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Abstract

Future deep sub-micron technologies will be charac-
terized by large parametric variations, which could make
asynchronous design an attractive solution for use on large
scale. However, the investment in asynchronous CAD
tools does not approach that in synchronous ones. Even
when asynchronous tools leverage existing synchronous
toolflows, they introduce large area and speed overheads.
This paper proposes several heuristic and optimal algo-
rithms, based on timing interval analysis, for improving ex-
isting asynchronous CAD solutions by optimizing area. The
optimized circuits are 2.4 times smaller for an optimal al-
gorithm and 1.8 times smaller for a heuristic one than the
existing solutions. The optimized circuits are also shown
to be resilient to large parametric variations, yielding bet-
ter average-case latencies than their synchronous counter-
parts.

1 Introduction

The vast majority of existing EDA flows target syn-
chronous circuits. However, with the emergence of deep-
submicron technologies, synchronous circuits exhibit sev-
eral problems. First, it is projected that the parametric vari-
ance of device delay may approach 35% by 2020 [2], which
means that the clock period must be slowed for the worst
case variation, resulting in performance losses. Second,
clock distribution is becoming increasingly difficult. The
ITRS’05 projects that chips will be more GALS-oriented
and that, by 2020, up to 40% of the chip will communicate
using asynchronous handshaking to avoid problems in clock
distribution [2].

As a consequence, asynchronous logic may become a
more attractive solution, since it can naturally deal with
parametric variance. However, a widespread acceptance
of asynchronous logic is predicated on the existence of
quality CAD tools. A promising way to address the lack
of CAD tools for asynchronous design is to re-use exist-

ing synchronous tools, and translate their results into asyn-
chronous circuits. Several papers explore this approach
([4, 3, 12, 14, 11]): synchronous circuits are translated into
quasi delay-insensitive (QDI) circuits. QDI circuits are syn-
thesized assuming that gates and wires have fixed, but un-
bounded, delays. They are tolerant to operational variations
(delays, voltage, temperature), but also have large area over-
heads. These overheads are introduced to avoid the orphans
problem (stale data inside the circuit), which might result in
data hazards and deadlock. Usually, this problem appears
because dual-rail combinational logic may exhibit the early
propagation effect: producing primary outputs even before
all primary inputs have arrived.

The classical approach to solving the orphan problem
is to introduce completion detection (CD), which makes
the circuit resilient to the early propagation effect. How-
ever, as shown in Section 8, the fraction of area occupied
by the CD circuitry can be as high as 89% of total circuit
area. Even though modern chips can accommodate a large
number of transistors, area overheads usually translate into
speed overheads. To reduce these overheads, we propose
using relative-timing analysis [15] to optimize these asyn-
chronous implementations by reducing the size of the CD
logic. One such system where relative-timing optimizations
played a crucial role is the Intel Asynchronous Instruction-
Length Decoder [13], which was several times faster than
its synchronous counterpart.

This paper introduces several novel relative-timing algo-
rithms that optimize asynchronous circuits for area. In ad-
dition, we also show that these circuits are tolerant to para-
metric variation and compare favorably with corresponding
synchronous designs.

The contributions of this paper are:

• A synthesis flow that starts with synchronous designs,
translates them into asynchronous circuits, and im-
proves them by incorporating relative-timing analysis
in the optimization process.

• Three new optimization methods which improve the
area of dual-rail circuits. One is a direct application of

1



timing analysis of dual-rail circuits, while the remain-
ing two (one heuristic and one optimal) further modify
the implementation in order to reduce area. The op-
timal algorithm produces circuits that are, on average,
2.4x smaller than existing solutions, while the heuristic
one produces circuits 1.8x smaller.

• An exploration of the effects of parametric variation
in dual-rail circuits, which shows that asynchronous
circuits are more resilient than synchronous ones when
device delays are probabilistic.

The paper is organized as follows. Some relevant back-
ground in asynchronous design and existing toolflows is
provided in Section 2. Section 3 describes the relative tim-
ing analysis methodoloy used for deducing delay intervals
of the circuit. Using the results of this analysis, Sections 4, 5
and 6 propose three optimizations (two heuristic and one
optimal) for improving circuit area. We discuss related
work in Section 7, report experimental results in Section 8,
and conclude in Section 9.

2 Background

2.1 Asynchronous design styles

Asynchronous circuits do not have a global clock signal,
and, instead, implement synchronization between compo-
nents using local signals. The typical solution is to com-
municate data on channels, which consist of data wires and
one or more control signals. There are several choices for
the communication protocol on these channels; the most
widely used is 4-phase handshaking, which consists of an
active phase (in which data is sent to the receiver), and a
return-to-zero phase (in which all channel signals reset to
zero).

There are several possible delay insensitive encodings of
data items on channels. The most widely used style is dual-
rail, in which a data bit A is encoded on two-wires (A1 and
A0), and each channel has only one control signal, an ac-
knowledge. To send a value of ’1’, (A0,A1) becomes (0,1),
and to send a value of ’0’, (A0,A1) becomes (1,0). This
communication style is very robust to gate and wire delays,
but has large area demands. In addition, the existing syn-
thesis tools for synchronous circuits need to be modified to
implement dual-rail modules. However, as we will show in
this paper, we believe that the robustness of these circuits
is the answer to large parametric variations in future deep
sub-micron technologies.

Figure 1 shows the synchronous and dual rail implemen-
tations of a simple function (Z=(A·B)·(C+D)). It is clearly
apparent from this figure that dual-rail implementations
have large (roughly 2x) area overheads compared with syn-
chronous implementations.
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Figure 1. Synchronous (a) and dual-rail (b) imple-
mentations of the function Z=(A·B)·(C+D).
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Figure 2. A case of the orphan problem: upon the
early arrival of A=0, Z becomes zero even before in-
puts B, C and D have arrived.

2.2 Early Propagation and Orphans

The early propagation effect in a dual-rail circuit means
that the circuit can output a value (a) before all primary in-
puts have arrived and/or (b) all internal gates have reached
a final, stable value. It must be noted that this effect can
manifest in both the active phase of the handshaking (when
computing a result based on new data inputs), and on the
reset to zero phase (when reseting the circuit in anticipation
of new data items).

The orphans problem is closely related to the early prop-
agation effect, but not limited to it. A dual-rail circuit is said
to exhibit wire or gate orphans iff a signal transition on a
wire or a gate is unobservable (or un-acknowledged).

Figure 2 illustrates both the early propagation effect and
the orphans problem in dual-rail implementations. Suppose
that a ’0’ is received on A (A0 = 1 and A1 = 0) long
before the values on B, C, and D are received. Then, the
circuit produces the correct final value Z=0 (Z0 = 1 and
Z1 = 0). However, at this point, signals B0 and B1 become
wire orphans, and gate “N2” becomes a gate orphan: their
transitions do not change the final value of Z, and are thus
un-acknowledged.

In dual-rail circuits, orphans may lead to incorrect be-
havior. For example, in the above case, the environment
receives a value on Z and can acknowledge. Thus, the A
value may be reset-to-zero even before B, C, or D are re-
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Figure 3. NCL-X architecture: each synchronous
stage (a) is transformed into an asynchronous imple-
mentation with explicit completion detection (b).
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Figure 4. NCL-X implementation of
Z=(A·B)·(C+D).

ceived, which may result in deadlocks or data hazards. The
same scenario may occur during the reset-to-zero phase: if
Z is seen as reset, a new wave of computation may be sent
to the circuit. At this point, if there are orphan gates (i.e.
not fully reset), data hazards occur since these gates may
compute on stale data.

2.3 NCL-X Synthesis Flow

In [11], the authors have introduced an automatic
toolflow which simultaneously converts synchronous cir-
cuits into asynchronous ones, and solves the problem of or-
phans in these circuits. Their flow starts from RTL spec-
ifications, which are synthesized with synchronous CAD
tools. These implementations are then converted in a
template-based fashion (i.e. gate-by-gate) into a Null-
Convention Logic (NCL) [9] implementation. The final cir-
cuit is then augmented with a completion detection (CD)
circuit which detects when all the gates in the circuit have
reached a stable value, thus eliminating all orphans.

The target architecture of [11] is shown in Figure 3(b).
The NCL-X implementation is separated into stage func-
tions and state (registers that store computed values). The
register implementation is fixed. The implementation of
stage functions is a direct template-based translation of the
synchronous implementation.

In more detail, the authors of [11] augment the asyn-
chronous circuit with an extra “done” signal, which be-

comes ’1’ during the active phase of communication when
all gates have computed their stable value, and ’0’ during
the reset phase when all the gates have correctly reset. This
is achieved by associating a CD to each gate: a simple OR
gate whose inputs are the two wires of the dual-rail signal.
Then all these individual CD signals are fed into a C ele-
ment1, which produces the “done” signal. This implemen-
tation is very robust, but introduces large area overheads.

In addition, the area problem is compounded by the lack
of C elements in commercial synchronous standard gate li-
braries. Thus a 2-input C element is usually implemented
with 4 NAND gates (18 transistors), whereas an optimal,
transistor-level implementation costs only 8 transistors [16].
Furthermore, each C element with more than 2 inputs must
be decomposed into trees of 2-input C elements. Thus, the
goal of our optimizations is to minimize the number of C-
elements required in the CD, without sacrificing robustness.

3 Relative-Timing Analysis of Dual-Rail Cir-
cuits

This section introduces the main ideas behind area op-
timizations proposed in this paper. We use relative timing
analysis to deduce the interval timing properties of the com-
binational circuit, and thus reduce the size of the completion
detection.

3.1 Timing Analysis

The basic assumption behind QDI circuits is that gates
and wires have unbounded, unknown delays; the only tim-
ing assumption permitted is the isochronic fork – whenever
a wire forks to two destinations, the delays on the forks
are equal. In constrast, our approach assumes that the de-
lay of gates and wires are bounded by given time intervals:
δG = (tmG , tMG ) for a gate, and δW = (tmW , tMW ) for a wire.
These intervals represent the lower- and upper-bound delays
for propagating an input change to the output. These delays
can either be obtained from standard-cell library character-
izations or can represent the theoretical limits of parametric
variation.

Given δG and δW for all gates and wires, we can eas-
ily compute the propagation delays (∆G = (Tm

G , TM
G ))

for each gate in the circuit. The propagation delay of a
gate in a circuit C is the time interval when the gate might
output a value, once the circuit is applied a set of inputs.
If a gate G has N inputs and the inputs arrival times are
∆Ik

= (Tm
Ik

, TM
Ik

), k ∈ 0..N , then gate G produces the out-
put within ∆G = (MIN(Tm

Ik
) + tmG ,MAX(TM

Ik
) + tMG ).

That is, the gate will produce an output at some point be-
tween the earliest possible input transition (minimum of

1A C element has N inputs and one output; its output becomes 1 when
all inputs are 1, and 0 when all inputs are 0.
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Figure 5. Timing example for Z=(A·B)·(C+D).

lower bounds) and the latest possible input transition (max-
imum of upper bounds), plus the gate’s delay. A similar
formula is defined for the propagation delay on wires in the
circuit. Thus, starting with gate and wire delays and the pri-
mary input arrival times, the timing characterization of the
circuit can be efficiently performed.

In addition, for a given circuit C, we define a global mea-
sure, the global propagation delay, which is the time inter-
val in which all the circuit’s outputs (primary outputs – PO)
are produced:

GlobalPD(C) = (max(Tm
o ),max(TM

o )), ∀o∈PO

The formula simply says that sometime between the maxi-
mum of all outputs’ lower bounds and the maximum of all
outputs’ upper bounds, all outputs are available to the en-
vironment. GlobalPD acts as a propagation delay interval
for the entire circuit.

These concepts are illustrated in Figure 5, which shows
the same circuit from Figure 1 without the internals of each
dual-rail gate. The gate propagation intervals are set for
illustration purposes; for simplicity, the wire delays are as-
sumed to be zero. For this particular example, since the
circuit has a single output, GlobalPD is the propagation
delay of Z.

It is important to notice that, in performing this analysis,
the logic function of each gate is not considered: instead,
we assume that any input change (either rising or falling) at
any time can change the output of a gate, thus modeling the
early propagation effect.

There are two main reasons for not considering the log-
ical function of gates. First, the C element is the only gate
that waits for all inputs to transition from 0 to 1 and from
1 to 0 (i.e. corresponding to the active and passive phases
of operation), before generating a transition on the output;
this gate does not have a combinational synchronous coun-
terpart, and it will thus not occur in our circuits. Second, it
is well known that an exact min-max analysis (taking into
account the logic function as well as the delays of each gate)
is intractable [10], and only approximate bounds can be re-
alistically computed [7]. Since our method does not con-
sider the logic functions of each gate, the time complexity
of analysis is linear in the number of gates.

Furthermore, by conflating both the rising and falling
transition delays into a single measure (gate propagation de-
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Figure 6. Implementation of a 2-input strict dual-rail
gate.

lay), a single optimization step eliminates orphans in both
the active and the return-to-zero phases of circuit operation.

3.2 Strict Dual-Rail Gates

So far, we have considered only regular dual-rail gates,
that can produce early outputs. An alternative implementa-
tion is to use strict gates, which eliminate the early propa-
gation effect at its output, and thus reduces the number of
orphans. A strict gate waits for all its inputs to arrive be-
fore producing an output. Strict gates are also referred to
as input-complete in the literature [17]. Effectively, a strict
gate acts as an implicit completion detection for all the input
fan-in, making them extremely expensive area-wise. How-
ever, the propagation delay interval at the output of a strict
gate is narrower, and thus they can potentially reduce the
size of the CD needed at the circuit output.

Figure 6 shows the implementation of a generic strict
gate with two inputs. The LZ0 and LZ1 boxes correspond
to the gates producing Z0 and Z1 in the regular implemen-
tation. The strict gate first detects whether the inputs have
arrived (one OR gate for each gate input), and then synchro-
nizes all these signals through a C element; the arrival of all
inputs is indicated on all ins. Finally, for each of Z0 and
Z1, the strict gate synchronizes all ins with the result of the
computation.

An N-input strict gate has N extra OR gates and N+1
extra C elements compared with the corresponding early
implementation, which is a significant overhead. The gate
delay of a strict gate δS is determined by a race condition
between computing the result in LZ0/LZ1 and determining
whether all inputs have arrived, plus the propagation inter-
val of a C element.

The propagation delay of a strict gate is ∆S =
(MAX(Tm

Ik
),MAX(TM

Ik
)) + δS (i.e. the interval between

the latest minimum arrival time of all the inputs and the
latest maximum arrival time of all the inputs, plus the gate
delay of S). The output interval tends to be narrower since
∆S considers only the latest minimum arrival time of its in-
puts, whereas a ∆R for its regular counterpart considers the
earliest minimum arrival time of its inputs.

Returning to our example, suppose that gate N3 is made
strict; the propagation interval of N3 is now (1.4,1.9) (i.e.
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Figure 7. The implementation of Z=(A·B)·(C+D)
with strict gates.

the delay overhead of strictness is (0.9–1.2)). The new la-
tencies through the circuit are shown in Figure 7a (strict
gates, such as N3, are shown in darker shades). Notice that
now, GlobalPD has shrunk to 1.8 (down from 3.6) and the
input arrival intervals of C and D do not overlap with the
output interval (and thus do not need CD). In addition, since
gate N2 produces the inputs to the strict gate N3, it does not
need CD – it is implicitly acknowledged by the outputs of
N3. The final implementation of the circuit is shown in Fig-
ure 7b.

The entire CD for the circuit is reduced to a single OR
gate, but this particular implementation has larger area than
the one in Figure 8 (strict gates are large). This is the basic
area trade-off that our optimizations focus on. As we show
in Section 8, since 89% of the circuit area of an NCL-x
circuit is occupied by CD, strict gates can be instrumental
in reducing this area overhead.

However, over the next three sections, several algorithms
will use strict gates to reduce area.

4 Direct Optimization

The first of the proposed optimization algorithms, called
“direct”, reduces the area of CD using interval analysis, but
does not attempt to modify the implementation of the cir-
cuit. Given the propagation delay of a gate ∆G and the
global propagation delay GlobalPD of a circuit, our key
observation is that a gate G is not stable when all the pri-
mary outputs are produced iff TM

G ≥ GlobalPDm. The
formula simply indicates that, if the upper bound of a gate’s
propagation delay is larger than the earliest time when all
the primary outputs are produced, the gate may still have
not produced an output, and needs CD.

Thus, the “direct” method for building CD starts by com-
puting GlobalPD as shown above. Then, for each gate,
g ∈ 0..NGates, the method sets NeedsCD as follows:

NeedsCDg =
{

1 if TM
g ≥ GlobalPDm

0 if TM
g < GlobalPDm

Figure 8a shows the result of such analysis for the run-
ning example. The shaded boxes represent the gates for
which NeedsCD = 1. Note that the upper bound for
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Figure 8. Optimized CD for Z=(A·B)·(C+D): Direct
Method

the propagation delay of N1 (1.9) is less than GlobalPDm

(2.0). In addition, the arrival times for the A and B in-
puts are also less than the global propagation delay, and
thus need not be used in producing the global “done” sig-
nal. The resulting implementation is shown in Figure 8b.
Compared with Figure 4, this implementation saves three C
elements and one OR gate (remember that C elements are
implemented as trees).

5 Greedy Optimization

The “direct” method presented in 4 performs a simple
timing analysis of the circuit, and then determines whether
the dual-rail gates need completion detection or not. While
this is useful, more sophisticated optimization is to weigh
the trade-offs between the use of regular and strict gates,
thereby finding an implementation with reduced area.

Strict gates usually have narrower propagation delays
than their regular counterparts; they also provide implicit
acknowledgment to their input gates, which no longer need
completion detection. However, they are much larger than
regular gates. Thus, an optimization algorithm needs to bal-
ance the tension between all these characteristics.

In this subsection, we introduce a greedy heuristic algo-
rithm, which attempts to narrow the GlobalPD propagation
delay of the circuit. The hope is that a narrower GlobalPD
will result in less overlaps with propagation delays of each
gate, thus yielding a smaller global completion detection.
The pseudo-code for the greedy algorithm is presented in
Figure 9.

The algorithm starts by performing the “direct” method
(Section 3); the output interval becomes the current best so-
lution. Each iteration of the optimization loop consists of
looping through all the gates in the circuit, and converting
each one to ’strict’, applying the “direct” method, comput-
ing GlobalPD for the new circuit, and reverting the gate to
’regular’. The best solution (i.e. the narrowest GlobalPD
interval) is saved. At the end of each step, the current best
solution is compared with the previous best; if the previ-
ous solution was larger, the algorithm continues; otherwise,
the algorithm exits the optimization loop and computes the
completion detection (as in Subsection 4).
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greedy (circuit C) {
C = OPT direct(C); // perform the “direct” analysis
CrtBest = GlobalPD(C); // set the initial best solution
forever {

PrevBest = CrtBest; // save the current best solution
for i ∈ 0..N {

if (Gi is strict) continue;
make gate Gi strict;
OPT direct(C); // perform the “direct” analysis
CrtSol = GlobalPD(C);
if (CrtSol < CrtBest) {

Gbest = Gi; // save current best candidate
CrtBest=CrtSol; // save current best solution

}
}
if (PrevBest narrower than CrtBest) break;
make Gbest strict;

}
compute CD for C using CrtBest interval

}

Figure 9. The greedy optimization algorithm

The time complexity of this algorithm is O(N2), where
N is the number of gates in the circuit. To improve the
running time, the circuit can be topologically sorted. Then,
when flipping gate i, the algorithm can perform timing anal-
ysis only for gates i+1 . . . N , since those are the only ones
that may be affected by the current change in gate i. At the
end of each iteration, once a gate has been switched perma-
nently to strict, a full application of the “direct” method is
performed, to set up the initial values for the next iteration.

It is important to notice that the proposed “greedy”
algorithm indirectly minimizes area by narrowing the
GlobalPD interval. Thus, the algorithm cannot guarantee
that it will not introduce area overheads. In practice, how-
ever, due to the large area of the CD circuitry, the price paid
for making some gates strict is more than compensated by
the reduction in CD area, as we show in Section 8.

6 Optimal mILP Algorithm

This section introduces an optimal formulation of this
optimization problem, which finds the minimum number of
gates that must be strict such that total circuit area is min-
imized. We create a mixed Integer Linear Programming
(mILP) formulation of the optimization problem. The first
subsection describes the variables, constraints, and objec-
tive function of the base formulation. Since some of the
constraints in the formulation are logical, the next subsec-

tion describes how they are linearized. Finally, the last sub-
section presents certain application-specific techniques to
speed up the branch-and-bound phase of solving the mILP
problem.

6.1 Base mILP Formulation

Given a circuit graph, we first insert pseudo-nodes to rep-
resent the primary inputs (PI) and primary outputs (PO) of
the circuit. The inputs to the formulation are:

• PI, the primary inputs.

• PO, the primary outputs.

• GT, the gates in the circuit.

• C=(V=PI ∪ PO ∪ GT, E), the circuit graph.

• ∀i ∈ PI,PDI = (PDIm
i ,PDIM

v ): the propagation
delays (arrival times) of the primary inputs.

• ∀v ∈ V,ND = (NDm
v ,NDM

v ): the gate delay of the
regular version.

• ∀v ∈ V,SD = (SDm
v ,SDM

v ): the gate delay of the
strict version.

• ∀(i, j) ∈ E,WD = (WDm
i,j ,WD

M
i,j): the delays on the

wires in the circuit

• ∀v ∈ V,NAreav: the area of the regular gate.

• ∀v ∈ V,SAreav: the area of the strict gate.

• CArea, OR2Area: the area of a 2-input C-element
and of a 2-input OR gate, respectively.

Given these inputs, the optimization problem finds an as-
signment to a set of binary variables, GSv,∀v ∈ V , such
that the area of the circuit is minimized. When GSv = 1,
it implies that node v is to be strict, otherwise it is regular.
In equations 1–6, we will describe all the constraints in the
ILP formulation.

GDmv∈V = GSv × SDm
v + (1−GSv)× NDm

v

GDMv∈V = GSv × SDM
v + (1−GSv)× NDM

v
(1)

The two variables GDmv and GDMv represent the delay
interval of gate v ∈ V . They depend on the state of the gate:
if the gate is “strict” the delays are the minimum (maxi-
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mum) gate delays for the strict gate, otherwise they are the
minimum (maximum) gate delays for the regular gate.

LBmv∈V =
{

PDIm, if v ∈ PI,
Min∀(u,v)∈E(∆m

u + WDm
u,v), otherwise.

LBMv∈V =
{

PDIm, if v ∈ PI,
Max∀(u,v)∈E(∆m

u + WDm
u,v), otherwise.

UBMv∈V =
{

PDIM , if v ∈ PI,
Max∀(u,v)∈E(∆M

u + WDM
u,v), otherwise.

(2)
These three variables compute the propagation delay prop-
erties for a given gate, v ∈ V . Specifically, they compute
the earliest lower bound (LBmv), the latest lower bound
(LBMv), and the latest upper bound (UBMv) of the prop-
agation delay from the primary inputs of the circuit to the
inputs of gate v. While Eq. 2 computes the propagation
delay at the input of the gates, the following constraints de-
termine the propagation delay interval, at the outputs of the
gates.

∆m
v∈V =

{
LBmv + GDmv, if GSv = 0
LBMv + GDmv, if GSv = 1

∆M
v∈V = UBMv + GDMv

(3)

The lower bound of the propagation delay is either the ear-
liest arrival time of the inputs (if gate is regular) or the latest
arrival time of the inputs (if gate is strict), plus the minimum
gate delay (see Eq. 1). The upper bound is always the latest
arrival time of the inputs, plus the the maximum gate delay.

Now, the lower bound of the propagation delay for the
entire circuit (see Subsection 3.1) can be computed:

GlobalPDm = MAX∀v∈PO(∆m
v ) (4)

As defined in 3.1, GlobalPDm is the earliest time when
all the primary outputs could be produced. This helps us
determine which gates need to participate in completion de-
tection. For each gate, we define this decision using a binary
variable, NeedsCD, as described below:

∀NeedsCDv∈V =

 0, if GlobalPDm > ∆M
v

∨
∃ u | GSu = 1 ∧ (v, u) ∈ E

1, otherwise.
(5)

A gate v does not need completion detection
(NeedsCDv = 0) if the upper bound of its propaga-
tion delay is smaller than GlobalPDm (i.e. the gate is
stable before the earliest time when all primary outputs are
produced), or if one of gate v’s successors is a strict gate,
which provides implicit completion detection. NeedsCD
is 1 otherwise.

Based on these constraints, we can now infer the total
area of the circuit, which we want to minimize:

GAv∈V = GSv × SAreav + (1−GSv)× NAreav

GateArea =
∑

v∈V GAv

SCD =
∑

v∈V NeedsCDv

CDArea = SCD × OR2Area+ (SCD − 1)× CArea
TotalArea = GateArea + CDArea

(6)
The decision variables, GSv and NeedsCDv tell us if gate
v should be strict and if v needs completion detection at its
output. These decisions in turn determine the size of the
gates, and thus overall circuit area, which is the sum of: (1)
total gate area, GateArea, determined by decisions made
by strict variables, GSv for each v, and (2) the CD circuit
area. For the latter, we assume that the CD is constructed as
a tree of 2-input C-elements, with a two-input OrGate at the
leaves of the tree, whose inputs are the dual-rail signals (see
Figure 8b). SCD computes the number of gates which need
completion detection, and represents the number of leaves
in the CD tree. CDArea uses SCD to compute the size the
of the CD tree.

This completes our mILP formulation. The objective
function is to minimize TotalArea in Eq. 6. However,
some of the constraints in this formulation are logical, e.g.,
Eq. 2, Eq. 3, Eq. 4, Eq. 5, implying that they are not lin-
ear. If all the variables are bounded (as they are in our for-
mulation), such logibal constraints can be transformed into
intenger linear constraints.

6.2 Linearizing Logical Constraints

In general, a pair of logical OR constraints can be lin-
earized by introducing a decision variable, as long as the
variables are bounded. For example, consider the equality
constraints that assign MIN/MAX terms to variables, such
as Eq. 2 and Eq. 4. A MAX function, z = MAX(u, v)
can be written as a pair of logical OR constraints as {z ≥
u, z ≥ v, u ≥ z} ∨ {z ≥ u, z ≥ v, v ≥ z}. A stan-
dard technique to linearize these constraints is to introduce
a decision variable that adds a large number, say M , to
the smaller side of an inequality constraint, thereby mak-
ing them inactive. For example, using the decision variable,
α, the MAX function can be written as the constraints set,
{z ≥ u, z ≥ v, u + M × α ≥ z, v + M × (1 − α) ≥ z}.
Thus, we have conditionally (based on value of α) added
the large number M to the smaller side of each inequality
constraint. Using similar techniques, we can linearize the
logical constraints in Eq. 3, yielding:

∆m
v + GSv ×M ≥ LBmv + GDmv

∆m
v −GSv ×M ≤ LBmv + GDmv

∆m
v + (1−GSv)×M ≥ LBMv + GDMinv

∆m
v − (1−GSv)×M ≤ LBMv + GDMinv

(7)
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While such a technique linearizes the logical constraints,
it also introduces additional decision variables and con-
straints to the formulation. This could be avoided through
problem-specific knowledge. For example, in Eq. 5, we
know that the variable NeedsCDv will be minimized, since
it always leads to an increase in the objective function. Us-
ing this knowledge, Eq. 5 becomes:

GSDstv =
∑

(v,u)∈E(GSu)
∆M

v − (NeedsCDv + GSDstv)×M ≤ GlobalPDm

(8)
With these new constraints, the problem is specified as a

pure mILP formulation, which is then provided as input to
an ILP solver such as cplex [1].

The M quantity used in linearizing the formulation is
technology and circuit dependent, and it has to be larger
than the largest propagation delay through a circuit in a
given technology. In our experiments, M is set to be the
largest delay of any of the gates in the circuit under con-
sideration, multiplied by the number of gate levels in the
circuit.

6.3 Improving the ILP Model

The ILP model presented above is convex and thus it has
a global minima representing the optimal solution. How-
ever, ILP formulations are unstable by their very nature, and
can have very long run times, since they are exponential in
the number of variables. Our initial experiments indicated
that even circuits with 20-30 gates may take hours to op-
timize. However, we can leverage our knowledge of the
problem to improve its running time by introducing several
techniques which either reduce the size of the problem (by
setting some variables to their final, optimal values), or pro-
vide hints to the ILP solver as to where to look first for an
optimal solution. With these changes, circuits with several
hundred gates can be optimized in a matter of seconds.
Single Input Gates. Gates with only one input (inverters,
buffers) cannot be strict in the optimal solution. For such
a gate, an output transition is implicitly an acknowledge-
ment of a transition on the single input, which is exactly the
behavior of a ’strict’ version. Since the area of a strict ver-
sion is much larger, there is no benefit in turning these gates
into ’strict’, and the ILP formulation is augmented with con-
straints that set GS to zero.
Level zero gates. In our proposed implementation, the
primary inputs to the circuit are collected in a C-element,
which indicates that all the inputs have arrived (Figure 4).
Thus, all the inputs to the gates whose inputs are only pri-
mary inputs, (i.e. on level zero) are implicitly acknowl-
edged, so turning them into strict gates does not help. For
all these gates, we set GS to zero in the ILP formulation.
NeedsCD Elimination. In some cases, it is possible to
guarantee that some gates will not have completion detec-

tion in the optimal solution. This is the case for every gate
that meets all of the following conditions: (a) has as pre-
decessors only gates which will not be ’strict’ in the final
solution, (b) does not need completion detection after the
“direct” analysis (Section 4), and (c) even if the gate is made
strict, the gate still does not need completion detection. Ba-
sically, condition (a) guarantees that input arrival times do
not change in the optimal solution, condition (b) checks
whether the gate needs CD now, and condition (c) checks
whether, under the most adversarial condition (gate becom-
ing strict), the gate needs CD. Thus, by fulfilling these con-
ditions, a gate will not need completion detection in the op-
timal solution, and NeedsCD can be set to zero for these
gates in the ILP formulation.
Branching Order. The ILP solver implements a branch-
and-bound algorithm, which can be controlled by several
parameters. There are several knobs the user can control to
improve the solver runtimes in the branch and bound phase.
One such knob is variable order when branching. In our
case, we have noticed that in the optimal circuits, the strict
gates tend to be concentrated in the upper levels, closer to
the primary outputs. Therefore, in our ILP model, we set
the GS priorities (i.e. order of branching) proportional to
the level of the gate. This way, the solver will first inspect
the gates near the primary outputs.
Branching Direction. We also define a priority when ex-
ploring the branching direction, i.e., for the GS variables,
should the solver first branch on a value of 1 or 0. Follow-
ing the observation that strict gates are most effective near
the inputs of the circuit, we set the branching direction to 1
for gates in the top 25% levels, and to 0 for rest of the gates.
Initial Solution. The user can provide the ILP solver with
an initial integer solution, which usually speeds up the
search for optimal. In our case, we provide the solver the re-
sult of the “greedy” method, since this one results in smaller
area than “direct”, and thus closer to optimal.

7 Related Work

Several approaches have been proposed for translating
synchronous circuits into asynchronous ones [4, 3, 12, 14,
11, 5]. Our toolflow is similar to these, but the main thrust
of our approach is different: we provide relative-timing op-
timization algorithms to reduce the area overheads typically
introduced by such toolflows.

Kondratyev et al. [11] propose a method to deal with or-
phans. Their solution is discussed in detail in Section 2, and
improved on by our proposed methods.

In [14], Sokolov investigates the circuits of [11] in the
context of secure applications and proposes two relative-
timing optimizations. In the first one, only the gates in al-
ternate levels have completion detection. The method im-
plicitly assumes that the gates in a level have roughly equal
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latencies, which is not the case in real circuits, and thus
does not solve the orphans problem. The second method
introduces completion detection only for the gates on the
longest path through the circuit; however, finding this path
when considering the logical functionality of the gates is
intractable [10], and this optimization is applicable only for
extremely small circuits.

An alternative solution is presented in [5]. Their circuits
allow for early propagation, and compute the completion
detection in the background. This scheme allows their cir-
cuits to be used with a special register implementation style
(anti-token), which may take better advantage of early out-
puts than [11, 14]; however, this solution suffers from even
larger area overheads. Our relative-timing solutions can be
applied to optimizing these circuits too.

Another area optimization of dual-rail circuits is pre-
sented in [8], also in the context of translating synchronous
circuits into asynchronous ones. Their translation method
considers the logica function of a circuit, from which it
derives the equations for each dual-rail output using Shan-
non’s decomposition, and then technology maps the result
using only hazard non-increasing transformations. By al-
lowing some timing constraints, the completion detection
logic can be improved to just a tree of AND gates. In our
approach, we start with a technology mapped bundled data
circuit, and translate each gate into a dual-rail gate in a
template-based fashion. The optimization algorithms are
applied to the dual-rail circuit; however, these algorithms
do not make any assumptions on how the dual-rail circuit
was derived, and can thus be used to optimize the circuits
obtained using [8].

Finally, the authors of [17] also use strict and regular
dual-rail gates to optimize the area of the circuit. They cast
the optimization as a binate covering problem. The crux of
their optimization algorithm is to determine an assignment
of gates that are strict, such that all gates are acknowledged
and area is minimized. The circuits they synthesize are still
QDI (the only timing constraint is the isochronic fork). The
mILP formulation proposed in this paper subsumes the for-
mulation in [17] by solving a much harder problem. How-
ever, the circuits we synthesize are no longer QDI, but tol-
erate a parameterizable bounded delay interval.

8 Results

8.1 Methodology

In order to verify our proposed methods, we have imple-
mented the toolflow to automatically synthesize optimized
dual-rail circuits from their single-rail equivalents. First,
a Verilog description of a synchronous (single-rail) circuit
is synthesized with Synopsys Design Compiler (SDC). The
result is a technology mapped implementation in the ST Mi-

Figure 10. Ratio of area in our proposed methods vs.
the NCL-X method.

cro 0.18µ technology. This implementation is processed
by several custom Perl scripts, which replace each STMi-
cro gate by a corresponding dual-rail implementation. The
resulting dual-rail implementation is read back into SDC,
which computes and writes the gate delays file (SDF). The
dual-rail Verilog implementation, and the corresponding
SDF file are then read into our custom timing tool, which
then performs the analysis. This timing tool also receives
as a parameter the device delay variation, which is used to
modify the delays from the SDF files. The “nclx”, “direct”,
and “greedy” algorithms are custom implemented, while the
“ilp” algorithm is implemented with the aid of a commercial
ILP software, the cplex callable library [1].

All experiments are pre-layout. It is known that circuit
modifications may change the gate and wire timing after
layout. However, by using a hierarchical place and route
tool (such as Cadence First Encounter), the range of these
changes can be bounded, and hence quantified in the model.
Therefore, we can account for layout effects in our analysis
by incorporating these delay ranges directly in our analysis,
without any modifications to the algorithms.

8.2 Area

Using the methodology described above, we have syn-
thesized and simulated several typical arithmetic functions
(two types of 32-bit adders, 32-bit comparators, equality,
and absolute value circuits, left- and right-shifters, a 16 bit
multiplier and squarer, several binary and gray encoding cir-
cuits), as well as a few ISCAS’89 [6] benchmarks (C432,
C499, C880, C1908, C2670, C5315, C6288, and C7552).
For a variation of 0% (i.e. the device delays are the same as
in the SDF files), we have applied all of the four methods
described in this paper (NCL-X, direct, greedy, mILP), and
the results are presented below.
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NCLX Direct Greedy mILP
Benchmark #Inps #Outs #Gates Run Time Run Time Area Run Time Area Run Time Area #Vars #Constr.
bin2gray32 32 32 32 0.13 0.08 1.000 0.06 0.403 0.15 0.403 672 1128
eq32 64 1 37 0.17 0.12 0.418 0.12 0.418 0.23 0.407 731 1158
decode32 5 32 49 0.10 0.09 0.851 0.11 0.313 12.12 0.313 1239 2068
binenc32 32 6 58 0.14 0.11 0.748 0.17 0.713 0.26 0.548 1239 1903
C432 36 7 80 0.24 0.21 0.948 0.29 0.788 1666.29 0.662 2391 4223
lsl16 32 16 81 0.10 0.18 0.988 0.88 0.937 624.98 0.496 1819 3534
lsr16 32 16 81 0.16 0.50 0.977 0.16 0.705 1155.23 0.459 2315 4080
le32 64 1 91 0.21 0.23 1.000 0.10 2.830 0.61 1.000 1571 2852
absval32 32 32 92 0.18 0.15 1.000 0.50 0.813 367.67 0.583 2420 4149
bsh32 37 32 96 0.31 0.27 1.000 0.42 0.190 7.54 0.190 2880 5181
C499 41 32 162 0.53 0.38 1.000 0.51 0.758 X 4065 7430
C880 60 26 168 0.40 0.37 0.868 1.24 0.531 2365.29 0.436 4385 7724
C1908 33 25 190 0.54 0.53 0.899 1.90 0.759 1223.17 0.339 3263 5300
C1355 41 32 220 0.34 0.40 1.000 1.57 0.791 X 4530 8393
bk32 64 32 285 0.24 0.57 0.627 1.22 0.372 79.32 0.256 4923 8293
C2670 157 64 290 0.76 0.47 0.844 10.16 0.395 X 8409 14239
clf32 64 32 309 0.69 0.45 0.624 0.91 0.358 71.30 0.251 5195 8737
square16 17 32 529 1.20 0.67 0.572 19.54 0.396 X 7923 15436
C5315 178 123 536 1.09 1.43 0.825 59.22 0.440 X 15239 27443
mul16 32 32 715 2.76 2.75 0.625 32.82 0.398 X 9977 19540
C7552 207 108 832 2.86 2.11 0.980 103.25 0.439 X 18223 33305
C6288 32 32 1200 3.66 3.70 0.976 205.60 0.552 X 28271 55511

Geometric Mean: 0.833 0.552 0.415

Table 1. Benchmark circuits optimized with the methods proposed in the paper. The table shows the problem size,
running times, and the area ratio between the proposed methods and NCL-X. For ILP, the number of variables and
constraints for the ILP formulation are also shown.

Figure 10 shows the area ratio of the circuits optimized
with our proposed methods vs. the NCL-X circuits. These
designs have between 32 (bin2gray32) and 1200 (C6288)
dual-rail gates (Table 1), with an average of 278 gates. The
running time for the optimization software (see Table 1) on
a machine with a 2.4GHz Pentium 4 processor and 512MB
RAM is a matter of seconds for the “nclx” and “direct”
methods, while the “greedy” algorithm runs in at most 3
minutes for the largest design (though most commonly less
than 20 seconds). For the ILP formulation, we have set a
cut-off time of 2 hours. The benchmarks marked with “X”
did not produce an optimal value in the alloted time, while
the others require 1 second to 39 minutes. Table 1 also
includes the number of variables and the number of con-
straints in the ILP model for the respective benchmark.

On average, the direct method improves area by a factor
of 1.2, greedy by 1.8, and mILP by a factor of 2.4. No-
tice however that “greedy” can sometimes increase the area
overhead (for “le32”, the circuit becomes 2.83 times larger
than NCL-X!), since the method optimizes for the narrow-
est propagation interval, and not directly for area.

Compared with synchronous designs, dual-rail circuits
are much larger. However, on average, the optimal method
(mILP) produces circuits that are only 3.45 times larger than
synchronous ones. In contrast, the average for NCL-X is
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Figure 11. ILP optimization profile for a 32-bit
Brent-Kung adder

8.3x. It should be noted that the smallest theoretical ratio
achievable by dual-rail circuits is around 2x.

Figure 11 shows the behavior of the ILP solver when op-
timizing the 32 bit Brent-Kung adder; this behavior is typ-
ical for all the problems that have been solved. The solver
maintains two values, which are shown here: the current
best integer solution, and the largest provable interval where
an optimal solution might exist, as a displacement from the
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Figure 12. Area breakdown into regular dual-rail
gates, strict dual-rail gates, and completion detection
for each method. The Y axis is normalized to the area
of NCL-X.

current value (the “Best Estimation” shape). To fit the two
quantities on the same graph, we have plotted the current
integer solution as a percentage displacement from the op-
timal solution for the problem (“Crt Sol”). The optimiza-
tion ends when “Best Estimation” becomes 0% – the solver
knows that there are no better solutions besides the current
best. However, as seen in Figure 11, a near optimal (0.40%
off) solution is found immediately, but the solver spends an
extra minute slightly improving the solution and proving its
optimality. For all practical purposes, this is wasted time,
and in the future we would like to improve our ILP formu-
lation with cuts to stop the search.

Finally, Figure 12 shows the area breakdown into three
main components: regular dual-rail gates, strict dual-rail
gates, and the completion detection, for three benchmarks.
For the NCL-X style, the CD occupies almost 80% of the
total circuit area (across all benchmarks, the high is 89%).
This is essentially wasted area, whose only role is to de-
tect whether the circuit has achieved a stable state. For the
direct method, this overhead reduces to about 40% (about
50% across all benchmarks), while for the greedy and mILP
methods it could be as low as 1%. Also, notice that the area
occupied by strict gates can become quite significant. For
example, in “C880” (mILP), there are only 8 strict gates
out of 168, but their area is roughly 40% of the total area;
however, the total area for this method is 56% better than
NCL-X, and 13% better than greedy.

8.3 Speed

In addition to characterizing area results, we have also
performed several experiments on the speed of the circuits
optimized by the proposed methods. These experiments al-

0

0.5

1

1.5

2

2.5

3

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35

L
at

en
cy

 (
n

s)

sync direct greedy

Figure 13. Latency of a Brent-Kung adder in the
presence of parametric variation.

Figure 14. Latency of a 16-bit multiplier in the pres-
ence of parametric variation.

low us to quantify the effect of parametric variation on our
circuits.

We have selected two representative circuits, a 32-bit
Brent-Kung adder, and a 16 bit multiplier. For each of these
circuits, the parametric variation was incremented from 0%
to 35% (the projected ITRS variation [2]), in steps of 2.5%.

Figure 13 and Figure 14 show the expected delays for
these two benchmark circuits. We are showing only two
methods since the delays for NCL-X circuits are very close
to those for the “direct” method, and the mILP method does
not finish for the multiplier in the alloted time of 2 hours.
The synchronous delays increase linearly with the paramet-
ric variation, since these delays have to account for the
worst-case behavior. In contrast, the delays for the asyn-
chronous implementations are not fixed, but are expressed
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as an interval for producing the global “done” signal (lighter
shade for “direct” and darker shade for “strict”). In addi-
tion, for easy visualization, we have also plotted the middle
of the output interval. Since these circuits are not governed
by a clock, they can naturally take advantage of variability
in device delays.

Figure 13 and Figure 14 show another important char-
acteristic of dual-rail implementations. The slope of the
midpoint output interval is sub-linear for both “direct”
and “greedy” optimizations when parametric variation in-
creases. In contrast, the delay of the synchronous im-
plementation increases linearly with parametric variation.
This indicates that, in addition to guaranteed correctness,
using asynchronous circuits for deep-submicron technolo-
gies with parametric variation may also result in speed ad-
vantages. However, this result needs to be further refined
by more detailed simulations of the circuit using statistical
methods (e.g. Monte-Carlo) to detect the true average-case
delay of the circuit, and not just the midpoint of the output
interval.

9 Conclusions

With the emergence of deep submicron technologies,
synchronous design becomes increasingly difficult, as para-
metric variance in future circuits require large pessimistic
bound in clock cycles and clock distribution. In fact, ITRS
predicts that asynchronous design is going to become more
commonplace in future technologies. However, to gain ac-
ceptance, asynchronous design needs better CAD tools.

In this paper, we are building on a promising direction
in asynchronous CAD tools: adapting synchronous tools
for asynchronous design. Previous solutions exhibited large
area and delay overheads. The methods presented in this pa-
per alleviate these overheads by using timing information.
In addition, in the presence of parametric variation, these
optimized circuits are more resilient and may be faster than
their synchronous counterparts.
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