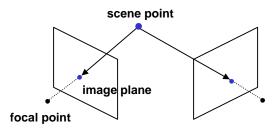
Stereo and Motion

The Stereo Problem

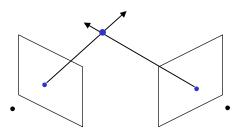
• Reconstruct scene geometry from two or more *calibrated* images



Stereo

The Stereo Problem

• Reconstruct scene geometry from two or more *calibrated* images



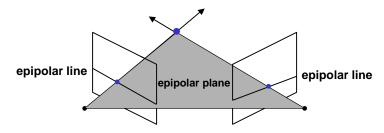
Basic Principle: Triangulation

- Gives reconstruction as intersection of two rays
- Requires point correspondence
 - This is the hard part

Stereo Correspondence

Determine Pixel Correspondence

• Pairs of points that correspond to same scene point



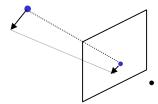
Epipolar Constraint

- Reduces correspondence problem to 1D search along conjugate epipolar lines
- Stereo rectification: make epipolar lines horizontal
 - this is what the prewarp did in view morphing

Correspondence and Optical Flow

Stereo requires just 1D motion estimation But in general the motion field is 2D

- Epipolar lines not known in advance
- Non-rigid motion (no epipolar lines)



True motion field: projected point displacements Optical flow is *apparent* motion in the image

• Generally these will not be the same

The Aperture Problem

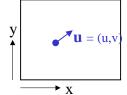
We can't measure the true 2D motion field from local image measurements

Example: Barber Pole Illusion

http://www.sandlotscience.com

Optical Flow Equation

Several of the following slides adapted from P. Anandan, 1999



Assumptions

- Brightness Constancy: intensity *I* of a moving point is constant over time
- Pixel intensity is linear in t (for small time steps)

$$I(x, y,t) = I(x + u\delta t, y + v\delta t, t + \delta t)$$

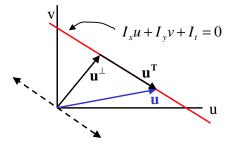
$$0 = \frac{dI}{dt}$$

$$= \frac{\partial I}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial I}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial I}{\partial t}$$

$$= I_{x}u + I_{y}v + I_{t}$$

$$= \nabla I \bullet \mathbf{u} + I_{t}$$

Normal Flow

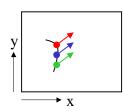


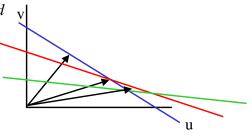
Optical flow equation is a line constraint

- Normal component \boldsymbol{u}^{\perp} can be computed
- Tangent component $\mathbf{u}^{\mathbf{T}}$ is undefined

Integrating Neighborhood Information

Lucas and Kanade Method





We want to minimize: $\sum_{i} (I_x^i u + I_y^i v + I_t^i)^2$

This corresponds to solving:

$$\begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} -\sum I_x I_t \\ -\sum I_y I_t \end{bmatrix}$$

Matrix on the left is singular if all gradients point in same direction (i.e., if points are on a line - - just get normal flow)

Limits of the Gradient Method

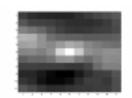
Fails When

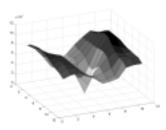
- Not enough variation in local neighborhood
- Motion is large (much greater than a pixel)
 - Linear brightness assumption is not met

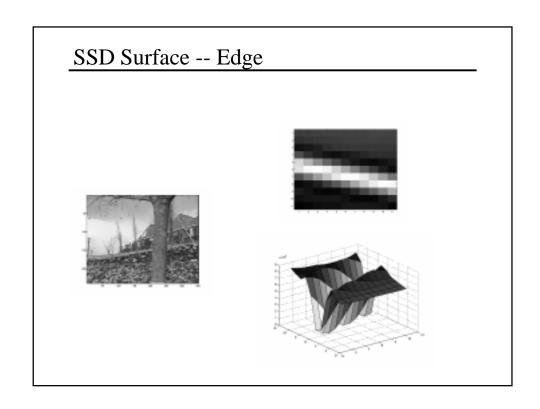
For larger displacements, match templates instead

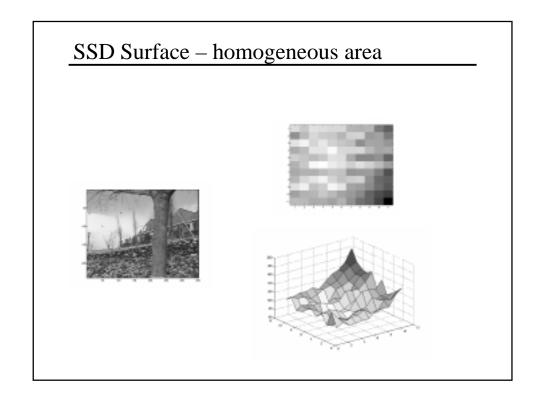
- Define a small area around a pixel as the template
- Search locally for template in next image
- Use a match measure such as correlation, normalized correlation, or sum-of-squares difference (SSD)
- Choose the maximum (or minimum) as the match
- Window size is important
 - small windows lead to false matches
 - big windows lead to over-smoothing

SSD Surface – Textured area









Coarse to Fine Estimation

First use large windows and search over large displacement range Refine these estimates using smaller windows

Can do this more efficiently by using:

A PYRAMID!

Steps:

- Convolve image with a small kernel
 - Typically 5x5 Gaussian or Laplacian filter
- Subsample to get lower resolution image
- Repeat for more levels

Result:

• A sequence of low-pass or band-pass filtered images

Pyramids

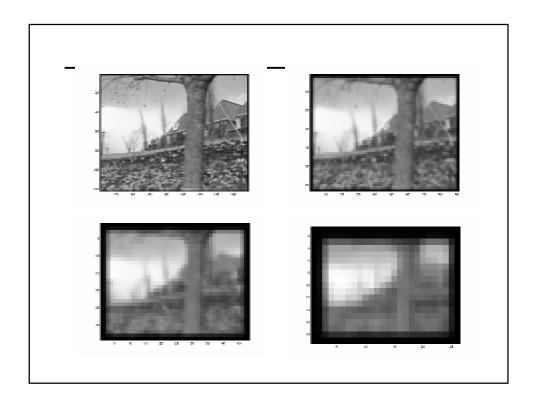
Pyramids were introduced as a multi-resolution image computation paradigm in the early 80s.

The most popular pyramid is the Burt pyramid, which foreshadows wavelets

Two kinds of pyramids:

Low pass or "Gaussian pyramid"

Band-pass or "Laplacian pyramid"



Coarse-to-Fine Flow Estimation (Anandan)

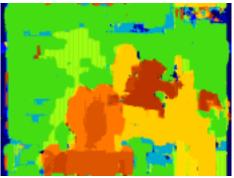
Construct pyramids from each image (Gaussian) Start at coarsest level, initialize flow to 0

- 1. Do local search (3x3 or 5x5 area) using small (5x5) templates
- 2. Around the peak perform subpixel refinement
 - 1. Either analytically, using the Lucas-Kanade formulation or
 - 2. Numerically by fitting quadratic surface to the peak and interpolating to find the sub-pixel peak
- 3. Warp one image toward the other using the flow field
- 4. Repeat steps 1,2, and 3 a few times (usually 5-10)
- 5. Project the flow field to next finer level
- 6. Move to the next finer level and repeat 1-5.

Stop when you finish the iterations at the finest level

Stereo Matching

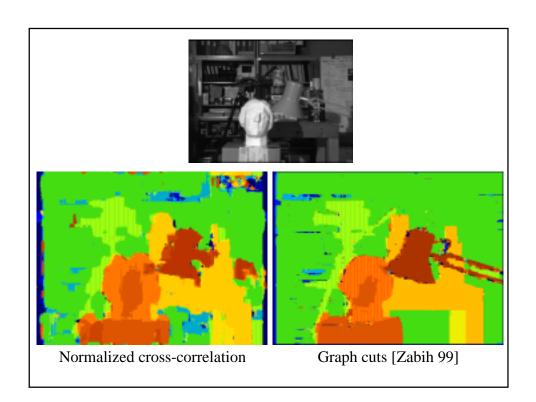
Stereo Pair



Quantized Depth Map normalized cross-correlation search

Stereo Matching Algorithms

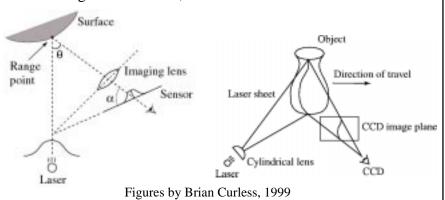
- Pitfalls
 - specularities (non-Lambertian surfaces)
 - ambiguity (aperture problem, low-contrast regions)
 - missing data (occlusions)
 - intensity error (quantization, sensor error)
 - position error (camera calibration)
- Numerous approaches
 - course-to-fine [Anandan 89]
 - edge-based [Marr-Poggio]
 - dynamic programming [Baker-Binford 81]
 - MRF's, graph cuts [Zabih]
 - adaptive windows [Kanade 91]
 - multi-baseline [Okutomi 93]
 - many more...



Active Stereo (Laser Scanning)

One way to solve the aperture problem

- Create your own texture by projecting light patterns onto the object
- Most precise way is to use a laser
- Triangulate as before, but between laser and sensor



Stanford's Digital Michelangelo Project

http://graphics.stanford.edu/projects/mich/

maximum height of gantry: 7.5 meters weight including subbase: 800 kilograms

Statistics about the scan

480 individually aimed scans
2 billion polygons
7,000 color images
32 gigabytes
30 nights of scanning
1,080 man-hours
22 people