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Texture

What is texture?
broadly: a multidimensional signal obeying some statistical properties

(but note: properties of interest are viewer-dependent!)

more narrowly: an image that looks approximately the same, to humans, from
neighborhood to neighborhood

Goals:
Generate a new image, from an example, such that new image is sufficiently

different from the original yet still appears to be generated by the same
stochastic process as the original. [De Bonet, ‘97]

– Analysis: image → parameters

– Synthesis: parameters → image



Applications of Texture Modeling

• image/video segmentation
(e.g. this region is tree, this region is sky)

• image/video compression
(perhaps store only a few floats per region!)

• restoration
(e.g. hole-filling)

• art/entertainment
(e.g. skin, cloth, ...)



Desirable Properties of a Texture Model

• generality
– model a wide range of images

– classify similar images identically, dissimilar images differently

– can be generalized to surfaces in 3-D

• efficient analysis
– important for compression, segmentation

• efficient synthesis
– important for decompression, computer graphics



Popular Texture Models

• Periodic

• Fourier Series

• Ad Hoc Procedural

• Reaction-Diffusion

• Markov Random Field

• Non-Parametric Methods

• … and more



Periodic Texture

big assumption: the image is
periodic, completely specified
by a fundamental region,
typically a parallelogram:

no allowance for statistical
variations

this approach fine if image is
periodic,

but too limited as a general
texture model



Fourier Series

Represent image as a sum of sinusoids of various frequencies and
amplitudes:

Works well for modeling (non-cresting) waves in open water, maybe
sand ripples, a few other smooth, periodic phenomena.

In theory, Fourier series can approximate anything given enough
terms.

In practice, too many terms are required (proportional to the number
of pixels) for general patterns.

P(x, y) = ki sin(ai x + bi y)
i=1
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Ad Hoc Procedural Methods

1. Choose your favorite functions/images:
– sinusoids

– cubic function interpolating random
values on a grid (Perlin “noise function”)

– hand-drawn shapes

– pieces of images

– whatever

2. Compose them any way you please

3. You’ve got an extensible texture model!

Popular for procedural texture synthesis in computer graphics.

Problems: analysis usually impossible!

Advantage: synthesis works very well in limited circumstances.



Reaction-Diffusion Model

Turing suggested a model for animals and plant patterns:
– hypothesized that pigment production is controlled by concentrations of two

or more chemicals

– the chemicals diffuse (spread out), dissipate (disappear), and react

Governed by a nonlinear partial differential equation:

Or more generally:

The latter permits anisotropy, space-variant (non-stationary) patterns.
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Reaction-Diffusion Texture
in Computer Graphics

Witkin-Kass ‘91 Turk ‘91



Reaction-Diffusion

Advantages:
– generates organic-looking patterns

– easily generalized to surfaces in 3-D

Disadvantages:
– not so general (try to do brick!)

– analysis extremely difficult



Stochastic Process Terminology

A random variable is a nondeterministic value with a given
probability distribution.

e.g. result of roll of dice

A discrete stochastic process is a sequence or array of random
variables, statistically interrelated.

e.g. states of atoms in a crystal lattice

A random field is a two-dimensional stochastic process, each pixel a
random variable.

A random field is stationary if statistical relationships are space-
invariant (translate across the image).

Conditional probability P[A|B,C] means probability of A given B
and C, e.g. probability of snow today given snow yesterday and the
day before



Markov Chain

An order n Markov chain is a 1-D stochastic process in which each
sample’s state is dependent on its n predecessors only:

(useful for synthesizing plausible-looking USENET articles, term
papers, Congressional Reports, etc.)

Analysis: scan successive (n+1)-tuples of training data, building
histogram.

Synthesis: start with an n-tuple that occurred in training set, generate
next using the collected probabilities, step forward, repeat.

Larger n means more similar to training data, but more memory.
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Markov Chain Example

Output of 2nd order word-level Markov Chain [Scientific American,
June 1989, Dewdney] after training on 90,000 word philosophical
essay:

The simulacrum is true.

     -Ecclesiastes

If we were to revive the fable is useless.  Perhaps only the allegory of
simulation is unendurable--more cruel than Artaud’s Theatre of
Cruelty, which was the first to practice deterrence, abstraction,
disconnection, deterritorialisation, etc.; and if it were our own past.
We are witnessing the end of the negative form.  But nothing
separates one pole from the very swing of voting ’’rights’’ to
electoral...



Markov Random Field

A Markov random field (MRF) is the generalization of Markov
chains to two dimensions.

Typical homogeneous (stationary) first-order MRF:
specified by joint probability that pixel X takes a certain

value given the values of neighbors A, B, C, and D:

P[X|A,B,C,D]

Higher order MRF’s use larger neighborhoods, e.g.
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Binary Markov Random Field Examples



Markov Random Field Synthesis by Simulated
Annealing

After 0, 1, 2, 3, 10, 50 iterations, from upper left, in column order


