Fault Tolerant NanoBoxes for Designing Computers Using Molecular Nanotechnology

AJ KleinOsowski
with David J. Lilja and Richard A. Kiehl

Laboratory for Advanced Research in Computing Technology and Compilers

University of Minnesota

ARCTiC Labs www.arctic.umn.edu
DNA Scaffold

Proposed DNA Scaffold

ARCTiC Labs www.arctic.umn.edu
DNA Scaffold with Circuit Map

Proposed DNA Scaffold with Circuit Mapping

ARCTiC Labs www.arctic.umn.edu
Logic Blocks From DNA Scaffold

Becomes...

ARCTiC Labs www.arctic.umn.edu
FT Nano Architectures

Approach to use external hardware to identify and route around faulty blocks

ARCTiC Labs www.arctic.umn.edu
FT Nano Architectures

NanoBox approach incorporates fault tolerant techniques into black box components

ARCTiC Labs www.arctic.umn.edu
NanoBox Virtues

➢ Abstraction makes circuit design easier
➢ NanoBox can be abstracted at varying levels of detail
➢ Fault identification and correction is deterministic
NanoBox Vices

- NanoBox interconnection errors not accounted for
- Keeping distributed FT overhead within reason will be challenging
NanoBox Future Work

- At what level to abstract?
- Start thinking about inter-NanoBox errors
In Summary

- Intro to our Molecular Technology
 DNA Scaffolding
- Progress to date with DNA Scaffolding
 Assembled rafts with gold clusters and attached rafts to mica
- Future architecture direction
 Encapsulated fault tolerance with self−healing NanoBoxes
Questions and Discussion