primary goal of the
model is to compute the GCP.

In this paper, we restrict ourselves to the class of asynchronous
circuits built out of fully-decoupled pipeline stages, communicat-
ing using a 4-phase bundled-data handshake protocol [5]1. In this
protocol, each communication channel contains two control sig-
nals, req and ack, as shown in Fig. 1a. When the sender places new
data on the channel, the req signal is raised. After consuming this
data, the receiver raises the ack signal, after which both signals are
lowered in the same order. Thus, data transfers are controlled by
local flow-control instead of a global clock.

The key to efficiently computing the GCP for large circuits is
to monitor only a subset of the circuit’s control signals. The sys-
tem model we now introduce captures dependence relations at the
pipeline stage granularity. This is achieved by describing the de-
pendence relation between the handshake events at the input and
output of a given stage. Most of the signals internal to a stage
(datapath and/or control) are ignored when building the model, sig-
nificantly reducing the problem size.

Formally, we define the Event Behavior Model as EBM =
(E ,B, M, In, Out, R, X). At the heart of the model are events,
E , and behaviors, B. Each of the interesting signal transitions cor-
responds to an event, e ∈ E . A behavior, b ∈ B, defines a partial
execution ordering of the modeled events. Briefly, the model can
be described as follows:
Live: A signal transition makes the corresponding event live. The
set of live events at some point in time is denoted by M .
Kill: A signal transition may kill some events. For example, the
rising transition of a signal sig↑ will kill the falling transition of
the same signal sig ↓. The relation R describes how events are
killed. An event e ∈ M is removed from M when R(e)∩M 6= ∅.
Thus, for a modeled signal, sig, sig↓ ∈ R(sig↑) and vice-versa.
Inputs: (In : B 7→ 2E ). This function describes when a behavior
can occur. We say that a behavior b is satisfied when all of its input
events are live: In(b) ⊆ M .
Outputs: (Out : B 7→ 2E ). Describes the effect of a behavior.
In the absence of choice, a behavior can fire once it is satisfied.
Firing a behavior makes its outputs alive. When a behavior b fires,
M := (M ∪ Out(b)) − { ∀e | (R(e) ∩ Out(b)) 6= ∅}.
Exclusive: (X : B 7→ 2B). Defines behaviors whose outputs
are mutually exclusive, and models non-determinism. This set is
discussed in more detail in § 3.4.

3.3 Modeling A Simple Pipeline Stage
Fig. 1a is an asynchronous adder with a fanout of two. We ab-

breviate the (req, ack) signals from the input channel i with ri and
ai respectively. The req signal of the output channel is ro. The two
ack signals from the two output consumers are ao1

and ao2
. The

complete model for the adder is in Fig. 2a.
Behavior b1 describes how the adder processes its data inputs.

Once its input data channels are valid (indicated by r1↑ and r2↑)

1Many of these ideas are generalizable to other settings, including
synchronous circuits.



E = {r1↑, r1↓, r2↑, r2↓, a1↑, a1↓, a2↑, a2↓,

ro↑, ro↓, ao1
↑, ao1

↓, ao2
↑, ao2

↓}
B = {b1, b2, b3} X = ∅
In(b1) = {r1↑, r2↑,

ao1
↓, ao2

↓}, Out(b1) = {ro↑, a1↑, a2↑}
In(b2) = {ao1

↑, ao2
↑}, Out(b2) = {ro↓}

In(b3) = {r1↓, r2↓}, Out(b3) = {a1↓, a2↓}

In(b1) = {r1↑}
Out(b1) = {g1↑}
In(b2) = {r2↑}
Out(b2) = {g2↑}
In(b3) = {g1↑, ao↓}
Out(b3) = {ro↑, a1↑}
In(b4) = {g2↑, ao↓}
Out(b4) = {ro↑, a2↑}
X(b1) = {b2}, X(b2) = {b1}

In(b1) = {r1↑, dp1↑, ao↓}
Out(b1) = {ro↑}
In(b2) = {r2↑, dp2↑, ao↓}
Out(b2) = {ro↑}
In(b3) = {r1↑, rp1↑, dp1↓, r2↑, rp2↑, dp2↓, ao↓}
Out(b3) = {ro↑}
In(b4) = {r1↑, r2↑, rp1↑, rp2↑, ao↓}
Out(b4) = {a1↑, a2↑, ap1↑, ap2↑}
X(b) = ∅, ∀ b
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Figure 2: Modeling (a) the adder in Fig. 1a, (b) the arbiter in Fig. 1b, and (c) the mux in Fig. 1c.

and its previous output has been consumed (ao1
↓ and ao2

↓), the
adder can process its inputs, generate a new output (ro↑), and ac-
knowledge its inputs (a1↑ and a2↑). Behaviors b2 and b3 describe
the reset phase of the handshake. Notice that In and Out only
specify the control events at the pipeine stage interface, i.e., hand-
shake events. Internal events, implementation details and datapath
logic are usually abstracted away. This not only leads to models
that are smaller than the actual circuits, but also decouples system
modeling from system implementation.

3.4 Modeling Choice
We model choice by allowing multiple behaviors to fire the same

event, i.e., ∃b1, b2 ∈ B, s.t., Out(b1) ∩ Out(b2) 6= ∅. Depending
on whether the choice is deterministic or not, additional constraints
may be imposed.
Modeling non-determinism. Fig. 1b shows an arbiter stage, which
exhibits non-deterministic choice. It arbitrates between two con-
current requests for access to a shared resource. The arbiter uses
a Mutex (mutual exclusion element) [11] to determine which re-
quest is granted access. The winner’s data is then transferred to the
output port. The arbiter is modeled in Fig. 2b. In this example,
we only show the behaviors related to the rising transition of the
output, ro ↑, which can be fired by two behaviors (b3, b4), and is
illustrative of how the model encodes choice.

Non-determinism is modeled by the set X, which describes mu-
tually exclusive behaviors. Two behaviors b and b′, such that b′ ∈
X(b), may be satisfied simultaneously, but their outputs are mutu-
ally exclusive. Thus, b fires iff: ∀b′ ∈ X(b),Out(b′) ∩ M = ∅.
If two members of X(b) are satisfied at the same instant, then one
of them is randomly chosen to fire, reflecting the non-deterministic
firing semantics of arbitration behaviors. In this example, behaviors
b1 and b2 are mutually exclusive.
Modeling Unique Choice. In the presence of unique choice, an
event may be generated by multiple behaviors, but there is a guar-
antee that the choice is deterministic. This is described by the in-
variant: In(b1) ∪ In(b2) 6⊂ M . Thus, at most one (out of sev-
eral) behaviors is satisfied at any given instant, generating a unique
choice event. Fig. 1c is a pipeline stage implementing a 1-hot en-
coded multiplexer, which exhibits unique choice due to early eval-
uation [2]. Fig. 2c shows the events and behaviors modeled for this
mux. {ri, ai} and {rpi, api} are the handshake events of the data
(Inpi) and predicate (Predi) channels respectively (i ∈ {1, 2}).
The dpi events are control signals that specify the value of the pred-
icate input, when it is valid (i.e., when the corresponding rpi↑ is
live). When the data is invalid (i.e., rpi↓∈ M ), the dpi↓ events are
live. A detailed exposition of this example can be found in [12].

4. DYNAMIC GCP CONSTRUCTION
In the presence of choice and non-determinism, finding the crit-

ical cycle of execution is an undecidable problem. In the past, two
approaches have been proposed for dealing with choice — worst-
case analysis [6] and stochastic analysis [14]. However, both these

approaches deal only with unique choice and not non-determinism.
Since our objective is to use the GCP for circuit optimization, we
have chosen to focus on common-case execution behavior; in other
words, hardware profiling. Using a collection of representative
input-sets, we can simulate the gate-level circuit, and observe the
firing times of the various system events during execution.

We have incorporated our GCP modeling and analysis methodol-
ogy into the fully automated high-level synthesis (HLS) toolflow [2].
The Verilog back-end automatically infers the event model from
the asynchronous pipeline structure, and translates the event model
into Verilog PLI (Programming Language Interface) calls for pro-
filing the model during post-layout simulation. Fig. 3a show the
complexity of this methodology when analyzing kernels from Me-
diabench [7] suite. These are large designs containing on the or-
der of tens of thousands of standard cell gates after tech-mapping.
However, the fraction of events we model constitute about 2-3% of
all circuit events; thus the overhead of profiling during gate-level
simulation is low — on average, about 7% slowdown in simulation
time.

Profiling generates a trace listing the times at which the model
events fired during simulation. To compute the critical path from
this trace we use essentially the Fields et al. algorithm [4], which
processes the trace in reverse. For each executed behavior bi, the
last input event to fire, ek ∈ In(bi), is deemed the locally criti-
cal input event that enables bi to fire: Crit(bi) = ek ∈ In(bi).
Starting from the last behavior, bGCP

last , to fire in the trace (which
by definition must be on the GCP), we recursively compute the be-
haviors that define the GCP: 〈bGCP

1 , . . . , bGCP
i , bGCP

i+1 , . . . , bGCP
last 〉,

such that for two adjacent behaviors, Crit(bGCP
i+1 ) ∈ Out(bGCP

i ).
The actual GCP is given by the event sequence corresponding to
these behaviors: eGCP

i = Crit(bGCP
i ).

Recall (from § 3.1) that GCP is a path on the timed graph, G×T :
[(nGCP

1 , tGCP
1 ) → . . . → (nGCP

i , tGCP
i ) → . . . (nGCP

last , tGCP
last )].

For long executions, millions of events could fire, thus making the
GCP unwieldly. A practical way to summarize the information in
the GCP is to project it on the untimed graph G, by discarding
the time component ti. The projection on G is a path: [nGCP

1 →
nGCP

2 → . . . → nGCP
last−1 → nGCP

last ]. Correspondingly, with each
event e ∈ E, we associate the number of times it appears on the
GCP.

Fig. 3b shows the GCP for a circuit implementing the function,
sum =

P

10

i=1
(i + i). Each box is a pipeline stage, and edges

between the boxes represent bundled data channels. An edge with
special formatting represents a handshake event that falls on the
GCP; the numerical annotation is frequency of occurence on the
GCP. An edge with no number indicates that no handshake event of
that channel is ever critical. A detailed description of this example
can be found in [12].

5. USING THE GCP
The key to understanding the GCP is to determine the cause-and-

effect relationships between the handshake control signals. Using
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the event model, we can reason about what event could have been
critical before a given event, and why these two events would be
chained on the GCP. For the types of controllers we have consid-
ered, which encompass a wide variety of real-world asynchronous
circuits, Fig. 3c provides a complete summary of all possible de-
pendence relations between the input and output handshake signals.
For example, only ireq↑ and oack↓ can be the inputs producing
oreq↑ as output, and so on.

From these patterns, we conclude that: if ack↓ is critical, then
it is always the last event of the sequence ack↑ → req↓ → ack↓.
The event preceding this sequence may be another ack↓ or a req↑.
If a req↑ event is critical, then the event preceding it on the GCP
may be another req↑ event or an ack↓ event. An exhaustive anal-
ysis of these event sequence patterns reveals that for any circuit
implemented with 4-phase decoupled handshake, the topology of
the GCP is always expressable as the following regular expression:

pathdata = [req↑]∗
pathsync = [ack↑ → req↓ → ack↓]∗
GCP = [pathdata → pathsync ]∗

A pathdata sequence on the GCP reflects a condition where data
production is slow and consumers are waiting for data to arrive.
We refer to one or more consecutive pathdata sequences as a data-

delay path. A pathsync sequence on the GCP reflects a synchro-
nization bottleneck, because the consumer is slow and is not ready
to accept new data. We refer to one or more consecutive pathsync

sequences as a sync-delay path. The GCP can thus be summarized
as a sequence of data-delay paths that are stitched together by sync-
delay paths.

Such a classification of the GCP topology above allows us to
reason about the optimization opportunities available. One such
optimization is the slack matching problem which aims to eliminate
sync-delay paths from the GCP. Venkataramani et. al. [13] used the
GCP to formulate a quadratic time heuristic to this problem, which
was previously shown to be NP-complete [1]. More examples of
optimization opportunities and their implementation are described
in [12].

6. CONCLUSIONS
Analogous to the concept of the critical path within combina-

tional acyclic circuit graphs used in static timing analysis, we have
presented the concept of a Global Critical Path (GCP) for com-
plex, concurrent circuits containing cycles. We have described a
formal model to analyze system-level timing in a self-timed circuit
exhibiting all forms of choice and non-determinism. Using profile-
based techniques, we have shown how to unambiguously construct
the GCP from this model. The GCP topology provides valuable

insights into the circuit’s control architecture and can be used in
rethinking existing optimizations. There is nothing intrinsic in the
approach that prevents its adaptation to other asynchronous hand-
shake protocols or synchronous circuits. The GCP has great poten-
tial for system-level analysis and optimization of digital circuits.
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