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ABSTRACT
This paper describes a computer architecture,Spatial Computation
(SC), which is based on the translation of high-level language pro-
grams directly into hardware structures. SC program implemen-
tations are completely distributed, with no centralized control. SC
circuits are optimized forwiresat the expense of computation units.

In this paper we investigate a particular implementation of SC:
ASH (Application-Specific Hardware). Under the assumption that
computation is cheaper than communication, ASH replicates com-
putation units to simplify interconnect, building a system which
uses very simple, completely dedicated communication channels.
As a consequence, communication on the datapath never requires
arbitration; the only arbitration required is for accessing memory.
ASH relies on very simple hardware primitives, using no associa-
tive structures, no multiported register files, no scheduling logic, no
broadcast, and no clocks. As a consequence, ASH hardware is fast
and extremely power efficient.

In this work we demonstrate three features of ASH: (1) that such
architectures can be built by automatic compilation of C programs;
(2) that distributed computation is in some respects fundamentally
different from monolithic superscalar processors; and (3) that ASIC
implementations of ASH use three orders of magnitude less energy
compared to high-end superscalar processors, while being on aver-
age only 33% slower in performance (3.5x worst-case).

Categories and Subject Descriptors:B.2.4 arithmetic and logic
cost/performance, B.6.3 automatic synthesis, optimization, simula-
tion B.7.1 algorithms implemented in hardware, B.7.2 simulation,
C.1.3 dataflow architectures, hybrid systems, D.3.2 data-flow lan-
guages, D.3.4 code generation, compilers, optimization

General Terms: Measurement, Performance, Design.

Keywords: spatial computation, dataflow machine, application-
specific hardware, low-power.

1. INTRODUCTION
The von Neumann computer architecture [108] has proven to be

extremely resilient despite numerous perceived shortcomings [7].
Computer architects have continuously enhanced the structure of
the central processing unit, taking advantage of Moore’s law. To-
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day’s superpipelined, superscalar, out-of-order microprocessors are
amazing achievements.

However, the future scalability of superscalar (and even VLIW)
architectures is questionable. Attempting to increase the pipeline
width of the processor beyond the current four or five instructions
per cycle is difficult since the interconnection networks scale super-
linearly. The register file, instruction issue logic, and pipeline for-
warding networks grow quadratically with issue width, making the
interconnection latency the limiting factor [2]. This problem is
compounded by the increasing clock rates and shrinking technolo-
gies: currently signal propagation delays on inter-module wires
dominate logic delays [56]. Just the distribution of the clock signal
is a major undertaking [10].

Wire delays are not the only factor in the way of scaling: power
consumption and power density have reached dangerous levels, due
to increased amounts of speculative execution, increased logic den-
sity and wide issue. Design complexity is yet another limitation:
while the number of available transistors grows by 58% annually,
designer productivity only grows by 21% [1]. This exponentially
increasing productivity gap has been historically covered by em-
ploying larger and larger design and verification teams, but human
resources are economically hard to scale.

The research presented in this paper is aimed directly at these
problems. We explore Spatial Computation, which is a model of
computation optimized for wires. We have previously proposed to
use Spatial Computation for mapping programs to nanoFabrics [51];
in this paper we evaluate the compiler technology we developed for
nanoFabrics on a traditional CMOS substrate. Since the class of cir-
cuits one could call “spatial” is arguably very large, we focus our
attention on a particular set of instances of SC structures, which
we call Application-Specific Hardware (ASH). ASH requires no
clocks, nor any global signals. The core assumption is that com-
putation gates are cheap, and will become even cheaper compared
to the cost of wires (in terms of delay, power and area). ASH is
an extreme point in the space of SC architectures: in ASH compu-
tation structures are never shared, and each program operation is
synthesized as a different functional unit.

We present a complete compiler/CAD tool-chain that bridges
both software compilation and microarchitecture. Applications writ-
ten in high-level languages are compiled into hardware descrip-
tions. These descriptions can either be loaded onto a reconfigurable
hardware fabric or synthesized directly into circuits. The resulting
circuits use only localized communication, require neither broad-
cast nor global control, and are self-synchronized. The compiler
we have developed is automatic, fast, requires no designer interven-
tion, and exploits instruction-level parallelism (ILP) and pipelining.

The novel research contributions described in this paper are:
(1) a compiler tool-chain from ANSI C to asynchronous hardware;
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Figure 2: ASH used in tandem with a processor for implementing
whole applications. The processor is relegated to low-ILP program
fragments and for executing the operating system.

(2) a qualitative comparison of Spatial Computation architectures
and superscalar processors;
(3) a circuit-level evaluation of the synthesized circuits on C pro-
gram kernels from the Mediabench suite;
(4) a description of a high-level synthesis toolflow that produces
extremely energy-efficient program implementations: comparable
with custom hand-tuned hardware designs, and three orders of mag-
nitude better than superscalar processors;
(5) the first implementation of a C compiler that can target dataflow
machines.

2. COMPILING C TO HARDWARE
This section presents our compilation methods as embodied in

the CASH compiler (Compiler for ASH). The structure of CASH,
and its place within a complete synthesis tool-flow are illustrated in
Figure 1, which also shows the organization of this paper.

The circuits generated by CASH cannot handle system calls.
For translating whole application we assume first that hardware-
software partitioning is performed, and that part of the application
is executed on a traditional processor (e.g., I/O), while the rest is
mapped to hardware, as shown in Figure 2. The processor and the
hardware have access to the same global memory space, and there
is some mechanism to maintain a coherent view of memory. Cross-
ing the hardware-software interface can be hidden by employing
a stub compiler, which encapsulates the information transmitted
across the interface, as we have proposed in [20], effectively per-
forming Remote Procedure Calls across the hw/sw interface.

2.1 CASH
CASH takes ANSI C as input. CASH represents the input pro-

gram using Pegasus [16, 17], a dataflow intermediate representation
(IR). The output of CASH is a hardware dataflow machine which
directly executes the input program. Currently CASH generates a
structural Verilog description of the circuits.

CASH has a C front-end, based on the Suif 1 compiler [111]. The
front-end performs some optimizations (including procedure inlin-
ing, loop unrolling, call-graph computation, and basic control-flow
optimizations), intraprocedural pointer analysis, and live-variable
analysis. Then, the front-end translates the low-Suif intermediate
representation into Pegasus. Next CASH performs a wealth of op-
timizations on this representation, including scalar-, memory- and
Boolean optimizations. Finally, a back-end performs peephole op-
timizations and generates code.

The translation of C into hardware is eased by maintaining the
same memory layout of all program data structures as implemented
in a classical CPU-based system (the heap structure is practically
identical, but CASH uses less stack space, since it never needs to
spill registers). ASH currently uses a single monolithic memory for
this purpose (see Section 4.1.3). There is nothing intrinsic in Spa-
tial Computation that mandates the use of a monolithic memory;
on the contrary, using several independent memories (as suggested
for example in [94, 9]) would be very beneficial.

2.2 The Pegasus Intermediate Representation
The key technique allowing us to bridge the semantic gap be-

tween imperative languages and asynchronous dataflow is Static
Single Assignment (SSA) [34]. SSA is an IR used for imperative
programs in which each variable is assigned to only once. As such,
it can be seen as a functional program [5]. Pegasus represents the
scalar part of the computation of C programs as SSA. Due to space
limitations we only briefly describe Pegasus. See [16, 17] for more
details.

Pegasus seamlessly extends SSA—representing memory depen-
dences, predication, and (forward) speculation in a unified manner.
While other IRs have previously combined some of these aspects,
we believe Pegasus is the first to unify them into a coherent, seman-
tically precise representation.

A program is represented by a directed graph in which nodes are
operations and edges indicate value flow; an example is shown in
Figure 3. Pegasus leverages techniques used in compilers for pred-
icated execution machines [74] by collecting multiple basic blocks
into one hyperblock;1 each hyperblock is transformed into straight-
line code through the use of predication, using techniques similar
to PSSA [25]. Instead of SSAφ-nodes, within hyperblocks Pega-
sus uses explicit decoded multiplexor (MUX ) nodes (one example
is given in Figure 7). A decodedMUX hasn data inputs andn
predicates. The data inputs are the reaching definitions. TheMUX

predicates correspond to path predicates in PSSA; each predicate
selects one corresponding data input. The predicates of eachMUX

are guaranteed to be mutually disjoint (i.e., the predicates areone-
hot encoded). CASH uses theespresso [13] Boolean optimizer
to simplify the predicate computations.

Speculation is introduced by predicate promotion [73]: the pred-
icates that guard instructions without side-effects are weakened to
becometrue, i.e., these instructions are executed unconditionally
once a hyperblock is entered. Predication and speculation are thus
core constructs in Pegasus. The former is used for translating con-
trol-flow constructs into dataflow; the latter for reducing the crit-

1A hyperblock is a portion of the program control-flow graph hav-
ing a single entry point and possibly multiple exits.
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int squares()
{

int i = 0,
sum = 0;

for (;i<10;i++)
sum += i*i;

return sum;
}
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Figure 3: C program and its representation comprising three hy-
perblocks; each hyperblock is shown as a numbered rectangle. The
dotted lines represent predicate values. (This figure omits the token
edges used for memory synchronization.)

icality of control-dependences [63]. They effectively increase the
exposed ILP. Note thatMUX nodes are natural speculation squash-
ing points, discarding all of their data inputs corresponding tofalse
predicates (i.e., computed on mis-speculated paths).

Hyperblocks are stitched together into a dataflow graph repre-
senting an entire procedure by creating dataflow edges connecting
each hyperblock to its successors. Each variable live at the end of
a hyperblock is forwarded through anETA node [82] (also called
a “gateway”). ETAs are shown as triangles pointing down in our
figures. ETA nodes have two inputs—a value and a predicate—
and one output. When the predicate evaluates totrue, theETA node
moves the input value to the output; when the predicate evaluates to
false, the input value and the predicate are simply consumed, gener-
ating no output. A hyperblock with multiple predecessors receives
control from one of several different points; inter-hyperblock join
points are represented byMERGE nodes, shown as triangles point-
ing up.

Figure 3 shows a function that usesi as an induction variable
andsum to accumulate the sum of the squares ofi . On the right is
the program’s Pegasus representation, which consists of three hy-
perblocks. Hyperblock 1 initializessum and i to 0. Hyperblock
2 represents the loop; it contains twoMERGE nodes, one for each
of the loop-carried values,sum and i . Hyperblock 3 is the func-
tion epilog, containing just theRETURN. Back-edges within a hy-
perblock denote loop-carried values; in this example there are two
such edges in hyperblock 2; back-edges always connect anETA to
a MERGE node.

Memory accesses are represented through explicitLOAD and
STORE nodes. These and other operations with side-effects (e.g.,
CALL andDIVISION—which may generate exceptions) also have a
predicate input: if the predicate isfalse, the operation is not exe-
cuted. In our figures, predicate values are shown as dotted lines.

The compiler adds dependence edges, calledtoken edges, to ex-
plicitly synchronize operations whose side-effects may not com-
mute. Operations withmemory side-effects(LOAD, STORE, CALL ,
andRETURN) all have a token input. Token edges explicitly encode

data flow through memory. An operation with memory side-effects
must collect tokens from all its potentially conflicting predecessors
(e.g., aSTOREfollowing a set ofLOADs). TheCOMBINE operator
is used for this purpose.COMBINE has multiple token inputs and
a single token output; it generates an output after it receives all its
inputs. It has been noted for the Value Dependence Graph represen-
tation [97] that such token networks can be interpreted as SSA for
memory, where theCOMBINE operator corresponds to aφ-function.
Tokens encode both true-, output- and anti-dependences, and are
“may” dependences. We have devised new algorithms for remov-
ing redundant memory accesses which exploit predicates and token
edges in concert [18, 19]. As we show later, tokens are also explic-
itly synthesized as hardware signals, so they areboth compile-time
and run-timeconstructs.

Currently the compiler is purely static, i.e., uses no profiling in-
formation. There is no reason that profiling cannot be incorporated
in our tool-chain. Section 4.1.2 explains why profiling is less criti-
cal for CASH than for traditional ILP compilers [92].

2.3 The Dataflow Semantics of Pegasus
In [16] we have given a precise and concise operational seman-

tics for all Pegasus constructs. At run-time each edge of the graph
either holds a value or is⊥ (“empty”). An operation begins com-
puting once all of its required inputs are available. It latches the
newly computed value when its output is⊥. The computation con-
sumes the input values (setting the input edges to⊥) and produces
an output value. This semantics is the one of a static dataflow ma-
chine (i.e., each edge can hold a single value at one time).

The precise semantics is useful for reasoning about the correct-
ness of compiler optimizations and is a precise specification for
compiler back-ends. Currently CASH has three back-ends: (1) a
graph-drawing back-end, which generates drawings in thedot lan-
guage [45], such as in Figure 3; (2) a simulation back-end, which
generates an interpreter of the graph structure (used for the analysis
in Section 3); and (3) the asynchronous circuits Verilog back-end,
described in Section 4.1 (used for the evaluation in Section 4).

2.4 Compiler Status
The core of CASH handles all of ANSI C exceptlongjmp , al-

loca , and functions with a variable number of arguments. While
the latter two constructs are relatively easy to integrate, handling
longjmp is substantially more difficult. Strictly speaking, C does
not have exceptions [61] p. 200, and our compiler does not handle
them. Recursion is handled in exactly the same way as in software:
CASH allocates stack frames for saving and restoring the live local
variables around the recursive call. As an optimization, CASH uses
the call-graph to detect possibly recursive calls, and avoids saving
locals for all non-recursive calls.

The asynchronous back-end is newer, and, therefore, somewhat
less complete: it does not yet handle procedure calls and floating-
point computations. The latter can be easily handled with a suitable
IP core containing implementations of floating-point arithmetic.
Currently we handle some procedure calls by inlining. Handling
function pointers requires an on-chip network, as the call will need
to dynamically route the procedure arguments to the callee circuit
dependent on the run-time value of the pointer.

3. ASH VERSUS SUPERSCALAR
This section is devoted to a comparison of the properties of ASH

and superscalar processors. The comparison is performed by ex-
ecuting whole programs using timing-accurate simulators. Since
there are many parameters, one should see this comparison as a
limit study. This study can also be interpreted as being the first
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head-to-head comparison between an unlimited-resource static data-
flow machine and a superscalar processor. Interestingly enough,
despite the limited resources of the superscalar, some of its capa-
bilities give it a substantial edge over the static dataflow model, as
shown below. These results may be a partial explanation of the
demise of the dataflow model of computation, which was a very
popular research subject in the seventies and eighties. But first we
will briefly discuss the main source of parallelism in dataflow ma-
chines.

3.1 Dataflow Software Pipelining
A consequence of the dataflow nature of ASH is the automatic

exploitation of pipeline parallelism. This phenomenon has been
studied extensively in the dataflow literature under names such as
dataflow software pipelining [46], and loop unraveling [33]. As
the name suggests, this phenomenon is closely related to software
pipelining [3], which is a compiler scheduling algorithm used in
mostly for VLIW processors.

The program in Figure 3 illustrates this phenomenon. Let us
assume that the multiplier implementation is pipelined with five
stages. In Figure 4 we show a few consecutive snapshots of this
circuit as it executes, starting with the initial snapshot in which the
two MERGEs contain the initial values ofi and sum. (We have
implemented a tool that can automatically generate such pictures;
the inputs to the tool are pictures generated by the CASH back-
end and execution traces generated by the execution simulator.) In
the last snapshot (6), the computation ifi has already executed two
iterations, two consecutive values ofi are injected in the multiplier,
while the computation ofsumhas yet to complete its first iteration.
The execution of the multiplier is thus effectively pipelined.

A similar effect can be achieved in a statically scheduled com-
putation by explicitly software pipelining the loop, scheduling the
computation ofi to occur one iteration ahead ofsum. Pipelining
also occurs automatically (i.e., without any compiler intervention)
in superscalar processors if there are enough resources to simul-
taneously process instructions from multiple instances of the loop
body. In practice large loops may not be dynamically pipelined by
a superscalar due to in-order instruction fetch, which can prevent
some iterations from getting ahead.

Maximizing the throughput of a pipelined computation in ASH
requires that the delay of all paths between different strongly con-
nected components in the Pegasus graph be equal. CASH inserts
FIFO elements to achieve this, a transformation closely related to
“pipeline balancing” in static dataflow machines [46] and “slack
matching” in asynchronous circuits [70]. The FIFO elements cor-
respond to the reservation stations in superscalar designs, and to
the rotating registers in software pipelining.

3.2 ASH Versus Superscalar
For comparing ASH with a superscalar we make the following

assumptions: (1) all arithmetic operations have the same latencies
on both computational fabrics; (2)MUXs, MERGEs and Boolean
operations in ASH have latencies proportional to thelog of the
number of inputs; (3)ETA has the same latency as an addition; (4)
memory operations in ASH incur an additional cost for network
arbitration compared to the superscalar; (5) the memory hierarchy
used for both models is identical: an LSQ and a two-level cache
hierarchy2.

The superscalar is a 4-way out-of-order SimpleScalar simula-
tion [21] with the PISA instruction set, usinggcc -O2 2.7.2 as

2For this study we use a very similar LSQ for both ASH and the
superscalar. As future work we are exploring the synthesis of
program-specific LSQ structures.

a compiler. ASH is simulated using a high-level simulator which
is automatically generated by CASH, as shown in Figure 1. We
cannot simulate the execution of libraries in ASH (unless we sup-
ply them to the compiler as source-code), and thus we have in-
strumented SimpleScalar to ignore their execution time, in order to
have a fair comparisons.

Naively one would expect ASH to execute programs strictly faster
than the superscalar (assuming comparable compiler technology)
since it benefits from (a) unlimited parallelism, (b) no resource con-
straints, (c) no instruction fetch/decode/dispatch, and (d) dynamic
scheduling.

Simulating whole programs from SpecInt95 under these assump-
tions results in two programs (099.go and132.ijpeg ) showing
a 25% improvement on ASH, while the other programs are between
10% and 40% slower. The speed-ups on ASH are attributable to
the increased ILP due to the unlimited number of functional units;
(for these benchmarks the instruction cache of the processor did
not seem to be a bottleneck). In the next section we investigate the
slowdowns.

3.3 Superscalar Advantages
In order to understand the advantages of the superscalar proces-

sor we have carried out a detailed analysis of code fragments which
perform especially poorly on ASH. The main tool we have used for
this purpose is thedynamic critical path[43]. In ASH the dynamic
critical path is a sequence oflast-arrival events. An event is “last-
arrival” if it is the one that enables the computation of a node to pro-
ceed. Events correspond to signal transitions on the graph edges.
The dynamic critical path is computed by tracing the edges corre-
sponding to last-arrival events backwards from the last operation
executed. Most often a last-arrival edge is the last input arriving at
an operation. However, for lenient operations (see Section 4.1.2),
the last-arrival edge is the edge enabling the computation of the
output. Sometimes all the inputs may be present but an operation
may be unable to compute because it has not received theacknowl-
edgmentsignal for its previous computation; in this case the ack is
the last-arrival event.

Despite the fact that the superscalar has to time-multiplex a small
number of the computational units, some of the mechanisms it em-
ploys provide clear performance advantages. Below is a brief sum-
mary of our findings.

Branch prediction: the ability of a superscalar to predict branch
outcomes changes radically the structure of the dynamic depen-
dences: for example, a correctly predicted branch isdynamically
independentof the actual branch condition computation. Unless
the in-order commit stage (or some other structural hazard of the
processor pipeline) is a bottleneck, the entire computation of the
branch condition is removed from the critical path.

In contrast, in ASH inter-hyperblock control transfers are never
speculative. Often, theETA control predicate computation is on the
critical path; e.g., when there is no computation to overlap with the
branch condition evaluation, such as in “control-intensive” code.
Such code fragments may be executed faster on a processor.

Some branches, such as those testing exceptional conditions (e.g.,
introduced by the use ofassert statements), are never executed,
and thus the processor branch prediction does a very good job of
handling them. These cases are especially detrimental to ASH.

We note that good branch prediction requires “global” informa-
tion, aggregating information from multiple branches, and would
be very challenging to implement efficiently in Spatial Computa-
tion.

Synchronization: MERGE andMUX operations have a non-zero
cost, and may translate in overhead in ASH. These operations cor-
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Figure 4: Snapshots of the execution of the circuit in Figure 3. The shaded nodes are actively computing; they also indicate the current value
of their output latch. We are assuming a 5-stage pipelined multiplier (each stage shown as [ ]); we assume all nodes in these graphs have the
same latencies, except the Boolean negation, which takes zero time units (our implementation folds the inverter into the destination pipeline
stage). In the last snapshot, two different values of i are simultaneously present in the multiplier pipeline.

respond tolabels in machine code, i.e., control-flow join points,
which have a zero execution cost on a CPU.

This phenomenon is another facet of the tension between syn-
chronization and parallelism. While a processor uses a program
counter to sequence through the program, ASH relies on completely
distributed control. MERGE and MUX operations are very sim-
ple forms ofsynchronization, used to merge several candidate val-
ues for a variable. Thus, the fine-grained parallelism of dataflow
requires additional synchronization. This occurs even when the
dataflow machine is not executed by an interpreter, but is directly
mapped to hardware.

Distance to memory: a superscalar contains a limited number
of load/store execution units (usually two). In flight memory access
instructions have to be dynamically scheduled to access these units,
but once they get hold of a unit they can initiate a memory access
for a constant cost. (For example, the use of an on-processor LSQ
allows write operations to complete in essentially zero time.)

In contrast, on ASH, each memory access operation is synthe-
sized as a distinct hardware entity. Since our current implementa-
tion uses a monolithic memory, ASH requires the use of a network
to connect the operations to memory. One such network implemen-
tation is described in Section 4.1.3. This network requires arbitra-
tion for the limited number of memory ports; the total arbitration
cost isO(log(n)) (n being the number of memory operations in
the program). The wire length of such a network grows asO(

√
n).

The impact of the complexity of the memory network can be
somewhat reduced by fragmenting memory in independent banks
connected by separate networks, as we plan to do in future work.

Note that the asymptotic complexity of the memory itself has
the same behavior: the decoders and selectors for a memory ofn
bits requireO(logn) stages; the worst-case wire length isO(

√
n).

This explains why memory systems grow intrinsically slower than
processors in speed: today’s memories are also bound by wire de-
lays [4]. While ASH addresses some shortcomings of superscalar
processors, it does not directly aim to solve the memory bottleneck
problem; both models of computation attack this problem by trying
to overlap memory stall time with useful computation.

Static vs. dynamic dataflow: in ASH, at most one instance of
an operation may be executing at any given time, because each op-
eration has a single output latch for storing the result. In contrast, a

superscalar processor may have multiple instances of any instruc-
tion in flight at once, because the register renaming mechanism ef-
fectively provides a different storage element for each instance of
an in-flight instruction. The only instruction which cannot be ef-
fectively pipelined without major changes in implementation is the
LOAD: such operations have to wait for the memory access to com-
plete before initiating a new access. A local reorder buffer could be
employed for this purpose, but deviates from the spirit of ASH.

In ASH, loop unrolling and pipelining can sometimes provide
similar results to the full dynamic dataflow model of superscalars,
but are less general, since they are performed statically: we have
seen instances where the CPU dynamic renaming outperformed the
static version of the code for some input set.

Strict procedures: our current implementation of procedures
relies onCALL nodes which are strict; i.e., to initiate a procedure
all inputs to the node must be available. The fact that all inputs
must be present before initiating a call introduces additional syn-
chronization and puts the slowest argument computation on the dy-
namic critical path. When applicable, procedure inlining eliminates
this problem as the procedure call network is specialized to become
simple point-to-point channels.

In contrast, on a superscalar processor, procedure invocation is
decoupled from passing of arguments (which are put into registers
or on the stack) and the call is simply a branch. Thus, the code
computing the procedure arguments does not need to complete be-
fore the procedure body is initiated. In fact, the computation of an
unused procedure argument is never on the critical path.

The issues discussed above seem fundamental to ASH. Other
shortcomings of ASH are attributable to policies in our compiler,
and could be corrected by a more careful implementation.

4. FROM C TO LAYOUT
In this section we describe how Pegasus is translated to asyn-

chronous circuits and we present detailed measurements of the syn-
thesized circuits. We also discuss the reasons for the excellent
power efficiency of our circuits.

4.1 CAB: The CASH Asynchronous Back-end
The asynchronous back-end of CASH translates the Pegasus rep-

resentations into asynchronous circuits. The static dataflow ma-
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Figure 5: Signaling protocol between data producers and con-
sumers.

Figure 6: Control circuitry for a pipeline stage. ∆ is a delay
matched to the computational unit. The block labeled with “=”
is a completion detectionblock, detecting when the register output
has stabilized to a correct value.

chine semantics of Pegasus makes such a translation fairly straight-
forward. More details about this process are available in [107].

4.1.1 Synthesizing Scalar Computations
Pegasus representations could be mapped to asynchronous cir-

cuits in many ways. We have chosen to implement each Pegasus
node as a separate hardware structure. Each IR node is imple-
mented as a pipeline stage, using the micropipeline circuit style,
introduced by Sutherland [98]3. Each pipeline stage contains an
output register which is used to hold the result of the stage com-
putation. Each edge is synthesized as achannelconsisting of three
uni-directional signals as shown in Figure 5.

(1) A data bus, transfers the data from producer to consumer.
(2) A data readywire from producer to consumer indicates when

the data can be safely used by the consumer.
(3) An acknowledgmentwire, from consumer to producer, indi-

cates when the value has been used and the channel is⊥.
This signaling method, called thebundled data protocol, is widely

employed in asynchronous circuits. The control circuitry driving a
pipeline stage is shown in Figure 6. The “C” gate is a Müller C el-
ement [81], which implements the finite-state machine control for
properly alternating data ready and acknowledgment signals. When
there are multiple consumers the data bus is used to broadcast the
value to all of them, and the channel contains one acknowledgment
wire from each consumer. Due to the SSA form of Pegasus, each
channel has a single writer. Therefore, there is no need for arbitra-
tion, making data transfer a lightweight operation.

Perhaps the most important feature of our implementation is the
complete absence of any global control structures. Control is com-
pletely embodied in the handshaking signals—naturally distributed
within the computation. This gives our circuits a very strong data-
path orientation, making them amenable to efficient layout.

4.1.2 Lenient Evaluation
The form of speculative execution employed by Pegasus, which

executes all forward branches simultaneously, alleviates the im-

3Unlike Sutherland’s micropipelines, which used a 2-phase sig-
nalling protocol [12], we use 4-phase signaling, in which each sig-
nal returns to zero before initiating a new computation cycle.

if (x > 0)
y = -x;

else
y = b*x;

*

xb 0

y

!

− >

Figure 7: Sample program fragment and the corresponding Pega-
sus circuit with the static critical path highlighted.

pact of branches, but may be plagued by the problem ofunbal-
anced paths[8], as illustrated in Figure 7: the static critical path
of the entire construct is the longest of the critical paths. If the
short path is executed frequently, the benefits of speculation may be
negated by the cost of the long path. This problem also occurs for
machines which employ predicated execution. Traditionally this
problem is addressed in two ways: (1) using profiling, only hy-
perblocks which ensure that the long path is most often executed at
run-time are predicated, or (2) excluding certain hyperblock topolo-
gies from consideration, disallowing the predication of paths which
differ widely in length.

Because there is no single PC, we can employ a third, and more
elegant solution, in hardware by usingleniency[91] to solve this
problem. By definition, a lenient operation expects all of its in-
puts to arrive eventually, but it can compute its output using only
a subset of its inputs. Lenient operators generate a result as soon
as possible. For example, anAND operation can determine that the
output isfalseas soon as one of its inputs isfalse.4 While the output
can be available before all inputs, our implementation ensures that
a lenient operation sends an acknowledgment only afterall of its in-
puts have been received. To obtain the full benefit of leniency one
also needs to issue early acknowledgments, as suggested in [14].
In the asynchronous circuits literature, leniency was proposed un-
der the name “early evaluation” [85]. Forms of lenient evaluation
have been also been used in the design of arithmetic units for mi-
croprocessors: for example, some multiplier designs may generate
the result very quickly when an input is zero.

MUXes are also implemented leniently: as soon as a selector is
true and the corresponding data is available, aMUX generates its
output. Note that it is crucial for theMUX to be decoded (see Sec-
tion 2.2) in order for this scheme to work efficiently. A result of
leniency is thatthe dynamic critical path is the same as in a non-
speculative implementation. For example, if the multiplication in
Figure 7 is not used, it does not affect the critical path.5

In addition to Booleans and multiplexors, all predicated opera-
tions are lenient in their predicate input. For example, if aLOAD

operation receives afalsepredicate input, it can immediately emit
an arbitrary output, since the actual output is irrelevant. It can-
not, however, output a token until it receives its input token, since
memory dependences are transitively implied. The irrelevant out-

4Lenient evaluation should not be confused with short-circuit eval-
uation: a short-circuit evaluation of anAND always evaluates the
left operand, and if this one istrue, it also evaluates the right one.
However, a lenient evaluation generates afalse result as soon as
either input is known to befalse.
5The multiplier can still be on the critical path because of its late
acknowledgments, which may prevent the next wave of computa-
tion from propagating forward, as described in Section 3.3. This
problem can be alleviated either by using a pipelined multiplier, or
by using early acknowledgements [14].
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Figure 8: Memory access network and implementation of the value
and token forwarding network. The LOAD produces a data value
consumed by the oval node. The STOREnode may depend on the
load (i.e., we have a token edge between the LOAD and the STORE,
shown as a dashed line). The token travels to the root of the tree,
which is a load-store queue (LSQ).

put will be discarded downstream by aMUX or ETA node controlled
by afalsepredicate.6

4.1.3 Memory Access
The most complicated part of the synthesis process is building

the network used by theLOAD and STORE operations to access
memory. Figure 8 illustrates how a load and a dependent store
access memory through this network. Our current implementation
consists of a hierarchy of buses and asynchronous arbiters used to
mediate access to the buses. Memory instructions which are ready
to access memory compete for these buses; the winners of the arbi-
tration inject messages which travel up the hierarchy in a pipelined
fashion. A memory operation can produce a token as soon as its
effect is guaranteed to occur in the right order with respect to the
potentially interfering operations. The network does not guaran-
tee in-order message delivery, so by traveling to the root we main-
tain the invariant that a dependent operation will be issued only
after all operations on which it depends have injected their requests
in the LSQ. The root of the tree is a unique serialization point,
guaranteeing in-order execution of dependent operations. The LSQ
holds the description of the memory operations under execution
until their memory effects are completed; it may also perform dy-
namic disambiguation and act as a small fully-associative cache.
In Section 4.2.2 we discuss some disadvantages of this implemen-
tation. We currently synthesize a very simple load-store queue
(LSQ), which can hold a single operation until its execution com-
pletes.

It is worthwhile to notice that this implementation of the memory
access network is very much in the spirit of ASH, being completely
distributed, composed entirely of pipeline stages, and using only
control localized within each stage; it contains no global signals of
any kind.

4.2 Low-level Evaluation
In this section we present measurements from a detailed low-

level simulation. We synthesize C kernels into ASICs and evaluate
their performance on standard data sets. Since CAB generates syn-
thesizable Verilog, FPGAs could be targeted in principle for eval-
uation. There are two factors that prevent us from doing so: (1)
commercial FPGAs are synchronous devices, and mapping some
of the features of our asynchronous circuits would be very inef-

6The predicated-falseoperation does not need to swing the output
lines, it need only assert thedata readysignal (see Section 4.1.1).
This will decrease the power consumption.

ficient, (2) commercial FPGAs are not optimized for power [47];
they would thus probably negate one of the main advantages of our
implementation scheme, the very low power consumption.

We use kernels from the Mediabench suite [66] to generate cir-
cuits. From each program we select one hot function (see Table 1)
to implement in hardware (the only exception are theg721 bench-
marks, for which the hot function was very small, so we selected
the function and one of its callers, we inlined the callee, unrolled
the resulting loop and substituted references to an array of con-
stants as inline constant values. The same code was used on the
SimpleScalar simulator in comparisons.) The experimental results
presented below are for the entire circuit synthesized by CAB, in-
cluding the memory access network, but excluding the memory it-
self or I/O to the circuit. We report data only for the execution of
each kernel, ignoring the rest of the program; due to long simula-
tion times, we execute each kernel for the first three invocations in
the program and we measure the cumulative values (time, energy,
etc) for all three invocations. We do not estimate the overhead of
invoking and returning from the kernel, since in this work we aim
to understand the behavior of ASH, and not of a whole CPU+ASH
system. Since our current back-end does not support the synthesis
of floating-point computation we had to omit some kernels, such as
the ones from theepic , rasta andmesa benchmarks.

The CAB back-end is used to generate a Verilog representation
of each kernel. A detailed description of our methodology can be
found in [107]. We use a 180nm/2V standard-cell library from
STMicroelectronics, optimized for performance. The structural
Verilog generated by our tool flow is partially technology-mapped
by CAB and partially synthesized with Synopsys Design Com-
piler 2002.05-SP2. The technology-mapped circuits are placed-
and-routed with Silicon Ensemble 5.3 from Cadence. Currently
the placement is handled completely by Silicon Ensemble, oper-
ating on a flat netlist; we expect that CAB can use knowledge of
the circuit structure to automatically generate floor-plans which
can improve our results substantially7. Data collection with the
commercial CAD tools for bothpegwit benchmarks has failed
after placement, so we present pre-placement numbers for these.
(The performance for the other benchmarks is about 15% better
than their pre-placement estimate.) Simulation is performed with
Modeltech Modelsim SE5.7. We assume a perfect L1 cache, with
a 600MHz cycle time. We synthesize a one-element LSQ for ASH.

Compilation time is on the order of tens of seconds for all these
benchmarks, and is thus completely inconsequential compared to
hardware synthesis through the commercial tool-chain (the worst-
case program takes about 30s through CASH, one hour through
synthesis and more than five hours for place-and-route). The code
expansion in terms of lines of code from C to Verilog is a factor
of 200x. All the results in this section are obtained without loop
unrolling, which can increase circuit area and compilation time.

4.2.1 Area
Figure 9 shows the area required for each of these kernels. The

area is broken down into “computation” and “memory tree.” The
memory tree is the area of the arbiter circuits used to mediate access
to memory and of the hierarchical pipelined buses. For reference,
in the same technology a minimal RISC core can be synthesized in
1.3mm2, a 16× 16 multiplier requires 0.1mm2, and a complete P4
processor die, including all caches, has 217mm2. This shows that
while the area of our kernels is sometimes substantial, it is certainly
affordable, especially in future technologies. Normalizing the area

7Good placement and physical optimizations can account for as
much as a factor of 14x in size and 2.3x in performance [36]!
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Benchmark Function Lines

adpcmd adpcmdecoder 80
adpcme adpcmcoder 103
g721d fmult+quan 41
g721e fmult+quan 41
gsmd Short term synthesisfiltering 24
gsme Short term analysisfiltering 45
jpeg d jpeg idct islow 241
jpeg e jpeg fdct islow 144
mpeg2d idctcol 55
mpeg2e dist1 92
pegwit d squareDecrypt 78
pegwit e squareEncrypt 77

Table 1: Embedded benchmark kernels used for the low-level mea-
surements and their size in original (un-processed) source lines of
code. For g721 the function quan was inlined into fmult .

Figure 9: Silicon real-estate in mm2 for each kernel.

versus the object file size, we require on average 0.87mm2/kb of a
gcc-generated MIPS object file.

4.2.2 Execution performance
Figure 10 shows the normalized execution time of each kernel

against a baseline 600MHz4-wide superscalar processor. While we
did not simulate a VLIW, we expect the trends to be similar, since
the superscalar maintains a high IPC for these kernels. The pro-
cessor has the same perfect L1 cache, but a 32-element LSQ. On
average, ASH circuits are 1.33 times slower, but 4 kernels are faster
than on the processor.

Given the unlimited amount of ILP that can be exploited by
ASH, these results are somewhat disappointing. An analysis of
ASH circuits has pointed out that, although these circuits can be
improved in many respects, the main bottleneck of our current de-
sign is the memory access protocol. In our current implementa-
tion, as described in Section 4.1.3, a memory operation does not
release a token until its request has reached memory (i.e., the to-
ken must traverse the network end-to-end in both directions). An
improved construction would allow an operation to (1) inject re-
quests in the network, allowing them to travel out-of-order, and (2)
release the token to the dependent operations immediately. The
network packet can carry enough information to enable the LSQ to
buffer out-of-order requests and to execute the memory operations
in the original program order. This kind of protocol is actually
used by superscalar processors, which inject requests in order in
the load-store queue, and can proceed to issue more memory oper-
ations before the previous ones have completed.

Figure 10: Kernel slowdown compared to a 4-wide issue 600MHz
superscalar processor in 180nm. A value of 1 indicates identical
performance, values bigger than 1 indicate slower circuits on ASH.

Figure 11: Evaluation the impact of an ideal memory interconnec-
tion protocol. The left bar reproduces the data from Figure 10.

To gauge the impact of the memory network on program perfor-
mance, we performed a limit study using a behavioral implemen-
tation of the network in which each stage has zero latency. The
improvement in performance is shown in Figure 11: programs hav-
ing large memory access networks in Figure 9 display significant
improvements (up to 8x forpegwit ) which shows that programs
which perform many memory accesses are bound by the memory
network round-trip time. These numbers are obtained assuming
that both value and token travel very quickly through the network;
in reality, we can only substantially speed-up the token path, so the
performance of a better protocol still has to be evaluated.

In Figure 12 we measure ASH performance using several MIPS
metrics: the bottom bar we labeled MOPS, for millions ofuse-
ful arithmetic operations per second. The incorrectly speculated
arithmetic is accounted for as MOPSspec. Finally, MOPSall in-
cludes “auxiliary” operations, including theMERGE, ETA, MUX ,
COMBINE, pipeline balancing FIFOs, and other overhead opera-
tions. Although speculative execution sometimes dominates useful
work (e.g.,g721 ), on average 1/3 of the executed arithmetic oper-
ations are incorrectly speculated.8 For some programs the control
operations constitute a substantial fraction of the total number of
executed operations. On average our programs sustain 1 GOPS.

8The compiler can control the degree of speculation by varying the
hyperblock construction algorithm; we have not yet explored the
trade-offs involved.
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Figure 12: Computational performance of the ASH Mediabench
kernels, expressed in millions of operations per second (MOPS).

Figure 13: Energy efficiency of the synthesized kernels, expressed
in useful arithmetic operations per nanoJoule.

4.2.3 Power and Energy
The power consumption of our circuits ranges between 5.5mW

(g721 ) and 35.9mW (jpeg d), with an average of 19.3mW. In
contrast, a very low power DSP chip in the same technology draws
about 110mW.

In order to quantify energy efficiency we use the normalized met-
ric proposed by Claasen [29], MOPS/mW, or, equivalently, opera-
tions/nanoJoule. Figure 13 shows how our kernels fare from this
perspective. We count only the useful operations in the MIPS met-
ric, i.e., the bottom bar from Figure 12. The energy efficiency for
CASH systems is between 15 and 280 operations/nJ, with an av-
erage of 52. g721 d and g721 e are outliers because they do
not make any memory accesses, and their implementation is thus
extremely efficient. For comparison Figure 14 shows, on a logarith-
mic scale, the energy efficiency of microprocessors, digital signal
processing, custom hardware circuits from [116], an asynchronous
microprocessor [77], and FPGAs. All these circuits use compara-
ble hardware technologies (180 and 250nm). ASH is three to four
orders of magnitude better than a superscalar microprocessor and
between one and two orders of magnitude better than a DSP.

Figure 15 compares ASH with a 4-wide low-power superscalar
(modeled with Wattch [15], using aggressive clock-gating for power
reduction, and drawing around 5W dynamic power) in terms of
energy-delay [53], a metric which is relatively independent of exe-
cution speed. ASH circuits are between 16 and 3600 times better.

0.01 0.1 1 10 100 1000

Asynchronous microcontroller

Energy Efficiency (MOPS/mW or OP/nJ)

Microprocessors

General−purpose DSP

FPGA

Dedicated hardware

ASH media kernels

Figure 14: Energy efficiency of several computational models us-
ing comparable technologies.

Figure 15: Energy-delay ratio between ASH and superscalar.

The circuits without memory access are again substantially better
(one order of magnitude) than the other.

Power is roughly proportional to the circuit activity; the power
wasted on speculation should be proportional to the number of
speculative operations executed. Currently we believe that we should
negotiate the power-performance trade-off in the direction of ex-
pending more power to increase performance: since power is very
low, some increase in power is acceptable even for a relatively small
increase in performance.

4.2.4 Discussion
There are multiple sources of inefficiency in the implementation

of superscalar processors, which account for the huge difference in
power and energy.

(1) The clock distribution network for a large chip accounts for
up to 50% of the total power budget; while some of this power is
spent on the latches, which exist also in asynchronous implementa-
tions [12], the big clock network and its huge drivers still account
for a substantial fraction of the power.

(2) Most of the pipeline stages in ASH are usually inactive (see
for example Figure 4). Since these circuits are asynchronous, they
only draw static power when inactive, which is very small in a
.18µm technology. While leakage power is a big issue in future
technologies, there are many circuit- and architecture-level tech-
niques [103] that can be applied to reduce its impact in ASH.

(3) On the Pentium 4 die, even excluding caches, all functional
units combined (integer, floating-point and MMX) together take
less than 10% of the chip area. The remaining 90% is devoted
entirely to mechanisms that only support the computation, without
producing “useful” results. From the point of view of the energy
efficiency metric we use, all of this extra activity is pure overhead.
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(4) [77] suggests that more than 70% of the power of the asyn-
chronous Lutonium processor is spent in instruction fetch and de-
code. This shows that there is an inherent overhead forinterpreting
programs encoded in machine-code, which ASH does not have to
pay.

(5) Finally, in a microprocessor, and even in many ASICs, func-
tional units are heavily optimized for speed at the expense of power
and area. Since SC replicates lavishly functional units, the trade-off
has to be biased in the reverse direction.

It has been known that dedicated hardware chips can be vastly
more energy-efficient that processors [116]. But most often the
algorithms implemented in dedicated hardware have a natural high
degree of parallelism. This paper shows for the first time that a
fully automatic tool-chain starting from C programs can generate
results comparable in speed with high-end processors and in power
with custom hardware.

We are confident that further optimizations, including circuit-
level techniques, high-level compiler transformations, a better mem-
ory access protocol, and compiler-guided floor-planning, will sub-
stantially increase ASH’s performance.

5. RELATED WORK
Optimizing compilers. Pegasus is a form of dataflow interme-

diate language, an idea pioneered by Dennis [39]. The crux of
Pegasus is handling memory dependences without excessively in-
hibiting parallelism. The core ideas on how to use tokens to ex-
press fine-grained location-based synchronization were introduced
by Beck, et al. [11]. The explicit representation of memory depen-
dences between program operations has been suggested numerous
times in the literature, e.g., Pingali’s Dependence Flow Graph [83];
or Steensgaard’s adaptation of Value-Dependence Graphs [97].
Other researchers have also explored extending SSA to handle mem-
ory dependences, e.g.,[35, 44, 64, 28, 30, 71, 72]. But none of the
approaches is as simple as ours.

The integration of predication and SSA has also been done in
PSSA [24, 25]. PSSA, however, does not useφ functions and there-
fore loses some of the appealing properties of SSA. Our use of the
hyperblock as a basic optimization unit and our algorithm for com-
puting block and path predicates were inspired by this work.

High-level synthesis. While there is a substantial amount of
research on hardware synthesis from high-level languages, and di-
alects of C and C++, none of it supports C as fully as CASH does.
One major difference between our approach and the vast major-
ity of other efforts is that we use dusty-deck C while most other
projects employ C as a hardware description language (HDL). They
either add constructs (e.g., reactivity, concurrency, and variable bit-
width) to C in order to make it more suitable to expressing hardware
properties, or/and remove constructs (e.g., pointers, dynamic allo-
cation and recursion) that do not correspond to natural hardware
objects, obtaining “Register Transfer C.” Other efforts impose a
strict coding discipline in C in order to obtain a synthesizable pro-
gram. There are numerous research and commercial products using
variants of C as an HDL [80]: Pico from HP [93], Cynlib, origi-
nally from Cynapps, now at Forte Design Systems [88], Cyber from
NEC [109], A| RT builder originally from Frontier Design, now
at Xilinx [59], Scenic/CoCentric from Synopsys [69], N2C from
CoWare [32], compilers for Bach-C (originally based on Occam)
from Sharp [60], OCAPI from IMEC [90], Synopsys’ c2verilog,
originally from C-Level Design [96], Celoxica’s Handel-C com-
piler [31], and Cadence’s ECL (based on C and Esterel) compiler
[65], SpC from Stanford [94] and also [48, 6, 54, 55].

Our goals are most closely related to the “chip-in-a-day” project
from Berkeley [37], but our approach is very different: that project

starts from parallel Statechart descriptions and employs sophisti-
cated hard macros to synthesize synchronous designs with auto-
matic clock gating. In contrast we start from C, use a small library
of standard cells, and build asynchronous circuits.

Reconfigurable computing. A completely different approach
to hardware design is taken in the research on reconfigurable com-
puting, which relies on automatic compilation of C or other high-
level languages to target reconfigurable hardware [112]. Notable
projects are: PRISM II [110], PRISC [84], DISC [113], NAPA
[49], DEFACTO [40], Chimaera [115], OneChip [114], RaPiD [41],
PamDC [102], StreamC [50], WASMII [100], XCC/PACT [23],
PipeRench [51], RAW/Virtual Wires [9], the systems described in
[95] and [78], compilation of Term-Rewriting Systems [58], or syn-
thesis of dataflow graphs [86].

CASH has been influenced by the work of Callahan on the GARP
C compiler [22, 68]. GarpCC is still one of the few systems with
the broad scope of targeting C to a reconfigurable fabric.

None of these approaches targets a true Spatial Computation
model, with completely distributed computation and control.

Dataflow machines.A large number of dataflow machine archi-
tectures have been proposed and built; see for example a survey in
[106]. All of these were interpreters, executing programs described
in a specialized form of machine code. Most of the dataflow ma-
chines were programmed in functional languages, such as VAL and
Id. CASH could in principle be used to target a traditional dataflow
machine. To our knowledge, none of the other efforts to translate C
for execution on dataflow machines (e.g., [105]) reached comple-
tion.

Asynchronous circuit design.Traditionally, asynchronous syn-
thesis has concentrated on synthesizing individual controllers. How-
ever, in the last decade, a number of other approaches have also
explored the synthesis of entire systems. The starting point for
these related synthesis flows is a high-level language (usually an in-
herently parallel one based on Hoare’s Communicating Sequential
Processes [57]) suitable for describing the parallelism of the appli-
cation, e.g., Tangram [104], Balsa [42], OCCAM [79], CHP [76,
101]. With the exception of [76], synthesis tends to follow a two
step approach: the high-level description is translated in a syntax-
directed fashion into an intermediate representation; then, each mod-
ule in the IR is (template-based) technology mapped into gates.
An optional optimization step [27] may be introduced to improve
the performance of the synthesized circuits. In [76], the high-
level specification is decomposed into smaller specifications, some
dataflow and local optimizations techniques are applied, and the re-
sulting low-level specifications are synthesized in a template-based
fashion.

Our approach is somewhat similar to the syntax-directed flows
with three notable differences. First, our input language is a well-
established, imperative, sequential programming language; han-
dling pointers and arrays is central in our approach. Second, the
CASH compiler performs extensive analysis and optimization steps
before generating the intermediate form. Finally, the target imple-
mentation for our intermediate form consists ofpipelinedcircuits,
which naturally increase performance when compared with tradi-
tional syntax-directed approaches.

Spatial Computation. Various models related to Spatial Com-
putation have been investigated by other research efforts: compil-
ing for finite-sized fabrics has been studied by research on systolic
arrays [62], RAW [67], PipeRench [52] and TRIPS [89]. More re-
motely related are efforts such as SmartMemories [75] and Imagine
[87]. Unlimited or virtualized hardware is exploited in proposals
such as SCORE [26], [38], and WaveScalar [99]. Among the latter
efforts, our research is distinguished by the fact that (1) it targets
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purely spatial implementations, without centralized resources and
control and (2) has produced the most detailed end-to-end evalua-
tion of such an architecture.

6. CONCLUSIONS
We have investigated one particular instance of the ISA-less class

of Spatial Computation models, ASH, Application-Specific Hard-
ware. In ASH a software program is translated directly into an
executable hardware form, which has no interpretation layer. The
synthesized hardware closely reflects the program structure—the
definer-user relationships between program operations are trans-
lated directly into point-to-point communication links connecting
arithmetic units. The resulting circuit is completely distributed,
featuring no global communication or broadcast, no global register
files, no associative structures, and using resource arbitration only
for accessing global memory. While the use of a monolithic mem-
ory does not take advantage of the freedom provided by such an ar-
chitecture, it substantially simplifies the completely automatic im-
plementation of C language programs. We have chosen to synthe-
size dynamically self-scheduled circuits, i.e., where computations
are carried out based on availability of data and not according to a
fixed schedule. A natural vehicle for implementing self-scheduled
computations was provided by asynchronous hardware.

A detailed investigation of the run-time behavior of the spatial
structures has shown that their distributed nature forces them to in-
cur non-negligible overheads when handling control-intensive pro-
grams. In contrast, traditional superscalar processors, with their
global structures (such as branch prediction, control speculation
and register renaming), can more efficiently execute control-intensive
code. Since ASH complements the capabilities of traditional mono-
lithic processors, a promising avenue of research is the investiga-
tion of hybrid computation models, coupling a monolithic and dis-
tributed engine.

Circuit-level simulations of ASH have shown that it provides
very good performance when used to implement programs with
high ILP, such as media kernels. The energy efficiency of ASH
is more than one to two orders of magnitude better when com-
pared even to low-power DSP processors and three or more orders
of magnitude better than general purpose superscalar microproces-
sors. Our compilation methodology for ASH indicates that it is
possible to convert even dusty-deck programs written in a high-
level, imperative, sequential language into efficient hardware. We
believe this work is the beginning of a line of research that will
eliminate the designer productivity gap, decrease the power prob-
lem, and allow for the exploitation of the promised massive num-
bers of devices that will become available in future technologies.
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