Spatial Com

Mihai Budiu, Girish Venkataramani, Tiberi

putation

u Chelcea and Seth Copen Goldstein

{mihaib,girish, tibi,seth@cs.cmu.edu
Carnegie Mellon University

ABSTRACT

This paper describes a computer architectBpgtial Computation
(SC), which is based on the translation of high-level language pro-
grams directly into hardware structures. SC program implemen-
tations are completely distributed, with no centralized control. SC
circuits are optimized fawiresat the expense of computation units.

In this paper we investigate a particular implementation of SC:
ASH (Application-Specific Hardware). Under the assumption that
computation is cheaper than communication, ASH replicates com-
putation units to simplify interconnect, building a system which
uses very simple, completely dedicated communication channels.

As a consequence, communication on the datapath never require§jomlnate logic delay

arbitration; the only arbitration required is for accessing memory.
ASH relies on very simple hardware primitives, using no associa-
tive structures, no multiported register files, no scheduling logic, no

broadcast, and no clocks. As a consequence, ASH hardware is fas

and extremely power efficient.

In this work we demonstrate three features of ASH: (1) that such
architectures can be built by automatic compilation of C programs;
(2) that distributed computation is in some respects fundamentally
different from monolithic superscalar processors; and (3) that ASIC

implementations of ASH use three orders of magnitude less energy
compared to high-end superscalar processors, while being on aver-

age only 33% slower in performance (3.5x worst-case).
Categories and Subject Descriptors:B.2.4 arithmetic and logic
cost/performance, B.6.3 automatic synthesis, optimization, simula-
tion B.7.1 algorithms implemented in hardware, B.7.2 simulation,
C.1.3 dataflow architectures, hybrid systems, D.3.2 data-flow lan-
guages, D.3.4 code generation, compilers, optimization

General Terms: Measurement, Performance, Design.

Keywords: spatial computation, dataflow machine, application-
specific hardware, low-power.

INTRODUCTION

The von Neumann computer architecture [108] has proven to be
extremely resilient despite numerous perceived shortcom[ngs [7].

1.

day’s superpipelined, superscalar, out-of-order microprocessors are
amazing achievements.

However, the future scalability of superscalar (and even VLIW)
architectures is questionable. Attempting to increase the pipeline
width of the processor beyond the current four or five instructions
per cycle is difficult since the interconnection networks scale super-
linearly. The register file, instruction issue logic, and pipeline for-
warding networks grow quadratically with issue width, making the
interconnection latency the limiting factof] [2]. This problem is
compounded by the increasing clock rates and shrinking technolo-
gies: currently signal propagation delays on inter-module wires
[56]. Just the distribution of the clock signal
is @ major undertakind 710].

Wire delays are not the only factor in the way of scaling: power
consumption and power density have reached dangerous levels, due
{o increased amounts of speculative execution, increased logic den-
sity and wide issue. Design complexity is yet another limitation:
while the number of available transistors grows by 58% annually,
designer productivity only grows by 219% [1]. This exponentially
increasing productivity gap has been historically covered by em-
ploying larger and larger design and verification teams, but human
resources are economically hard to scale.

The research presented in this paper is aimed directly at these
problems. We explore Spatial Computation, which is a model of
computation optimized for wires. We have previously proposed to
use Spatial Computation for mapping programs to nanoFalrics [51];
in this paper we evaluate the compiler technology we developed for
nanoFabrics on a traditional CMOS substrate. Since the class of cir-
cuits one could call “spatial” is arguably very large, we focus our
attention on a particular set of instances of SC structures, which
we call Application-Specific Hardware (ASH). ASH requires no
clocks, nor any global signals. The core assumption is that com-
putation gates are cheap, and will become even cheaper compared
to the cost of wires (in terms of delay, power and area). ASH is
an extreme point in the space of SC architectures: in ASH compu-
tation structures are never shared, and each program operation is
synthesized as a different functional unit.

We present a complete compiler/CAD tool-chain that bridges

Computer architects have continuously enhanced the structure Ofboth software compilation and microarchitecture. Applications writ-

the central processing unit, taking advantage of Moore’s law. To-

Permission to make digital or hard copies of all or part of this work for

ten in high-level languages are compiled into hardware descrip-
tions. These descriptions can either be loaded onto a reconfigurable
hardware fabric or synthesized directly into circuits. The resulting
circuits use only localized communication, require neither broad-

personal or classroom use is granted without fee provided that copies arecast nor global control, and are self-synchronized. The compiler

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ASPLOS’'040ctober 7-13, 2004, Boston, Massachusetts, USA.

Copyright 2004 ACM 1-58113-804-0/04/001(55.00.

we have developed is automatic, fast, requires no designer interven-

tion, and exploits instruction-level parallelism (ILP) and pipelining.
The novel research contributions described in this paper are:

(1) a compiler tool-chain from ANSI C to asynchronous hardware;

section 2 . 1 CAS H

CASH takes ANSI C as input. CASH represents the input pro-
2.1 gram using Pegasus[16] 17], a dataflow intermediate representation
(IR). The output of CASH is a hardware dataflow machine which
directly executes the input program. Currently CASH generates a

777777777777777777

ez
7l .
| Suif front-end |

EF) 22-23 structural Verilog description of the circuits.
7 5 CASH has a C front-end, based on the Suif 1 compiier|[111]. The
optimize front-end performs some optimizations (including procedure inlin-
%7/// //////M////,' high-level | ., . ing, loop unrolling, call-graph computation, and basic control-flow
é Az simulation optimizations), intraprocedural pointer analysis, and live-variable
|, async back-end] 41 analysis. Then, the front-end translates the low-Suif intermediate
,,,,,,,,,,,,,,,,, representation into Pegasus. Next CASH performs a wealth of op-
1 timizations on this representation, including scalar-, memory- and
commercial CAD Boolean optimizations. Finally, a back-end performs peephole op-
T timizations and generates code.
ASIC Jayout 4.2 The translation of C into hardware is eased by maintaining the
. circuit same memory layout of all program data structures as implemented
simulatio in a classical CPU-based system (the heap structure is practically
identical, but CASH uses less stack space, since it never needs to
Figure 1: Toolflow used for evaluation. The right-hand side indi- spill registers). ASH currently uses a single monolithic memory for
cates the sections in this paper that discuss each of the building- this purpose (see Sectipn 4]1.3). There is nothing intrinsic in Spa-
blocks. tial Computation that mandates the use of a monolithic memory;
on the contrary, using several independent memories (as suggested
local memory for example in [94[19]) would be very beneficial.
’OW_’ég] high-ILP . .
ol cru ASH | computation 2.2 The Pegasus Intermediate Representation
|:| The key technique allowing us to bridge the semantic gap be-
tween imperative languages and asynchronous dataflow is Static
Single Assignment (SSA) [34]. SSA is an IR used for imperative
Memory . . - K R
programs in which each variable is assigned to only once. As such,
it can be seen as a functional progrdin [5]. Pegasus represents the
Figure 2: ASH used in tandem with a processor for implementing scalar part of the computation of C programs as SSA. Due to space
whole applications. The processor is relegated to low-ILP program limitations we only briefly describe Pegasus. See [16, 17] for more
fragments and for executing the operating system. details.

Pegasus seamlessly extends SSA—representing memory depen-
dences, predication, and (forward) speculation in a unified manner.
While other IRs have previously combined some of these aspects,
we believe Pegasus is the first to unify them into a coherent, seman-
tically precise representation.

' A program is represented by a directed graph in which nodes are
(4) a description of a high-level synthesis toolflow that produces opergtiogns and e(?ges indicatg value flow;ganpexample is shown in

e>_<treme|y energy-efficient program implementations: comparable Figure[8. Pegasus leverages technigues used in compilers for pred-
with custom hand-tuned hardware designs, and three orders of Magsea1e execution machines[74] by collecting multiple basic blocks

nitude b_ett(_ar than supefscalar processors, into one hyperblocBeach hyperblock is transformed into straight-
®) th? firstimplementation of a C compiler that can target dataflow line code through the use of predication, using techniques similar
machines. to PSSA [25]. Instead of SSA-nodes, within hyperblocks Pega-
sus uses explicit decoded multiplexas(x) nodes (one example

2. COMPILING C TO HARDWARE is given in Figure[]J7). A decodesiux hasn data inputs anch

This section presents our compilation methods as embodied in predicates. The data inputs are the reaching definitions.MLhe
the CASH compiler (Compiler for ASH). The structure of CASH, predicates correspond to path predicates in PSSA; each predicate
and its place within a complete synthesis tool-flow are illustrated in selects one corresponding data input. The predicates of\eaxh
Figure[l, which also shows the organization of this paper. are guaranteed to be mutually disjoint (i.e., the predicatesrzee

The circuits generated by CASH cannot handle system calls. hot encodell CASH uses thespresso [L3] Boolean optimizer
For translating whole application we assume first that hardware- to simplify the predicate computations.
software partitioning is performed, and that part of the application Speculation is introduced by predicate promotion [73]: the pred-
is executed on a traditional processor (e.g., I1/0), while the rest is icates that guard instructions without side-effects are weakened to
mapped to hardware, as shown in FigHre 2. The processor and thebecometrue, i.e., these instructions are executed unconditionally
hardware have access to the same global memory space, and therence a hyperblock is entered. Predication and speculation are thus
is some mechanism to maintain a coherent view of memory. Cross-core constructs in Pegasus. The former is used for translating con-
ing the hardware-software interface can be hidden by employing trol-flow constructs into dataflow; the latter for reducing the crit-
a stub compiler, which encapsulates the information transmitted
across the interface, as we have proposedin [20], effectively per- *A hyperblock is a portion of the program control-flow graph hav-
forming Remote Procedure Calls across the hw/sw interface. ing a single entry point and possibly multiple exits.

(2) a qualitative comparison of Spatial Computation architectures
and superscalar processors;

(3) a circuit-level evaluation of the synthesized circuits on C pro-
gram kernels from the Mediabench suite;

data flow through memory. An operation with memory side-effects
must collect tokens from all its potentially conflicting predecessors
(e.g., asTorefollowing a set ofLoADS). TheCOMBINE operator

is used for this purposecOMBINE has multiple token inputs and

a single token output; it generates an output after it receives all its
inputs. It has been noted for the Value Dependence Graph represen-
tation [97] that such token networks can be interpreted as SSA for
memory, where the OMBINE operator corresponds tasafunction.
Tokens encode both true-, output- and anti-dependences, and are
“may” dependences. We have devised new algorithms for remov-
ing redundant memory accesses which exploit predicates and token

int squares()

inti =0,
sum = 0;

for (;i<10;i++)

sum += i*; edges in conceri[18,119]. As we show later, tokens are also explic-
return sum; itly synthesized as hardware signals, so theybmth compile-time
} and run-timeconstructs.
Currently the compiler is purely static, i.e., uses no profiling in-
formation. There is no reason that profiling cannot be incorporated
eta in our tool-chain. Sectiof 4-1.2 explains why profiling is less criti-
t cal for CASH than for traditional ILP compilers92].
re
3 2.3 The Dataflow Semantics of Pegasus
) In [L8] we have given a precise and concise operational seman-
Figure 3: C program and its representation comprising three hy- tics for all Pegasus constructs. At run-time each edge of the graph
perblocks; each hyperblock is shown as a numbered rectangle. The either holds a value or i$ (“empty”). An operation begins com-
dotted lines represent predicate values. (This figure omits the token puting once all of its required inputs are available. It latches the
edges used for memory synchronization.) newly computed value when its outputis The computation con-

sumes the input values (setting the input edges)tand produces
an output value. This semantics is the one of a static dataflow ma-

icality of control-dependence5s[63]. They effectively increase the chine (i.e., each edge can hold a single value at one time).

exposed ILP. Note thatux nodes are natural speculation squash- ~ The precise semantics is useful for reasoning about the correct-

ing points, discarding all of their data inputs correspondinigse ness of compiler optimizations and is a precise specification for

predicates (i.e., computed on mis-speculated paths). compiler back-ends. Currently CASH has three back-ends: (1) a
Hyperblocks are stitched together into a dataflow graph repre- graph-drawing back-end, which generates drawings iddtelan-

senting an entire procedure by creating dataflow edges connectingduage [45], such as in Figufe 3; (2) a simulation back-end, which

each hyperblock to its successors. Each variable live at the end ofgenerates an interpreter of the graph structure (used for the analysis

a hyperblock is forwarded through @TA node [82] (also called in Section[B); and (3) the asynchronous circuits Verilog back-end,

a “gateway”). EAs are shown as triang|es pointing down in our described in SeCtiOE.l (Used for the evaluation in Seﬂion 4)

figures. EA nodes have two inputs—a value and a predicate— :

and one output. When the predicate evaluatéss® theETA node 2.4 Compller Status

moves the input value to the output; when the predicate evaluatesto The core of CASH handles all of ANSI C excéphgjmp , al-

false the input value and the predicate are simply consumed, gener-loca , and functions with a variable number of arguments. While

ating no output. A hyperblock with multiple predecessors receives the latter two constructs are relatively easy to integrate, handling

control from one of several different points; inter-hyperblock join ongjmp is substantially more difficult. Strictly speaking, C does

points are represented MERGE nodes, shown as triangles point- not have exceptions [51] p. 200, and our compiler does not handle

ing up. them. Recursion is handled in exactly the same way as in software:
Figure[® shows a function that usesas an induction variable CASH allocates stack frames for saving and restoring the live local

andsumto accumulate the sum of the squares oOn the right is variables around the recursive call. As an optimization, CASH uses

the program's Pegasus representation, which consists of three hythe call-graph to detect possibly recursive calls, and avoids saving

perblocks. Hyperblock 1 initializesum andi to 0. Hyperblock locals for all non-recursive calls.

2 represents the loop; it contains tWERGE nodes, one for each The asynchronous back-end is newer, and, therefore, somewhat

of the loop-carried valuesum andi . Hyperblock 3 is the func- less complete: it does not yet handle procedure calls and floating-

tion epilog, containing just thRETURN. Back-edges within a hy- point computations. The latter can be easily handled with a suitable
perblock denote loop-carried values; in this example there are two [P core containing implementations of floating-point arithmetic.

such edges in hyperb|ock 2; back-edges a|Ways conneetam CUrrently we handle some procedure calls by Inllnlng Handling
aMERGE node. function pointers requires an on-chip network, as the call will need
Memory accesses are represented through expl@ito and to dynamically route the procedure arguments to the callee circuit

sToREnodes. These and other operations with side-effects (e.g., dependent on the run-time value of the pointer.
CALL andpivisioN—which may generate exceptions) also have a

predicate input: if the predicate falsg the operation is notexe- 3. ASH VERSUS SUPERSCALAR

cuted. In our figures, predicate values are shown as dotted lines. This section is devoted to a comparison of the properties of ASH
‘The compiler adds dependence edges, cadleen edgesto ex- and superscalar processors. The comparison is performed by ex-

plicitly synchronize operations whose side-effects may not com- gcyting whole programs using timing-accurate simulators. Since

mute. Operations withemory side-effec(80AD, STORE CALL, there are many parameters, one should see this comparison as a

andrReTURN) all have a token input. Token edges explicitly encode |imit study. This study can also be interpreted as being the first

head-to-head comparison between an unlimited-resource static data compiler. ASH is simulated using a high-level simulator which
flow machine and a superscalar processor. Interestingly enough,is automatically generated by CASH, as shown in Figure 1. We
despite the limited resources of the superscalar, some of its capa-cannot simulate the execution of libraries in ASH (unless we sup-
bilities give it a substantial edge over the static dataflow model, as ply them to the compiler as source-code), and thus we have in-
shown below. These results may be a partial explanation of the strumented SimpleScalar to ignore their execution time, in order to
demise of the dataflow model of computation, which was a very have a fair comparisons.

popular research subject in the seventies and eighties. But first we Naively one would expect ASH to execute programs strictly faster
will briefly discuss the main source of parallelism in dataflow ma- than the superscalar (assuming comparable compiler technology)

chines. since it benefits from (a) unlimited parallelism, (b) no resource con-
) .. straints, (c) no instruction fetch/decode/dispatch, and (d) dynamic
3.1 Dataflow Software Pipelining scheduling.

A consequence of the dataflow nature of ASH is the automatic ~ Simulating whole programs from SpecInt95 under these assump-
exploitation of pipeline parallelism. This phenomenon has been tions results in two program899.go and132.ijpeg) showing
studied extensively in the dataflow literature under names such asa 25% improvement on ASH, while the other programs are between
dataflow software pipelining j46], and loop unravelirig][33]. As 10% and 40% slower. The speed-ups on ASH are attributable to
the name suggests, this phenomenon is closely related to softwardghe increased ILP due to the unlimited number of functional units;
pipelining [3], which is a compiler scheduling algorithm used in (for these benchmarks the instruction cache of the processor did
mostly for VLIW processors. not seem to be a bottleneck). In the next section we investigate the

The program in Figurg] 3 illustrates this phenomenon. Let us slowdowns.
assume that the multiplier implementation is pipelined with five

stages. In Figurg 4 we show a few consecutive snapshots of this3,3 Supersca|ar Advantages

circuit as it execute_s, Staf?'r?g with the |n_|t|al snapshot in which the In order to understand the advantages of the superscalar proces-
two MERGES contain the initial values df andsum. (We have

. >) sor we have carried out a detailed analysis of code fragments which
implemented a tool that can automatically generate such pictures;

the inputs to the tool are pictures generated by the CASH back- perform especially poorly on ASH. The main tool we have used for

) . . this purpose is thdynamic critical patif&3]. In ASH the dynamic
end and execution traces generated by the execution simulator.) In purp Y patifas] y

the last hot (6). th tation I read ted t critical path is a sequence lzfst-arrival events An event is “last-
the last snapsho ®), € computation fhas already ExeCuted tWo /a7 it it is the one that enables the computation of a node to pro-
iterations, two consecutive valuesiofre injected in the multiplier,

. . e) ceed. Events correspond to signal transitions on the graph edges.
while the cqmputatlon atu_m_ha; yetto complete |t§ flrs_t iteration. The dynamic critical path is computed by tracing the edges corre-
Th; e_xe_(iutlor;f oftthe m;ltlplnre]_r IS tzu_s EﬁetCtt'.Ve?I' plpillndeoll. d sponding to last-arrival events backwards from the last operation

similar efiect can be achieved In a statically Scheauléd Com- oy o0 teq. Most often a last-arrival edge is the last input arriving at
putation t_ay explicitly software _p|pel_|n|ng the loop, schedl_Jll_ng the an operation. However, for lenient operations (see Sefion 4.1.2),
compuration oi to occur one |ter.at|on ahead s'f’”ﬁ- Pllpellnlng. the last-arrival edge is the edge enabling the computation of the
also occurs automatically (|_.e., without any compiler mterventlc_)n) output. Sometimes all the inputs may be present but an operation
in superscalar processors if there are enough resources to S|mul-rnay be unable to compute because it has not receiveatirowl-
taneously process instructions from multiple instances of the loop

) . A edgmensignal for its previous computation; in this case the ack is
body. In practice large loops may not be dynamically pipelined by the last-arrival event
a supgrsca!ar due to |n-qrder instruction fetch, which can prevent Despite the fact that the superscalar has to time-multiplex a small
some iterations from getting ahead.

Maximizing the th hout of a pibelined tation in ASH number of the computational units, some of the mechanisms it em-
aximizing the througnput of a pipelined computation in ploys provide clear performance advantages. Below is a brief sum-
requires that the delay of all paths between different strongly con-

ted ts in the P hb | CASH i tmary of our findings.

Eﬁzcc? lcomp?nfn N 'r:'_ € tht_agaSlth gr?p f[a_ equla. v rel t'n(ﬁr S Branch prediction: the ability of a superscalar to predict branch
“pipeIii:?:gsciﬁ;’cir:e:tZticIZ’a?afﬁcvsrﬁggﬁrlloe-r; C[fes]e;‘geglzcko outcomes changes radically the structure of the dynamic depen-
B P — : dences: for example, a correctly predicted branctlyisamicall

matching” in asynchronous circuits [70]. The FIFO elements cor- P y P Y

: . . . independentf the actual branch condition computation. Unless
respond_to the_reser_/atlon stat|on_s n _superscalar designs, and %he in-order commit stage (or some other structural hazard of the
the rotating registers in software pipelining.

processor pipeline) is a bottleneck, the entire computation of the
3.2 ASH Versus Superscalar branch condition is removed from the critical path.
' In contrast, in ASH inter-hyperblock control transfers are never

For comparing ASH with a superscalar we make the following - gpecyjative. Often, theta control predicate computation is on the
assumptions: (1) all arithmetic operations have the same latencies,jiica path; e.g., when there is no computation to overlap with the

on both computational fabrics; (3uxs, MERGEs and Boolean anch condition evaluation, such as in “control-intensive” code.
operations in ASH have latencies proportional to Iag of the Such code fragments may be executed faster on a processor.

number of inputs; (3ETA has the same latency as an addition; (4) gome pranches, such as those testing exceptional conditions (e.g.,
memory operations in ASH incur an additional cost for network introduced by the use @fssert statements), are never executed,

arbitration compared to the superscalar; (5) the memory hierarchy 5 ths the processor branch prediction does a very good job of
used for both models is identical: an LSQ and a two-level cache nqjing them. These cases are especially detrimental to ASH.
hierarchy . . . We note that good branch prediction requires “global” informa-

_ The superscalar is a 4-way out-of-order SimpleScalar simula- jon aggregating information from multiple branches, and would
tion [21] with the PISA instruction set, usingee -02 2.7.28S g yery challenging to implement efficiently in Spatial Computa-
2For this study we use a very similar LSQ for both ASH and the 0N

superscalar. As future work we are exploring the synthesis of ~ Synchronization: MERGE andMuXx operations have a non-zero
program-specific LSQ structures. cost, and may translate in overhead in ASH. These operations cor-

CPRQP) d’i ()
¥ ,

VAN

LN
\\sum',/ wm e \sum N sum

(4) ret (5) ret (6) _ret

\%“(;xi%/

(1) ret) ret

Figure 4: Snapshots of the execution of the circuit in Figure J. The shaded nodes are actively computing; they also indicate the current value
of their output latch. We are assuming a 5-stage pipelined multiplier (each stage shown as []); we assume all nodes in these graphs have the
same latencies, except the Boolean negation, which takes zero time units (our implementation folds the inverter into the destination pipeline
stage). In the last snapshot, two different values of i are simultaneously present in the multiplier pipeline.

respond tdabelsin machine code, i.e., control-flow join points, superscalar processor may have multiple instances of any instruc-
which have a zero execution cost on a CPU. tion in flight at once, because the register renaming mechanism ef-
This phenomenon is another facet of the tension between syn-fectively provides a different storage element for each instance of
chronization and parallelism. While a processor uses a programan in-flight instruction. The only instruction which cannot be ef-
counter to sequence through the program, ASH relies on completelyfectively pipelined without major changes in implementation is the
distributed control. MRGE and MUX operations are very sim- LOAD: such operations have to wait for the memory access to com-
ple forms ofsynchronizationused to merge several candidate val- plete before initiating a new access. A local reorder buffer could be
ues for a variable. Thus, the fine-grained parallelism of dataflow employed for this purpose, but deviates from the spirit of ASH.
requires additional synchronization. This occurs even when the In ASH, loop unrolling and pipelining can sometimes provide
dataflow machine is not executed by an interpreter, but is directly similar results to the full dynamic dataflow model of superscalars,
mapped to hardware. but are less general, since they are performed statically: we have
Distance to memory: a superscalar contains a limited number seen instances where the CPU dynamic renaming outperformed the
of load/store execution units (usually two). In flight memory access static version of the code for some input set.
instructions have to be dynamically scheduled to access these units, Strict procedures: our current implementation of procedures
but once they get hold of a unit they can initiate a memory access relies oncALL nodes which are strict; i.e., to initiate a procedure
for a constant cost. (For example, the use of an on-processor LSQall inputs to the node must be available. The fact that all inputs
allows write operations to complete in essentially zero time.) must be present before initiating a call introduces additional syn-
In contrast, on ASH, each memory access operation is synthe-chronization and puts the slowest argument computation on the dy-
sized as a distinct hardware entity. Since our current implementa- namic critical path. When applicable, procedure inlining eliminates
tion uses a monolithic memory, ASH requires the use of a network this problem as the procedure call network is specialized to become
to connect the operations to memory. One such network implemen- simple point-to-point channels.
tation is described in Sectiqn Z]1.3. This network requires arbitra- In contrast, on a superscalar processor, procedure invocation is
tion for the limited number of memory ports; the total arbitration decoupled from passing of arguments (which are put into registers
cost isO(log(n)) (n being the number of memory operations in or on the stack) and the call is simply a branch. Thus, the code
the program). The wire length of such a network grow®ag/n). computing the procedure arguments does not need to complete be-
The impact of the complexity of the memory network can be fore the procedure body is initiated. In fact, the computation of an
somewhat reduced by fragmenting memory in independent banksunused procedure argument is never on the critical path.
connected by separate networks, as we plan to do in future work. The issues discussed above seem fundamental to ASH. Other
Note that the asymptotic complexity of the memory itself has shortcomings of ASH are attributable to policies in our compiler,
the same behavior: the decoders and selectors for a memary of and could be corrected by a more careful implementation.
bits requireO (log n) stages; the worst-case wire lengtt0ig,/n).
This explains why memory systems grow intrinsically slowerthan 4. FROM C TO LAYOUT
processors i.n speed: foday’s memories are alsq bound by wire de- In this section we describe how Pegasus is translated to asyn-
lays [4]. While ASH addresses some shortcomings of SUperS(:"’Il"’lrchronous circuits and we present detailed measurements of the syn-

proct:):assgrbs,tlﬁdoej TOt ?lrectly aturtr_l to s;)tlvekt?hg membcler bgttlten_eck thesized circuits. We also discuss the reasons for the excellent
problem; both models of computation attack this problem by trying e efficiency of our circuits.

to overlap memory stall time with useful computation.
Static vs. dynamic dataflow:in ASH, at most one instance of 4.1 CAB: The CASH Asynchronous Back-end

an operation may be executing at any given time, because €ach op- ¢ agynchronous back-end of CASH translates the Pegasus rep-
eration has a single output latch for storing the result. In contrast, & resentations into asynchronous circuits. The static dataflow ma-

register

k
- if (x> 0)
source ready p.| dest y = X
&» else
y = b*x;
Figure 5: Signaling protocol between data producers and con-
sumers.
< — ackyy Figure 7: Sample program fragment and the corresponding Pega-
rdy,, [A | b sus circuit with the static critical path highlighted.
acky, rdyou

= pact of branches, but may be plagued by the problerantfal-
5 anced pathgg], as illustrated in Figurg] 7: the static critical path
_,D } > data,,, of the entire construct is the longest of the critical paths. If the

datay short path is executed frequently, the benefits of speculation may be
negated by the cost of the long path. This problem also occurs for
machines which employ predicated execution. Traditionally this
problem is addressed in two ways: (1) using profiling, only hy-
perblocks which ensure that the long path is most often executed at
run-time are predicated, or (2) excluding certain hyperblock topolo-
gies from consideration, disallowing the predication of paths which
differ widely in length.

chine semantics of Pegasus makes such a translation fairly straight- Because there is no single PC, we can employ a third, and more

Figure 6: Control circuitry for a pipeline stage. A is a delay
matched to the computational unit. The block labeled with “="
is a completion detectiomblock, detecting when the register output
has stabilized to a correct value.

forward. More details about this process are availablg’in [107]. elegant solution, in hardware by usitgniency[g1] to solve this
.. . problem. By definition, a lenient operation expects all of its in-
4.1.1 Synthesizing Scalar Computations puts to arrive eventually, but it can compute its output using only

Pegasus representations could be mapped to asynchronous cira subset of its inputs. Lenient operators generate a result as soon
cuits in many ways. We have chosen to implement each Pegasusas possible. For example, anD operation can determine that the
node as a separate hardware structure. Each IR node is imple-output isfalseas soon as one of its inputsfigsef] While the output
mented as a pipeline stage, using the micropipeline circuit style, can be available before all inputs, our implementation ensures that
introduced by Sutherland [98] Each pipeline stage contains an a lenient operation sends an acknowledgment only aftef its in-
output register which is used to hold the result of the stage com- puts have been received. To obtain the full benefit of leniency one
putation. Each edge is synthesized ahannelconsisting of three also needs to issue early acknowledgments, as suggestéd in [14].
uni-directional signals as shown in Figuie 5. In the asynchronous circuits literature, leniency was proposed un-

(1) A data bustransfers the data from producer to consumer. der the name “early evaluation”[85]. Forms of lenient evaluation

(2) A data readywire from producer to consumer indicates when have been also been used in the design of arithmetic units for mi-

the data can be safely used by the consumer. croprocessors: for example, some multiplier designs may generate
(3) An acknowledgmenwire, from consumer to producer, indi- the result very quickly when an input is zero.
cates when the value has been used and the channel is Muxes are also implemented leniently: as soon as a selector is

This signaling method, called theindled data protocols widely true and the corresponding data is availabley@ax generates its
employed in asynchronous circuits. The control circuitry driving a output. Note that it is crucial for theux to be decoded (see Sec-
pipeline stage is shown in Figufe 6. The “C” gate is &lidr C el- tion [Z22) in order for this scheme to work efficiently. A result of
ement [811], which implements the finite-state machine control for leniency is thathe dynamic critical path is the same as in a non-
properly alternating data ready and acknowledgment signals. Whenspeculative implementatioror example, if the multiplication in
there are multiple consumers the data bus is used to broadcast th&igure[J is not used, it does not affect the critical ath.
value to all of them, and the channel contains one acknowledgment In addition to Booleans and multiplexors, all predicated opera-
wire from each consumer. Due to the SSA form of Pegasus, eachtions are lenient in their predicate input. For example, ifcaD
channel has a single writer. Therefore, there is no need for arbitra- operation receives falsepredicate input, it can immediately emit
tion, making data transfer a lightweight operation. an arbitrary output, since the actual output is irrelevant. It can-

Perhaps the most important feature of our implementation is the not, however, output a token until it receives its input token, since
complete absence of any global control structures. Control is com- memory dependences are transitively implied. The irrelevant out-
pletely embodied in the handshaking signals—naturally distributed
within the computation. This gives our circuits a very strong data-
path orientation, making them amenable to efficient layout.

4Lenient evaluation should not be confused with short-circuit eval-
uation: a short-circuit evaluation of axnND always evaluates the
41.2 Lenient Evaluation left operand, and if this one isue, it also evaluates the right one.
ald However, a lenient evaluation generatefalse result as soon as
The form of speculative execution employed by Pegasus, which eitherinput is known to bealse
executes all forward branches simultaneously, alleviates the im- *The multiplier can still be on the critical path because of its late
acknowledgments, which may prevent the next wave of computa-
SUnlike Sutherland’s micropipelines, which used a 2-phase sig- tion from propagating forward, as described in Secfioh 3.3. This
nalling protocol [IR], we use 4-phase signaling, in which each sig- problem can be alleviated either by using a pipelined multiplier, or
nal returns to zero before initiating a new computation cycle. by using early acknowledgemen(s]|[14].

synthesized by CAB - ficient, (2) commercial FPGAs are not optimized for power [47];
pipeline

stages they would thus probably negate one of the main advantages of our
----- implementation scheme, the very low power consumption.

e B We use kernels from the Mediabench suitg [66] to generate cir-
dependent lokog e § cuits. From each program we select one hot function (see Table 1)
ST | path ool 2 . ‘ ,
sore "B =—=r4 § s to implement in hardware (the only exception aredfi@1 bench-
foaded = marks, for which the hot function was very small, so we selected
use B the function and one of its callers, we inlined the callee, unrolled
the resulting loop and substituted references to an array of con-
ﬁ_J

stants as inline constant values. The same code was used on the
SimpleScalar simulator in comparisons.) The experimental results
presented below are for the entire circuit synthesized by CAB, in-
cluding the memory access network, but excluding the memory it-
self or I/O to the circuit. We report data only for the execution of
each kernel, ignoring the rest of the program; due to long simula-
tion times, we execute each kernel for the first three invocations in
the program and we measure the cumulative values (time, energy,
etc) for all three invocations. We do not estimate the overhead of
invoking and returning from the kernel, since in this work we aim
put will be discarded downstream by x or ETA node controlled to understand the behavior of ASH, and not of a whole CPU+ASH

memory access network

Figure 8: Memory access network and implementation of the value
and token forwarding network. The LOAD produces a data value
consumed by the oval node. The STOREnode may depend on the
load (i.e., we have a token edge between the LOAD and the STORE
shown as a dashed line). The token travels to the root of the tree,
which is a load-store queue (LSQ).

by afalsepredicate] system. Since our current back-end does not support the synthesis
of floating-point computation we had to omit some kernels, such as
4.1.3 Memory Access the ones from thepic ,rasta andmesabenchmarks.

The most complicated part of the synthesis process is building The CAB back-end is used to generate a Verilog representation
the network used by theoAD and STORE operations to access of each kernel. A detailed description of our methodology can be
memory. Figure]]8 illustrates how a load and a dependent storefound in [I07]. We use a 180nm/2V standard-cell library from
access memory through this network. Our current implementation STMicroelectronics, optimized for performance. The structural
consists of a hierarchy of buses and asynchronous arbiters used td/erilog generated by our tool flow is partially technology-mapped
mediate access to the buses. Memory instructions which are readyby CAB and partially synthesized with Synopsys Design Com-
to access memory compete for these buses; the winners of the arbipiler 2002.05-SP2. The technology-mapped circuits are placed-
tration inject messages which travel up the hierarchy in a pipelined and-routed with Silicon Ensemble 5.3 from Cadence. Currently
fashion. A memory operation can produce a token as soon as itsthe placement is handled completely by Silicon Ensemble, oper-
effect is guaranteed to occur in the right order with respect to the ating on a flat netlist; we expect that CAB can use knowledge of
potentially interfering operations. The network does not guaran- the circuit structure to automatically generate floor-plans which
tee in-order message delivery, so by traveling to the root we main- can improve our results substantidllyData collection with the
tain the invariant that a dependent operation will be issued only commercial CAD tools for botipegwit benchmarks has failed
after all operations on which it depends have injected their requestsafter placement, so we present pre-placement numbers for these.
in the LSQ. The root of the tree is a unique serialization point, (The performance for the other benchmarks is about 15% better
guaranteeing in-order execution of dependent operations. The LSQthan their pre-placement estimate.) Simulation is performed with
holds the description of the memory operations under execution Modeltech Modelsim SE5.7. We assume a perfect L1 cache, with
until their memory effects are completed; it may also perform dy- a 600MHz cycle time. We synthesize a one-element LSQ for ASH.
namic disambiguation and act as a small fully-associative cache. Compilation time is on the order of tens of seconds for all these
In Section[@.2]2 we discuss some disadvantages of this implemen-benchmarks, and is thus completely inconsequential compared to
tation. We currently synthesize a very simple load-store queue hardware synthesis through the commercial tool-chain (the worst-
(LSQ), which can hold a single operation until its execution com- case program takes about 30s through CASH, one hour through
pletes. synthesis and more than five hours for place-and-route). The code

It is worthwhile to notice that this implementation of the memory expansion in terms of lines of code from C to Verilog is a factor
access network is very much in the spirit of ASH, being completely of 200x. All the results in this section are obtained without loop
distributed, composed entirely of pipeline stages, and using only unrolling, which can increase circuit area and compilation time.
control localized within each stage; it contains no global signals of
any kind. 4.2.1 Area

: Figure[® shows the area required for each of these kernels. The

4.2 .LOW__leveI Evaluation) area is broken down into “computation” and “memory tree.” The

In this section we present measurements from a detailed low- memory tree is the area of the arbiter circuits used to mediate access
their performance on standard data sets. Since CAB generates syni the same technology a minimal RISC core can be synthesized in
thesizable Verilog, FPGAs could be targeted in principle for eval- 1 3mn?, a 16x 16 multiplier requires 0.1m# and a complete P4
uation. There are two factors that prevent us from doing so: (1) processor die, including all caches, has 217miFhis shows that
commercial FPGAs are synchronous devices, and mapping someyhile the area of our kernels is sometimes substantial, it is certainly
of the features of our asynchronous circuits would be very inef- affordable, especially in future technologies. Normalizing the area
®The predicatedalseoperation does not need to swing the output

lines, it need only assert thomta readysignal (see Sectiofi4.1.1). 'Good placement and physical optimizations can account for as
This will decrease the power consumption. much as a factor of 14x in size and 2.3x in performance [36]!

Benchmark [Function | Lines

I

3.65

adpcmd adpcmdecoder 80 a5 4 = 2
adpcme adpcmcoder 103
g721d fmult+quan 41 3+
g72le fmult+quan 41 5
gsmd Shortterm synthesisfiltering 24 52'5 218]
gsme Shortterm.analysisfiltering 45 % o 200 M
peg.d peg.idctislow 241 3 168
pege pegfdctisiow 144 E1 5 143 143 139
mpeg2d dctcol 55 11
mpeg2e distl 92 11572 o7
pegwitd squareDecrypt 78 05 | 054 049
pegwite squareEncrypt 77 H

0 T T T T

PNEFSITSERSEP CEP SRS SR S S

Table 1: Embedded benchmark kernels used for the low-level mea- I A I A A v L

surements and their size in original (un-processed) source lines of

code. For 721 the function quan was inlined into fmult Figure 10: Kernel slowdown compared to a 4-wide issue 600MHz

superscalar processor in 180nm. A value of 1 indicates identical

7 performance, values bigger than 1 indicate slower circuits on ASH.
B Mem access
6 1@ Datapath 4.00
Omeasured -
5 3.50 mideal]
5 300
£ g 3.00 1
4 o
E @
s g 250 .
@ 2.00 -
>
21 c
£ 150 1
2
i H 3 1.00
o
oﬂ‘ ﬁﬁﬂﬂ ‘ ‘ ‘ ‘ ‘ 0.50 -
IS IR SRS IS SNSRI SIS IS BN 5 N SR,
S g & d s ¢ ¢ & EE LS 0.00 -
> e K+
PPN AN PS S N A A &
q,&o %&a qﬁ/ &q/ Qg,@ § ¢ E @on_. @Q& ng«* Q°§

Figure 9: Silicon real-estate in mm?® for each kernel.
Figure 11: Evaluation the impact of an ideal memory interconnec-

versus the object file size, we require on average 0.8%kinof a tion protocol. The left bar reproduces the data from Figure [[0Q.
gcc-generated MIPS object file.

. To gauge the impact of the memory network on program perfor-

4.2.2 Execution performance mance, we performed a limit study using a behavioral implemen-

Figure[ID shows the normalized execution time of each kernel tation of the network in which each stage has zero latency. The
against a baseline 600MHz4-wide superscalar processor. While weimprovement in performance is shown in Fig{ire 11: programs hav-
did not simulate a VLIW, we expect the trends to be similar, since ing large memory access networks in Figfire 9 display significant
the superscalar maintains a high IPC for these kernels. The pro-improvements (up to 8x fgpegwit) which shows that programs
cessor has the same perfect L1 cache, but a 32-element LSQ. Ormwhich perform many memory accesses are bound by the memory
average, ASH circuits are 1.33 times slower, but 4 kernels are fasternetwork round-trip time. These numbers are obtained assuming
than on the processor. that both value and token travel very quickly through the network;

Given the unlimited amount of ILP that can be exploited by in reality, we can only substantially speed-up the token path, so the
ASH, these results are somewhat disappointing. An analysis of performance of a better protocol still has to be evaluated.
ASH circuits has pointed out that, although these circuits can be In Figure[IR we measure ASH performance using several MIPS
improved in many respects, the main bottleneck of our current de- metrics: the bottom bar we labeled MOPS, for millionsuste-
sign is the memory access protocol. In our current implementa- ful arithmetic operations per second. The incorrectly speculated
tion, as described in Sectign 411.3, a memory operation does notarithmetic is accounted for as MOPSspec. Finally, MOPSall in-
release a token until its request has reached memory (i.e., the tocludes “auxiliary” operations, including th@ERGE, ETA, MUX,
ken must traverse the network end-to-end in both directions). An coMBINE, pipeline balancing FIFOs, and other overhead opera-
improved construction would allow an operation to (1) inject re- tions. Although speculative execution sometimes dominates useful
quests in the network, allowing them to travel out-of-order, and (2) work (e.g.,g721), on average 1/3 of the executed arithmetic oper-
release the token to the dependent operations immediately. Theations are incorrectly speculatBd=or some programs the control
network packet can carry enough information to enable the LSQ to operations constitute a substantial fraction of the total number of
buffer out-of-order requests and to execute the memory operationsexecuted operations. On average our programs sustain 1 GOPS.
in the original program order. This kind of protocol is actually
used by superscalar processors, which inject requests in order indthe compiler can control the degree of speculation by varying the
the load-store queue, and can proceed to issue more memory operhyperblock construction algorithm; we have not yet explored the
ations before the previous ones have completed. trade-offs involved.

8000
OMOPSall Dedicated hardware ¢ >
7000 B MOPSspec| : P I
BMOPS ASH media kernels ¢ _
g 6000 - Asynchronous microcontroller ¢ >
3 FPGA C—
5 5000 1
-3 _ General-purpose DSP C—)
1]
S 4000 - .
= Microprocessors (uu—)
©
Q 41
§ 8000 I 001 01 1 10 001008
é’ 2000 1 I Energy Efficiency (MOPS/mW or OP/nJ)
1000 + Figure 14: Energy efficiency of several computational models us-
0 ‘ HHmm ‘ ing comparable technologies.
ISR N BSOS NN S S B N ,,9
q,b&& '»&0& & @ O . . &Q@q @Q@ca &S“ Q@@ 10000 -
. . . k= m [
Figure 12: Computational performance of the ASH Mediabench 31
kernels, expressed in millions of operations per second (MOPS). g 000
% - —
100 279 279 e
> 100 -
90 -
3
80 E ,>.
> 70 e 10/
B =
g 60 w
=2 53 52
o 50 49 1 T T T T T
§ 40 ad 39 6‘9 @9 \/b 2 @/b 6\9 Q/b Q? r7,/b Q2 &/b @9 &
2 34 F &M ¢ FHFLS S
%ao_iii s fv&fb&qqqq\\é?(&&&
27 1515 Figure 15: Energy-delay ratio between ASH and superscalar.
10 H H
’ . 5 o b e N . The circuits without memory access are again substantially better
NS NS 7 z h 7R & H
SIS ° (one order of magnitude) than the other.
Power is roughly proportional to the circuit activity; the power
Figure 13: Energy efficiency of the synthesized kernels, expressed wasted on speculation should be proportional to the number of
in useful arithmetic operations per nanoJoule. speculative operations executed. Currently we believe that we should

negotiate the power-performance trade-off in the direction of ex-
pending more power to increase performance: since power is very

4.2.3 Powerand Energy o low, some increase in power is acceptable even for a relatively small
The power consumption of our circuits ranges between 5.5mW jncrease in performance.

(9721) and 35.9mW jpeg _d), with an average of 19.3mW. In
contrast, a very low power DSP chip in the same technology draws
about 110mW. 4.2.4 Discussion

In order to quantify energy efficiency we use the normalized met- There are multiple sources of inefficiency in the implementation
ric proposed by Claasef [29], MOPS/mW, or, equivalently, opera- of superscalar processors, which account for the huge difference in
tions/nanoJoule. Figure]1l3 shows how our kernels fare from this power and energy.
perspective. We count only the useful operations in the MIPS met- (1) The clock distribution network for a large chip accounts for
ric, i.e., the bottom bar from Figufe]12. The energy efficiency for yp to 50% of the total power budget; while some of this power is
CASH systems is between 15 and 280 operations/nJ, with an av-spent on the latches, which exist also in asynchronous implementa-
erage of 52.9721 _d andg721 e are outliers because they do tjons [12], the big clock network and its huge drivers still account
not make any memory accesses, and their implementation is thusfor a substantial fraction of the power.
extremely efficient. For comparison Figure 14 shows, on alogarith- (2) Most of the pipeline stages in ASH are usually inactive (see
mic scale, the energy efficiency of microprocessors, digital signal for example Figurg4). Since these circuits are asynchronous, they
processing, custom hardware circuits frim[116], an asynchronousonly draw static power when inactive, which is very small in a
microprocessor[77], and FPGAs. All these circuits use compara- 18,m technology. While leakage power is a big issue in future
ble hardware technologies (180 and 250nm). ASH is three to four technologies, there are many circuit- and architecture-level tech-

orders of magnitude better than a superscalar microprocessor andﬂques [10B] that can be applied to reduce its impact in ASH.
between one and two orders of magnitude better than a DSP. (3) On the Pentium 4 die, even excluding caches, all functional
Figure[Ip compares ASH with a 4-wide low-power superscalar ynits combined (integer, floating-point and MMX) together take
(modeled with Wattch15], using aggressive clock-gating for power |ess than 10% of the chip area. The remaining 90% is devoted
reduction, and drawing around 5W dynamic power) in terms of entirely to mechanisms that only support the computation, without

energy-delay[[33], a metric which is relatively independent of exe- producing “useful” results. From the point of view of the energy
cution speed. ASH circuits are between 16 and 3600 times better.efficiency metric we use, all of this extra activity is pure overhead.

(4) [71] suggests that more than 70% of the power of the asyn- starts from parallel Statechart descriptions and employs sophisti-
chronous Lutonium processor is spent in instruction fetch and de- cated hard macros to synthesize synchronous designs with auto-

code. This shows that there is an inherent overheaitferpreting matic clock gating. In contrast we start from C, use a small library
programs encoded in machine-code, which ASH does not have toof standard cells, and build asynchronous circuits.
pay. Reconfigurable computing. A completely different approach

(5) Finally, in a microprocessor, and even in many ASICs, func- to hardware design is taken in the research on reconfigurable com-
tional units are heavily optimized for speed at the expense of power puting, which relies on automatic compilation of C or other high-
and area. Since SC replicates lavishly functional units, the trade-off level languages to target reconfigurable hardware| [112]. Notable
has to be biased in the reverse direction. projects are: PRISM II[[110], PRISC[84], DISC[113], NAPA

It has been known that dedicated hardware chips can be vastly[#9], DEFACTO [40], Chimaerg[115], OneChip[114], RaP|D|[41],
more energy-efficient that processofs J116]. But most often the PamDC [102], StreamC [50], WASMIITID0], XCC/PACT 23],
algorithms implemented in dedicated hardware have a natural high PipeRench[[§1], RAW/Virtual Wires9], the systems described in
degree of parallelism. This paper shows for the first time that a [95] and [78], compilation of Term-Rewriting Systems|[58], or syn-
fully automatic tool-chain starting from C programs can generate thesis of dataflow graph5[86].
results comparable in speed with high-end processors and in power CASH has been influenced by the work of Callahan on the GARP
with custom hardware. C compiler [22,[68]. GarpCC is still one of the few systems with

We are confident that further optimizations, including circuit- the broad scope of targeting C to a reconfigurable fabric.
level techniques, high-level compiler transformations, a better mem- None of these approaches targets a true Spatial Computation
ory access protocol, and compiler-guided floor-planning, will sub- model, with completely distributed computation and control.

stantially increase ASH’s performance. Dataflow machines.A large number of dataflow machine archi-
tectures have been proposed and built; see for example a survey in
5. RELATED WORK [LOB]. All of these were interpreters, executing programs described

Optimizing compilers. Peqasus is a form of dataflow interme- in a specialized form of machine code. Most of the dataflow ma-
diatcleo Iangugge a?] ideé pi(?neered by Denfiis [39]. The crux of chines were programmed in functional languages, such as VAL and
4 g g ' . . 1d. CASH could in principle be used to target a traditional dataflow
Pegasus is han_dllng memory d_ependences without excessively "M machine. To our kr?owlegge none of the c?ther efforts to translate C
h|b|t|ﬂg_ parall(_ellsm. Th? core ideas on hov_v to_ use toke_ns to ex- for execution on dataflow machines (e.d.,]105]) reached comple-
press fine-grained location-based synchronization were |ntroducedti0n
by Beck, et al. [I1]. The explicit rgpresentatlon of memory depen- Asynchronous circuit design.Traditionally, asynchronous syn-
dences between program operations has been suggested UMeTO R esis has concentrated on synthesizing individual controllers. How-
times in the literature, e.g., Pingali's Dependence Flow Graph [83]; ever, in the last decade, a number of other approaches ha\'/e also
or Steensgaard’s adaptation of Value-Dependence Graphs [97]. ! !

Other researchers have also explored extending SSA to handle me gxplored the synthesis of entire systems. The starting point for
P g Mhese related synthesis flows is a high-level language (usually an in-

ory dependences, e.(1.[35] 44, 64, [28,[30[71, 72]. But none of the) SO .
approaches is as simple as ours. herently pa[allel one based on anre S Commumgatmg Sequentlgl
Processeg [57]) suitable for describing the parallelism of the appli-

The integration of predication and SSA has also been done in~__ .. -
PSSA [Z4 25] PSSAphowever does not gdanctions and there- cation, e.g., Tangrani[104], Balsa[42], OCCAM][79], CHP|[76,
s ' ! T01]. With the exception of[[76], synthesis tends to follow a two

fore loses some of the appealing properties of SSA. Our use of thestep approach: the high-level description is translated in a syntax-

hyperblock as a basic optimization unit and our algorithm for com- ~. o . i N
uting block and path predicates were inspired by this work. dlreg:ted fashlqn into an intermediate representation; then, each mod-
P ule in the IR is (template-based) technology mapped into gates.

High-level synthesis. While there is a substantial amount of An optional optimization ster(Tp7] may be introduced to improve
research on hardware synthesis from high-level languages, and di- P P Rl y P

alects of C and C+-+ none of i supports C as full as CASH does. (5 PECEREE o o 2 RSB, ST, 0 8 O
One major difference between our approach and the vast major- P P P '

ity of other efforts is that we use dusty-deck C while most other dataflow and local optimizations techniques are applied, and the re-

projects employ C as a hardware description language (HDL). They fs:sltrlwri](?nlow_level specifications are synthesized in a template-based
either add constructs (e.g., reactivity, concurrency, and variable bit- our é roach is somewhat similar to the svntax-directed flows

width) to C in order to make it more suitable to expressing hardware ith th PP table diff First . tyl) I

properties, or/and remove constructs (e.g., pointers, dynamic allo-"! ree notable diterences. FIrst, our input language 1S a we

cation and recursion) that do not correspond to natural hardwareSﬁ:lab“i?ri(l’rs'rgﬁzrztrly;’Ssiiqcueenrltrgl iﬁrgg:a;wmrlggclﬁ nglé?:%?\;d h{ahrg
objects, obtaining “Register Transfer C.” Other efforts impose a 9p Y pp : :

strict coding discipline in C in order to obtain a synthesizable pro- CASH compiler performs extensive analysis and optimization steps

gram. There are numerous research and commercial products usini]emre _generating_the inter_mediate form. _F‘”"ﬁ!“y' _the ta_rge@ imple-
variaﬁts of C as an HDLIT80]: Pico from HIP]93], Cynlib, origi- entation for our intermediate form consistspigbelinedcircuits,

nally from Cynapps, now at Forte Design Systeffis [88], Cyber from v_vhich naturally increase performance when compared with tradi-
NEC [109], A RT builder originally from Frontier Design, now tional syntax-directed approaches.

s i (8, ScenciCaCenir rom Synopes 9], N2C fom - bl Compuiation, o padel eted ¢ Sl Con.
CoWare [3R], compilers for Bach-C (originally based on Occam) p 9 y : P

o) ; ing for finite-sized fabrics has been studied by research on systolic
from Sharp [60], OCAPI from IMEC|[[90], Synopsys’ c2verilog, . - ~
originally fFr)ohw]C-Level Design[[96] Cel]oxic);’s l[l)—h'zt/ndel-c con%- arrays [62], RAW [67], PipeRencii[52] and TR!Pb [89]. More re-
piler [31], and Cadence’s ECL (based on C and Esterel) compiler motely related are efforts such as SmartMemoifigs [75] and Imagine
(58] Spé from Stanford[94] and als5 148, 6] 54, 55] [B4]. Unlimited or virtualized hardware is exploited in proposals
<y - | (A S B i] . =T T Ay
Our goals are most closely related to the “chip-in-a-day” project such as SCORE[26], [38], and WaveScalar [99]. Among the latter

from Berkeley [37], but our approach is very different: that project efforts, our research is distinguished by the fact that (1) it targets

10

purely spatial implementations, without centralized resources and
control and (2) has produced the most detailed end-to-end evalua-
tion of such an architecture.

[2

3

[4

6. CONCLUSIONS

We have investigated one particular instance of the ISA-less class
of Spatial Computation models, ASH, Application-Specific Hard-
ware. In ASH a software program is translated directly into an
executable hardware form, which has no interpretation layer. The
synthesized hardware closely reflects the program structure—the
definer-user relationships between program operations are trans-
lated directly into point-to-point communication links connecting
arithmetic units. The resulting circuit is completely distributed,
featuring no global communication or broadcast, no global register
files, no associative structures, and using resource arbitration only
for accessing global memory. While the use of a monolithic mem-
ory does not take advantage of the freedom provided by such an ar-
chitecture, it substantially simplifies the completely automatic im-
plementation of C language programs. We have chosen to synthe-
size dynamically self-scheduled circuits, i.e., where computations
are carried out based on availability of data and not according to a 12
fixed schedule. A natural vehicle for implementing self-scheduled
computations was provided by asynchronous hardware.

A detailed investigation of the run-time behavior of the spatial
structures has shown that their distributed nature forces them to in-
cur non-negligible overheads when handling control-intensive pro-
grams. In contrast, traditional superscalar processors, with their
global structures (such as branch prediction, control speculation
and register renaming), can more efficiently execute control-intensive14]
code. Since ASH complements the capabilities of traditional mono-
lithic processors, a promising avenue of research is the investiga- [15
tion of hybrid computation models, coupling a monolithic and dis-

5

6

[7

8

[9

(10]

=
=

(13]

tributed engine. [16]
Circuit-level simulations of ASH have shown that it provides
very good performance when used to implement programs with 7]

high ILP, such as media kernels. The energy efficiency of ASH
is more than one to two orders of magnitude better when com-
pared even to low-power DSP processors and three or more orders

of magnitude better than general purpose superscalar microproces- 18]
sors. Our compilation methodology for ASH indicates that it is
possible to convert even dusty-deck programs written in a high- 6]

level, imperative, sequential language into efficient hardware. We
believe this work is the beginning of a line of research that will

eliminate the designer productivity gap, decrease the power prob- [20]
lem, and allow for the exploitation of the promised massive num-
bers of devices that will become available in future technologies.
[21]
7. ACKNOWLEDGEMENTS
This research is funded in part by the National Science Founda- [22]

tion under Grants No. CCR-9876248 and CCR-0205523 by DARPA
under contracts MDA972-01-03-0005 and N000140110659 and by
the SRC. The procedure inlining Suif pass was written by Tim
Callahan. The loop unrolling pass was written by Todd Mowry.
Some optimizations were implemented by Pedro Artigas. We thank
Dan Vogel for help with scripting and benchmark management. Fi-
nally, we wish to thank the many reviewers for their helpful com-
ments.

(23]

(24]
(25]

8. REFERENCES

[1] International technology roadmap for semiconductors (ITRS).
http://public.itrs.net/Files/19981A_Roadmap/Design.pdf, 1999.

[26]

11

V. Agarwal, H.S. Murukkathampoondi, S.W. Keckler, and D.C. Burger. Clock
rate versus IPC: The end of the road for conventional microarchitectures. In
International Symposium on Computer Architecture (ISGAhe 2000.

Vicki H. Allan, Reese B. Jones, Randal M. Lee, and Stephen J. Allan. Software
pipelining. ACM Computing Survey87(3):367-432, September 1995.
Bharadwaj S Amrutur and Mark A Horowitz. Speed and power scaling of
SRAMSs.|EEE Journal of Solid State Circuit85(2):175-185, February 2000.
Andrew W. Appel. SSA is functional programming. ACM SIGPLAN Notices,
April 1998.

Guido Arnout. C for system level design. Design, Automation and Test in
Europe (DATE)pages 384-387, Munich, Germany, March 1999.

Arvind and Robert A. lannucci. A critique of multiprocessing von Neumann
style. InInternational Symposium on Computer Architecture (IS@apes
426-436. IEEE Computer Society Press, 1983.

David I. August, Wen mei W. Hwu, and Scott A. Mahlke. A framework for
balancing control flow and predication. limternational Symposium on
Computer Architecture (ISCAPecember 1997.

Jonathan Babb, Martin Rinard, Csaba Andras Moritz, Walter Lee, Matthew
Frank Rajeev Barua, and Saman Amarasinghe. Parallelizing applications into
silicon. InIEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM)1999.

Daniel W. Bailey and Bradley J. Benschneider. Clocking design and analysis
for a 600-MHz Alpha microprocessdEEE Journal of Solid-State Circuits
33(11):1627, November 1998.

Micah Beck, Richard Johnson, and Keshav Pingali. From control flow to data
flow. Journal of Parallel and Distributed Computin2:118-129, 1991.

Kees van Berkel and Martin Rem. VLSI programming of asynchronous
circuits for low power. In Graham Birtwistle and Al Davis, editors,
Asynchronous Digital Circuit DesigiWorkshops in Computing, pages
152-210. Springer Verlag, 1995. summary at

www.cse.ttu.edu.tw/ cheng/courses/soc/S02/AsyncSoc08.ppt; also Nat.Lab.
Technical Note Nr. UR 005/94, Philips Research Laboratories, Eindhoven, the
Netherlands.

R. Brayton, A. Sangiovanni-Vincentelli, G. Hachtel, and C. McMulliogic
Minimization Algorithms for Digital CircuitsKluwer Academic Publishers,
Boston, MA, 1984.

C.F. Brej and J.D. Garside. Early output logic using anti-tokens. In
International Workshop on Logic Synthegisges 302—-309, May 2003.

David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: a framework
for architectural-level power analysis and optimizationdnternational
Symposium on Computer Architecture (ISQ#8ges 83—-94. ACM Press, 2000.
Mihai Budiu. Spatial ComputationPhD thesis, Carnegie Mellon University,
Computer Science Department, December 2003. Technical report
CMU-CS-03-217.

Mihai Budiu and Seth Copen Goldstein. Compiling application-specific
hardware. Innternational Conference on Field Programmable Logic and
Applications (FPL) pages 853-863, Montpellier (La Grande-Motte), France,
September 2002.

Mihai Budiu and Seth Copen Goldstein. Optimizing memory accesses for
spatial computation. linternational ACM/IEEE Symposium on Code
Generation and Optimization (CGQ)ages 216—227, San Francisco, CA,
March 23-26 2003.

Mihai Budiu and Seth Copen Goldstein. Inter-iteration scalar replacement in
the presence of conditional control-flow. Technical Report CMU-CS-04-103,
Carnegie Mellon University, Department of Computer Science, 2004.

Mihai Budiu, Mahim Mishra, Ashwin Bharambe, and Seth Copen Goldstein.
Peer-to-peer hardware-software interfaces for reconfigurable fabriEE
Symposium on Field-Programmable Custom Computing Machines (FCCM)
pages 57-66, Napa Valley, CA, April 2002.

Doug Burger and Todd M. Austin. The SimpleScalar tool set, version 2.0. In
Computer Architecture Newsolume 25, pages 13-25. ACM SIGARCH, June
1997.

Timothy J. Callahan and John Wawrzynek. Instruction level parallelism for
reconfigurable computing. In Hartenstein and Keevallik, editoternational
Conference on Field Programmable Logic and Applications (FRbjume

1482 ofLecture Notes in Computer Sciendallinin, Estonia, September

1998. Springer-Verlag.

Jdgo M. P. Cardoso and Markus Weinhardt. PXPP-VC: A C compiler with
temporal partitioning for the PACT-XPP architecturelternational
Conference on Field Programmable Logic and Applications (FPL)
Montpellier (La Grande-Motte), France, September 2002.

Lori Carter, Beth Simon, Brad Calder, Larry Carter, and Jeanne Ferrante.
Predicated static single assignmentlriternational Conference on Parallel
Architectures and Compilation Techniques (PACGIgtober 1999.

Lori Carter, Beth Simon, Brad Calder, Larry Carter, and Jeanne Ferrante. Path
analysis and renaming for predicated instruction schedulimigrnational
Journal of Parallel Programming, special issu28(6), 2000.

Eylon Caspi, Michael Chu, Randy Huang, Joseph Yeh, Yury Markovskiy,
André DeHon, and John Wawrzynek. Stream computations organized for
reconfigurable execution (SCORE): Introduction and tutorialntarnational

[27

[28

[29

[30

)
=

[32

133

[34

135

136

[37]

[38

(39]

[40]

[41

[42]

[43

[44

(49]

[46

[47

[48

[49

[51

Conference on Field Programmable Logic and Applications (FREerture
Notes in Computer Science. Springer Verlag, 2000.

Tiberiu Chelcea and Steven M. Nowick. Resynthesis and peephole
transformations for the optimization of large-scale asynchronous systems. In
DAC, pages 405-410, New York, June 10-14 2002. ACM Press.

Fred Chow, Raymond Lo, Shin-Ming Liu, Sun Chan, and Mark Streich.
Effective representation of aliases and indirect memory operations in SSA
form. In International Conference on Compiler Construction (Cgages
253-257, April 1996.

T.A.C.M. Claasen. High speed: not the only way to exploit the intrinsic
computational power of silicon. IFEEE International Solid-State Circuits
Conferencepages 22-25, San Francisco, CA, 1999. IEEE Catalog Number:
99CH36278.

Keith D. Cooper and Li Xu. An efficient static analysis algorithm to detect
redundant memory operations.\IWorkshop on Memory Systems Performance
(MSP '02) Berlin, Germany, June 2002.

Celoxica Corporation. Handel-C language reference manual, 2003.
CoWare, Inc. Flexible platform-based design with the CoWare N2C design
system, October 2000.

David E. Culler and Arvind. Resource requirements of dataflow programs. In
International Symposium on Computer Architecture (IS@apes 141-150,
1988.

R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
computing static single assignment form and the control dependence graph.
ACM Transactions on Programming Languages and Systems (TOPLAS)
13(4):451-490, 1991.

Ron Cytron and Reid Gershbein. Efficient accommodation of may-alias
information in SSA form. IPACM SIGPLAN Conference on Programming
Language Design and Implementation (PLOixges 36—-45. ACM Press,
1993.

W. J. Dally and A. Chang. The role of custom design in ASIC chip®esign
Automation Conference (DAQ)os Angeles, CA, June 2000.

W. R. Davis, N. Zhang, K. Camera, D. Markovic, T. Smilkstein, M. J. Ammer,
E. Yeo, S. Augsburger, B. Nikolic, and R. W. Brodersen. A design
environment for high throughput, low power dedicated signal processing
systemslEEE Journal of Solid-State Circuit87(3):420-431, March 2002.
André DeHon. Very large scale spatial computingThird International
Conference on Unconventional Models of Computat2fi92.

Jack B. Dennis. First version of a data flow procedure languadeedture

Notes in Computer Science 19: Programming Sympaogiaiges 362—-376.
Springer-Verlag: Berlin, New York, 1974.

Pedro Diniz, Mary Hall, Joonseok Park, Byoungro So, and Heidi Ziegler.

Bridging the gap between compilation and synthesis in the DEFACTO system.

In Workshop on Languages and Compilers for Parallel Computing (LCPC)
2001.

Carl Ebeling, Darren C. Cronquist, Paul Franklin, Jason Secosky, and
Stefan G. Berg. Mapping applications to the RaPiD configurable architecture.
In IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM), 1997.

D. Edwards and A. Bardsley. Balsa: An asynchronous hardware synthesis
languageThe Computer J45(1):12-18, 2002.

Brian Fields, Rastislav BAK, and Mark D.Hill. Slack: Maximizing
performance under technological constraintdnternational Symposium on
Computer Architecture (ISCApages 47-58, 2002.

David Mark GallaghetMemory Disambiguation to Facilitate
Instruction-Level Parallelism CompilatiofPhD thesis, Graduate College of
the University of lllinois at Urbana-Champaign, 1995.

Emden Gansner and Stephen North. An open graph visualization system and
its applications to software engineerir@pftware Practice And Experience
1(5), 1999. http://www.research.att.com/swi/tools/graphviz.

Guang R. GadA Pipelined Code Mapping Scheme for Static Data Flow
ComputersPhD thesis, MIT Laboratory for Computer Science, 1986.
Varghese George, Hui Zhang, and Jan Rabaey. The design of a low energy
FPGA. Ininternational Symposium on Low-Power Design (ISLPHi2ges
188-193. ACM Press, 1999.

A. Ghosh, J. Kunkel, and S. Liao. Hardware synthesis from C/C+Belsign,
Automation and Test in Europe (DATPRges 384-387, Munich, Germany,
March 1999.

M. Gokhale and A. Marks. Automatic synthesis of parallel programs targeted
to dynamically reconfigurable logic arrays. In W. Moore and W. Luk, editors,
International Conference on Field Programmable Logic and Applications
(FPL), pages 399-408, Oxford, England, August 1995. Springer.

M. Gokhale, J. Stone, J. Arnold, and M. Kalinowski. Stream-oriented FPGA
computing in the Streams-C high level languagd HRE Symposium on
Field-Programmable Custom Computing Machines (FCOp&lges 49-56,
2000.

Seth Copen Goldstein and Mihai Budiu. NanoFabrics: Spatial computing
using molecular electronics. International Symposium on Computer
Architecture (ISCA)pages 178-189, &eborg, Sweden, 2001.

12

(52]

(53]

(54]

(58]

[56]
(57]

(58]

[59]

(60]

(61]

(62]
(63]

(64]

(65]

(66]

(67]

(68]

(69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

Seth Copen Goldstein, Herman Schmit, Matthew Moe, Mihai Budiu, Srihari
Cadambi, R. Reed Taylor, and Ronald Laufer. PipeRench: a coprocessor for
streaming multimedia acceleration.lliternational Symposium on Computer
Architecture (ISCA)pages 28-39, Atlanta, GA, 1999.

R. Gonzalez and M. Horowitz. Supply and threshold voltage scaling for low
power CMOSIEEE Journal of Solid-State Circuit82(8), August 1997.

Sumit Gupta, Nick Savoiu, Nikil Dutt, Rajesh Gupta, Alex Nicolau, Timothy
Kam, Michael Kishinevsky, and Shai Rotem. Coordinated transformations for
high-level synthesis of high performance microprocessor block3ebign
Automation Conference (DA(ages 898—-903. ACM Press, 2002.

Sumit Gupta, Nick Savoiu, Sunwoo Kim, Nikil D. Dutt, Rajesh K. Gupta, and
Alexandru Nicolau. Speculation techniques for high level synthesis of control
intensive designs. IDesign Automation Conference (DA@pges 269-272,
2001.

R. Ho, K. Mai, and M. Horowitz. The future of wirelEEEE Journa)
89(4):490-504, April 2001.

Hoare. Communicating sequential processe€.IA. A. Hoare and C. B.

Jones (Ed.), Essays in Computing Science, Prentice Ha89.

James C. Hoe and Arvind. Synthesis of operation-centric hardware
descriptions. INEEE/ACM International Conference on Computer-aided
design (ICCAD)San Jose, California, November 2000.

Doug Johnson. Programming a Xilinx FPGA in “CXcell Quarterly Journal
34,1999.

Andrew Kay, Toshio Nomura, Akihisa Yamada, Koichi Nishida, Ryoji
Sakurai, and Takashi Kambe. Hardware synthesis with Bach systdEEH
International Symposium on Circuits and Systems (ISCA&ando, 1999.

Brian W. Kernighan and Dennis M. Ritchi€he C Programming Language
Software Series. Prentice Hall, 2 edition, 1988.

H. T. Kung. Why systolic architecture$EEE Computer15(1):37-46, 1982.
Monica S. Lam and Robert P. Wilson. Limits of control flow on parallelism. In
International Symposium on Computer Architecture (ISQAP2.

Christopher Lapkowski and Laurie J. Hendren. Extended SSA numbering:
Introducing SSA properties to languages with multi-level pointerthén1998
International Conference on Compiler Constructienlume 1383 ot.ecture
Notes in Computer Sciengeages 128-143, March 1998.

Luciano Lavagno and Ellen Sentovich. ECL: A specification environment for
system-level design. IBesign Automation Conference (DA@pges

511-516, New Orleans, LA, June 1999.

Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith.
MediaBench: a tool for evaluating and synthesizing multimedia and
communications systems. IREE/ACM International Symposium on
Microarchitecture (MICRO)pages 330-335, 1997.

Walter Lee, Rajeev Barua, Matthew Frank, Devabhaktuni Srikrishna, Jonathan
Babb, Vivek Sarkar, and Saman Amarasinghe. Space-time scheduling of
instruction-level parallelism on a Raw machinelrternational Conference

on Architectural Support for Programming Languages and Operating Systems
(ASPLOS)pages 46-57, 1998.

Yanbing Li, Tim Callahan, Ervan Darnell, Randolph Harr, Uday Kurkure, and
Jon Stockwood. Hardware-software co-design of embedded reconfigurable
architectures. liDesign Automation Conference (DAQPO0O.

Stan Liao, Steven W. K. Tjiang, and Rajesh Gupta. An efficient
implementation of reactivity for modeling hardware in the Scenic design
environment. IrDesign Automation Conference (DA@pges 70-75, 1997.
Andrew Matthew Lines. Pipelined asynchronous circuits. Master's thesis,
California Institute of Technology, Computer Science Department, 1995.
CS-TR-95-21.

Raymond Lo, Fred Chow, Robert Kennedy, Shin-Ming Liu, and Peng Tu.
Register promotion by sparse partial redundancy elimination of loads and
stores. INPACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI)pages 26—-37. ACM Press, 1998.

John Lu and Keith D. Cooper. Register promotion in C program8QM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), pages 308-319. ACM Press, 1997.

Scott A. Mahlke, Richard E. Hauk, James E. McCormick, David I. August,
and Wen mei W. Hwu. A comparison of full and partial predicated execution
support for ILP processors. International Symposium on Computer
Architecture (ISCA)pages 138-149, Santa Margherita Ligure, Italy, May
1995. ACM.

Scott A. Mahlke, David C. Lin, William Y. Chen, Richard E. Hank, and

Roger A. Bringmann. Effective compiler support for predicated execution
using the hyperblock. Imternational Symposium on Computer Architecture
(ISCA) pages 45-54, Dec 1992.

Ken Mai, Tim Paaske, Nuwan Jayasena, Ron Ho, William J. Dally, and Mark
Horowitz. Smart memories: A modular reconfigurable architecture. In
International Symposium on Computer Architecture (ISQAhe 2000.

A. J. Martin. Programming in VLSI: From communicating processes to
delay-insensitive circuits. In C. A. R. Hoare, editbgvelopments in
Concurrency and CommunicatiodT Year of Programming Series, pages
1-64. Addison-Wesley, 1990.

[77]

(83

[84

185

186

(88

(89

[90]

(o1

[92

(93]

[94]

[95

[96

Alain J. Martin, Mika Nystrm, Karl Papadantonakis, Paul I. Penzes, Piyush
Prakash, Catherine G. Wong, Jonathan Chang, Kevin S. Ko, Benjamin Lee,
Elaine Ou, James Pugh, Eino-Ville Talvala, James T. Tong, and Ahmet Tura.
The Lutonium: A sub-nanojoule asynchronous 8051 microcontroller. In

International Symposium on Advanced Research in Asynchronous Circuits and

Systems (ASYNQYlay 2003.

Tsutomu Maruyama and Tsutomu Hoshino. A C to HDL compiler for pipeline
processing on FPGAs. IiEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM2000.

D. May. OCCAM.SIGPLAN Noticesl8(4):69-79, May 1983.

Giovanni De Micheli. Hardware synthesis from C/C++ modelDésign,
Automation and Test in Europe (DATBJunich, Germany, 1999.

David E. Muller and W. S. Bartky. A theory of asynchronous circuits. In
International Symposium on the Theory of Switching Functipages

204-243, 1959.

Karl J. Ottenstein, Robert A. Ballance, and Arthur B. Maccabe. The program
dependence web: a representation supporting control-, data-, and
demand-driven interpretation of imperative language&\@M SIGPLAN
Conference on Programming Language Design and Implementation (PLDI)
pages 257-271, 1990.

Keshav Pingali, Micah Beck, Richard Johnson, Mayan Moudgill, and Paul
Stodghill. Dependence flow graphs: An algebraic approach to program
dependencies. IACM Symposium on Principles of Programming Languages
(POPL), volume 18, 1991.

Rahul Razdan and Michael D. Smith. A high-performance microarchitecture
with hardware-programmed functional units.|IEEE/ACM International
Symposium on Microarchitecture (MICR@gges 172—-180, November 1994,
Robert B. Reese, Mitch A. Thornton, and Cherrice Traver. Arithmetic logic
circuits using self-timed bit level dataflow and early evaluation. In
International Conference on Computer Design (ICCpgge 18, Austin, TX,
September 23-26 2001.

R. Rinker, M. Carter, A. Patel, M. Chawathe, C. Ross, J. Hammes, W. Najjar,
and A.P.W. Bhm. An automated process for compiling dataflow graphs into
hardwarelEEE Transactions on VLS9 (1), February 2001.

Scott Rixner, William J. Dally, Ujval J. Kapasi, Brucek Khailany, Abelardo
Lopez-Lagunas, Peter R. Mattson, and John D. Owens. A bandwidth-efficient
architecture for media processing.|EEE/ACM International Symposium on
Microarchitecture (MICRO)December 1998.

Ray Roth and Dinesh Ramanathan. A high-level design methodology using
C++. InlEEE International High Level Design Validation and Test Workshop
November 1999.

K. Sankaralingam, R. Nagarajan, D.C. Burger, and S.W. Keckler. A
technology-scalable architecture for fast clocks and high ILRVénkshop on

the Interaction of Compilers and Computer Architectulanuary 2001.

P. Schaumont, S. Vernalde, L. Rijnders, M. Engels, and I. Bolsens. A
programming environment for the design of complex high speed ASICs. In
Design Automation Conference (DA@pges 315-320, San Francisco, June
1998.

Klaus E. Schauser and Seth C. Goldstein. How much non-strictness do lenient
programs require? Imternational Conference on Functional Programming
Languages and Computer Architectupages 216—225. ACM Press, 1995.

M. Schlansker, T.M. Conte, J. Dehnert, K. Ebcioglu, J.Z. Fang, and C.L.
Thompson. Compilers for instruction-level parallelidEBEE Computer
30(12):63-69, 1997. This was a report from a cross-industry task force on ILP.
R. Schreiber, S. Aditya (Gupta), B.R. Rau, S. Mahlke, V. Kathail, B. Ra. Rau,
D. Cronquist, and M. Sivaraman. PICO-NPA: High-level synthesis of
nonprogrammable hardware acceleratdesirnal of VLSI Signal Processing
2001.

Luc Senéria, Koichi Sato, and Giovanni De Micheli. Synthesis of hardware
models in C with pointers and complex data structulfeEE Transactions on
VLS|, 2001.

Greg Snider, Barry Shackleford, and Richard J. Carter. Attacking the semantic
gap between application programming languages and configurable hardware.
In ACM/SIGDA International Symposium on Field Programmable Gate
Arrays (FPGA) pages 115-124. ACM Press, 2001.

Donald Soderman and Yuri Panchul. Implementing C algorithms in
reconfigurable hardware using C2Verilog. In Kenneth L. Pocek and Jeffrey
Arnold, editors|EEE Symposium on Field-Programmable Custom Computing
Machines (FCCM)pages 339-342, Los Alamitos, CA, April 1998. IEEE
Computer Society Press.

13

[97]
(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]
[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

Bjarne Steensgaard. Sparse functional stores for imperative prograAGMn
SIGPLAN Workshop on Intermediate Representatipages 62—70, 1995.
Ivan Sutherland. Micropipelines: Turing award lectu@@mmunications of

the ACM 32 (6):720-738, June 1989.

Steven Swanson, Ken Michelson, and Mark Oskin. WaveScalar. Technical
Report 2003-01-01, Washington University at Seattle, Computer Science
Department, January 2003.

A. Takayama, Y. Shibata, K. Iwai, H. Miyazaki, K. Higure, and X.-P. Ling.
Implementation and evaluation of the compiler for WASMII, a virtual
hardware system. Imternational Workshop on Parallel Processingages
346-351, 1999.

John Teifel and Rajit Manohar. Static tokens: Using dataflow to automate
oncurrent pipeline synthesis. International Symposium on Advanced
Research in Asynchronous Circuits and Systems (ASY¥eGgs 17-27,
Heraklion, Crete, Greece, April 2004.

Hené Touati and Mark Shand. PamDC: a C++ library for the simulation and
generation of Xilinx FPGA designs.
http://research.compag.com/SRC/pamette/PamDC.pdf, 1999.

Y-F. Tsai, D. Duarte, N. Vijaykrishnan, and M.J. Irwin. Implications of
technology scaling on leakage reduction techniqueBdsign Automation
Conference (DAC)San Diego, CA, June 2004.

Kees van BerkeHandshake Circuits: An Asynchronous Architecture for VLSI
Programming volume 5 ofintl. Series on Parallel Computatio©€ambridge
University Press, 1993.

A. H. Veen and R. van den Born. The RC compiler for the DTN dataflow
computerJournal of Parallel and Distributed Computin0:319-332, 1990.
Arthur H. Veen. Dataflow machine architectufdcM Computing Survey38
(4):365-396, 1986.

Girish Venkataramani, Mihai Budiu, and Seth Copen Goldstein. C to
asynchronous dataflow circuits: An end-to-end toolflownfternational
Workshop on Logic Synthejseemecula, CA, June 2004.

John von Neumann. First draft of a report on the EDVAC. Contract No.
W-670-ORD-492, Moore School of Electrical Engineering, University of
Pennsylvania, Philadelphia. Reprinted (in part) in Randell, Brian. 1982.
Origins of Digital Computers: Selected Papers, Springer-Verlag, Berlin
Heidelberg, June 1945.

Kazutoshi Wakabayashi and Takumi Okamoto. C-based SoC design flow and
EDA tools: An ASIC and system vendor perspectleEE Transactions on
Computer-Aided Desigri9(12):1507-1522, December 2000.

M. Wazlowski, L. Agarwal, T. Lee, A. Smith, E. Lam, P. Athanas,

H. Silverman, and S. Ghosh. PRISM-II compiler and architecturtERE
Symposium on Field-Programmable Custom Computing Machines (FCCM)
pages 9-16, Napa Valley, CA, Apr 1993.

Robert P. Wilson, Robert S. French, Christopher S. Wilson, Saman P.
Amarasinghe, Jennifer M. Anderson, Steve W. K. Tjiang, Shih-Wei Liao,
Chau-Wen Tseng, Mary W. Hall, Monica S. Lam, and John L. Hennessy.
SUIF: An infrastructure for research on parallelizing and optimizing
compilers. INACM SIGPLAN Notices/olume 29, pages 31-37, December
1994,

Niklaus Wirth. Hardware compilation: Translating programs into circuits.
IEEE Computer31 (6):25-31, June 1998.

M. J. Wirthlin and B. L. Hutchings. A dynamic instruction set computer. In
P. Athanas and K. L. Pocek, editolEEE Symposium on Field-Programmable
Custom Computing Machines (FCCMbages 99-107, Napa, CA, April 1995.
R. D. Wittig and P. Chow. OneChip: An FPGA processor with reconfigurable
logic. In J. Arnold and K. L. Pocek, editoriEEE Symposium on
Field-Programmable Custom Computing Machines (FCOpéges 126-135,
Napa, CA, April 1996.

Alex Zhi Ye, Andreas Moshovos, Scott Hauck, and Prithviraj Banerjee.
CHIMAERA: A high-performance architecture with a tightly-coupled
reconfigurable unit. Itnternational Symposium on Computer Architecture
(ISCA) ACM Computer Architecture News. ACM Press, 2000.

Ning Zhang and Bob Brodersen. The cost of flexibility in systems on a chip
design for signal processing applications .
http://bwrc.eecs.berkeley.edu/Classes/EE225C/Papersiasitin.doc, Spring
2002.

	Introduction
	Compiling C to Hardware
	CASH
	The Pegasus Intermediate Representation
	The Dataflow Semantics of Pegasus
	Compiler Status

	ASH Versus Superscalar
	Dataflow Software Pipelining
	ASH Versus Superscalar
	Superscalar Advantages

	From C to Layout
	CAB: The CASH Asynchronous Back-end
	Synthesizing Scalar Computations
	Lenient Evaluation
	Memory Access

	Low-level Evaluation
	Area
	Execution performance
	Power and Energy
	Discussion

	Related Work
	Conclusions
	Acknowledgements
	REFERENCES -9pt

