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Abstract

A central problem in sterec matching by computing corre.
lation or sum of squared differences (S5D) les in selecting
an appropriate window size, The window aize must be large
enough fo include enough intensify varialion for matching
but smoll enough to aveid the effects of profective distor-
tion. If the window it teo small and does not cover encugh
intenaily voriation, #f gives o poor disparity eatimafe, he.
cause the signal {intensity variction) o noise ratio is low.
If, on the other hand, the window is too large and covers
o vegion in which the depth of scene points fie., diaper.
ity) varies, then the poaition of mawimum correlotion or
minimum S50 may nod represent correct matehing due fo
different projective distortions in the left and right images.
For dhis reason, o window size maat be selected adaptively
depending on local vaviations of intenaity and disparity,

The stereo algorithm we present selects o window adap.
fively by evaluating the local variation of the intenaity and
the disparity., We employ a statistical model that repra-
aents wneerteinty of diparity of points over the window:
the uncertainty is asremed to fnerease with the distance of
the point from the center point, This modeling enables ua
fo assess how disparity variation within o window affecta
the estimation of disparity. As a resulf, we can compute
the wncertainty of the disperity eatimate which fakes into
secount both intenaily end disparity vaviances. So, the al-
gorithm can seareh for o window that produces the eatimate
of disparity with the least wncertainty for each pizel of an
imoge, The method controls not only the size but also the
shape (rectangle) of the window. The algorithm has heen
fested on both aynthetic and real tmages, and the quality of
the disparily maps obfained demonstrates the effectivencas
of the algorithm.

1 Introduction

Stereo matching by computing correlation or sum of
squared differences (55D) is & basic technique for obtain-
ing o dense depth map from images [6](2][3][12][10]]7]. As
Barnard and Fischler [1] point out, "a problem with corre-
lation {or SSD) matching is that the pateh (window) size
must be large enough to include encough intensity variation
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for matching but small enough to aveid the effects of pro-
jective distortion.” If the window is too small and does not
cover enough intensity variation, it gives o poor disparity
estimate, because the signal (intensity variation) to noise
ratic is low, If, on the other hand, the window is too large
and covers a region in which the depth of scene points (ie.,
disparity) varies, then the position of maximum correla-
tion or minimum 550 may not represent correct matching
due to different projective distortions in the left and right
images, For this reason, a window size must be selected
adaptively depending on local variations of intensity and
disparity.

However, most correlation- or S5D-based stereo meth-
ods in the past have used a window of a fixed size that
is chosen empirically for each application. There has been
little zesearch for adaptive window selection. As a relevant
technigue, Panton [10] warped the image to account for pre-
dicted terrain relief, but failed to consider contribution due
to intensity variation, Levine et. al [4] changed the win-
dow size locally depending on the intensity pattern, but
uncertainty in matching due to the variation of unknown
disparities was unaccounted for,

The difficulty of a locally adaptive window lies, in fact,
in a difficulty in evaluating and using disparity variances,
While the intensity variation is directly obtained from the
image, evaluation of the disparity variation is not easy,
since the disparity s what we intend to ealeulate as an end
product of stereo. To resclve the dilemma, an appropriate
maodel of disparity variation is required which enables us to
assess how disparity varation within a window affects the
estimation of disparity.

The stereo algorithm we propose in this paper selects a
window adaptively by evaluating the local variation of the
intensity and the disparity, We employ a statistical model
that represents uncertainty of disparity of points over the
window: the uncertainty is nssumed to increase with the
distance of the point from the center point, This modeling
enables us to compute boih a disparity estimate and the un-
certainty of the estimate. So, the algorithm can search for
a window that produces the estimate of disparity with the
least uncertainty for each pixel of an image, The method
comtrols not only the size but also the shape (rectangle) of
the window,

In this paper, we first develop a model of steren match-
ing in section 2, Section 3 shows how to estimate the most
likely disparity and the uncertainty of the estimate based
on the modeling in section 2, These two sections provide
theoretical grounds of our proposed algorithm. In section
4, we presents a complete stereo algorithm which selects ap-
propriate window size and shape adaptively for each pixel,
Section § provides experimental results with real stereo im-
ages. The quality of the disparity maps obtained demon-
strates the effectiveness of the algorithm.



2 Modeling Stereo Matching

We will first develop a statistical medel of the difference of
intensities of two images within o window, The analysis is
based on the uncertainty model presented in [8]. Let the
steren intensity images be fi(x,p) and fale,y) Asswme
that the baseline is parallel to the sx-axis, and fil=, y) and
fa(z, y) come from the same nnderlying intensity function
with a disparity function d. (e, ¥) and additive noise, Then
1 and fa are related by

f1|[=3|y:I =_f3{x+dr|:"=1 y}:?ﬂ '|' Tt-l{:l!, I‘l}? {1.]
where n{m, ) is CGanssian white noise
nl®, ¥} ~ J'LT{DEEHE ; (2

The value o2 is the power of noise per image.”

To simplify the notation, suppose that we want to com-
pute the disparity at (=, y) = (0,0}, i.e., the value d, (0,0},
Also, snppose a windew W o= {({,n}]} is placed at the
correct eorresponding positions in both images, that is,
at (0,0) in image fi{z,¥) and at {d.(0,0),0) in image
falx, y). Figure 1illustrates the situation. Then, the value
of f1 at (£, %) in the window is fi(f,%), and that of fa is
falf + (0,00, 7). These values would be the same, except
the noise component, if the disparity d, (£, 7} were constant
and equal to d.(0,0), but in general they are not. By ex-
panding f2(£-+de (& 1), 7) at £+ de (0, 0) and wsing equation
(1}, we see that the difference of intensities between f; and
f2 nt (£, 1) in the window can be approximated as

Suléamy = fal€ + do(0,0), 1)
= (do(g, ) - d,(n,n}}f—fﬁ{f + de{0,0), 7} + n(€,n).
(3)

At this point, let us introduce the following statistical
madel for the disparity d.(£, %) within a window:

do(€,m) = de(0,0) ~ N (u,ad\/ﬁTn*). (4)

where o 15 a constant that represents the amonnt of flue-
tuation of the disparity. That is, this model assumes that
the difference of disparity at a point (£ 1) in the window
from that of the center point {0,0) has a gero-mean Gans-
sian distrilution with variance proportional to the distance
between these points. In ether words, the expected value
of the disparity at (£, ) is the same as the center point,
but it is expected to fluctuale more as the point is far-
ther from the center.! Or, in terms of the scene, the sur-
face covered by the window is expected to be locally flat
and parallel to the baseline, but it is less cerfain as the
window hecomes larger. We also assume that the image
miensity derivatives E—%fg{f,ujl within a window follow a

"We use 20 in equation (2) as variance of niz, 3} to indicate
that i ineludes noise added to both fy and .
1ITl'|e statistical modal of {4_} can be shown eguivalent to as-
5l1|lr1'llnE, that d,.(£,7) is generated by Brownian motion [refer to
lr"ll” Moee genecally, we can sesume d.(£,7) to be o fractal.
his corresponds to choosing a different degree of £2 457 in the
var.mn::r_- in [4). The Brownian motion is the simplest case in
whiel the degres 1s % However, our preliminary experiments
bave shown no noticeable advantage of using a general fractal
BEaumptiog,
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Fignre 1: Hlustration of n,(£,n) in one dimension. The
graph at the top shows fi(z); the middle one, fatw] (the
thicker curve) with fi(z) shifted by d.{0) (the thinner
enrve); the hottom ome, do(z). The region indicated by
the very thick lines on the nxes indicate the region covered
by the window,

rero-menn Gaussian white disteibution,? and that intensity
derivatives a%.fj{f‘”] and disparities d.(£, 7) are mutually

independent.
These assumptions allow us to model a statistical dis-

tribution of the intensity difference (3). Let us denote the
right hand side of equation (3) by n,(£,9). First, we com-
pute the mean and variance of n. (£, )

E|n.{&, ﬂ‘:lll
= Bld{en) - & (0,0)F [;Efzqe + dv(ﬂﬂ)m}]

+Ba(em] =0 )

& [I[n,,{f,ﬁ-:l:lj]
2
E (l:d“{"fl fﬂ 7] d:r' [i}i n}}a%-.fz [5 + dr{ﬂ!ﬂ:'! ﬂ]) l

]

+ B | 2(d(£,9) — d:(0,0)):

. (;—Eﬁ{n‘;‘ﬁv ir(ﬂ.ﬂ},fr]) ﬂ-[&?}]] + E [(n(€, )]
= B [(de(€n) — e (0,0))] -

YThis is also equivalent to assuming the pattern fa(£,7) to
be result of Brownian motion: ie., locally it has a constant
brightness, but has more fluctuation as the window becomes

higger.
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o l(ﬁﬁgmg + rf.-{U-.ﬂ}-.".’]')

= s +a;a.rv’%3 + 2, {6)

wlers :
ap = [( Fal - d, (D, nh"ﬂ) ] {7

We can show that e, (£, 7)) 15 white noise and its distribotion
can he approximated by o Gaussian distribulion with the
above mwean and variance, That is,

wféin) &= filfon) = falé + do(0,0),7)
s N ([],Erri + g ER o 1';’) T

The intuitive interpretation of (8} is as follows, Referring
to figure 1, n,(& ) i the difference between fi and f;
at [£,7n) within a window when the window is placed at
the corresponding positions for obtaining the disparity at
(0,0}, If there is wo additive aoise nfz, 3} in the image
(it op =0 and the disparity is comstant within the win-
dow {i.e., o = 0], then the two images match exactly, and
n (& ) must be null, Otherwise, however, the difference
has a value which shows u combined noise characterislic
which comes from both intensity and disparity variations,
As derived in {8}, it can be modeled by sero-mean Gaus-
sian neodse whose variancee 8 8 smnmadion of . constant
term and a tern proportional to 4‘;"?’ + 1%, The constant
term is from the nodse added to the inge intensitics, The
second term is from wncertatn local support. That is, while
the points surronnding the center point in the window are
nsed o support the matehing for the center point, it should
be noted that these points moy actually increase the error
in computing the disparity of the center point. This is be-
cause, in general, the disparity of the surrennding peoints
deviates from that of the center point, This uneertainty is
represented as if the intensity sigonals have additional neoise
whaose power is proportional to the distance from the center
point in the window. If the dispanty 35 constant over the
window (i, oy = 0}, the additional noise is gero, If the
disparity changes morein the window (i.e., the larger oy is),
its effect becomes larger and the information contribuoted
by the surrounding points becomes more uneertain,

I Estimating Disparity and Its Uncertainty

where n, (8,7 = — ralddtl s (Gaussian white
2od ) n‘rn,p,'."rﬁ-"‘-—r;
noise such that
(€, ) ~ {0, 1). {11)

By letting

oty = DG -fETLO0

\/ﬂaﬁ + gy oS EE o gt

35fﬂ(£ Fdﬂl[ﬂ ﬂ':| Tll::l

il ) = —mee (13)
\/2'73 g £ +f.'r
we hove
byl — Adda(E,n) = walf,n). (14)

Now, by sarnpling ¢y and dy at (&, 5y ) in the window W
we can define £ as

Lo = &) - '&d‘.""!':fﬁjh} = “'l{&lfﬁj' (15)

From equation (11}, the conditional probability density
function of £, piven Ad is

] (b ( sy 1) —
Taw T (‘

F':ful-&ff} = 3

Adgy cfi,n,-j:n“)

(18)
Since g (£, ) s white noise, £ are mulually independent.
So we get

plélid e Wilad) = [] eléslad),  (17)

TEW
where pif;;(¢,j € W)|Ad) is the conditional joint probabil-
ity for the poinds in the window, and ]-L,JGW denotes the
product over the window, From the continuous version of
Bayes' theorem,

plgis(t,d € WilAd)p(Ad)

pladilij € W)) = =5 e .

g T it € WA A A

(18)

Agsuming no prior information of Ad (ie, plAd) =
comstant), substitution of (18) into (18] yields

{M—M}*)

Eﬂd 'E=:'[ L € W]J 2{724
a

1
\-""‘E;T_ﬂ'a.f i (

MNow, we will show how the disparity and its uncertainny (19)
can be estimated based on the modeling presented in the whera
At previous section, Let dple, v} be an initial estimote of the :
i disparity 4,2, y}). By using the Taylor expansion, equation . Digew(dilé nildalEiny)) (20)
Il (8) becomes B Yo ew P (&imi))?
a 1
Fillym) — fuld + dal0,0), 7] — Ad = f3(€ + do{D, 0}, 1) S 21
:ﬂ % e Ei.fﬁwt'ﬁi[firﬂj.‘l]ﬂ (21)

where }:”Ew denotes the summation over the window,
Equation (19) says that the conditional probability density
funetion of &d given the observed stereo intensities over the
window becomes a Ganssian probability density function.
The mean value and the variance of the Gaussian proba-
Lility are Ad and oh,, computed with equations {20) and
(21). That is, Ad and o3 ; provide the maximum lkelihood
estimate of the disparity (increment) and the uncertainty
of the estimation for the given window W, respectively.

Ll where Ad 15 an incremental correction of the eslimate to
il be made, such that Ad= o, [0,0) — do{0,0). Dividing both

I

.| ! sides of this equalion by v"lf.?ﬁ;{ | oaperga/E 4t yielda

i A1) — (6 + (0,0, ) — A (€ + 46(0,0), )
it

‘,/Errﬁ [ooxpeng o/ £F 4

a0, (1o}

il = mlEn) (9)
In.!
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Figure 2: Window expansion

oy and oy are parameters that represent the disparity
Huctuation and the intensity fluctuation, respectively. Ve
estimate them locally within the window from equations
(4) and (7),

" " 1 M (fi: i} —d |:1}1D:|J3
YW vaew @
day = % gw (ﬁ_ifﬂffl +"iU|:D|DJ|’h}) » {23.]

where V.. is the number of the samples within the window.
These parameters change as the shape and size of o window
changes.

4 Iterative Stereo Algorithm with an Adaptive
Window

In the previous sections we have developed a theory for
computing the estimates of the disparity inerement and its
uncertainty, which take into account the fact that not only
ihe intensity but also the disparity varies within a window,

We now describe the complete stereo algorithm based on
the theory:

1. Start with an initial disparity estimate ey{a,y). This
initial estimate can be obtained by any existing stereo
algorithm.

4. For each point (z,y), choose a window that provides

the estimate of disparity increment having the low-
est uncertainty, For the chosen window, caleulate the
disparity increment by (20) and update the disparity
estimate by diy (e, 3) = dil, v) + Adlz, y).
Here we need a strategy to select a window that re-
sults in the disparity estimate having the lowest uncer-
tainty. In the discussions so far the shape of the win-
dow can be arbitrary. In practice we limit ourselves to
B rectangular window, as illustrated in figure 2, whose
width and height can be independently controlled in
all four directions. Our strategy is as follows:

(a) Place a small 3 x 3 window centered at the pixel,
and compute the uncertainty by using (22}, [23h,
and {21},

{b) Expand the window by one pixel in one direction,
€8, to the right o+, for trial, and compute the
uncertainty for the expanded window, If the ex-
pansion increases the uncertainty, the direction
i3 prohibited from further expansions. Repeat
the same process for each of the four directions

1o

(a) (b)

{c)

Figure 3: Synthesized sterco images, with a ramp intensity
pattern with Gaussiasn noise: {a) Left image; (b) Right
image; (c) Disparity pattern; {d) An isometric plot of the
disparity pattern

o, z—,y+, and ¥~ (excluding the aleeady pro-
hibited ones).

(¢) Compate the uncertainties for all the directions
tried and choose the direction which produces the
minimum uncertainty.

(d) Expand the window by one pixel in the chosen
direction,

(e) Tterate steps {(b) to {d) until all directions become
prohibited from expansion or until the window
size reaches to a limit that is previously set,

Thus, our strategy is basically a sequential search for
the best window by maximum descent starting with
the smallest window

3. Iterate the above process until the disparity estimate
d,-l:m,y] converges, of up to a certaln maximum mim-
ber of iterations,

Now, by using synthesized data we will examine how the
window is adaptively set by the stereo algorithm for each
position in an image, and demonstrate its advantage. Fig-
ures 3 (a} and (b} show the left and the right images of the
test data. In generating the data set, a linear ramp in the
direction of the baseline is used as the underlying intensity
pattern, It is deformed according to the disparity pattern
in figures 3 (¢) and {d), and Ganssian noize is added in-
dependently to both images. We apply the iterative steren
algorithm to the resuliant data,

First, we will examine the result of window selection at
several representative positions shown in figure 4. The win-
dows selected at those positions are drawn by dashed lines
in figure § relative to the disparity edges drawn by solid
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Figure 4: Positions for which size and shape of selected
windows are examined,
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Figure 5 Selected windows for each position

lines.! For example, at PO a window has been expanded
to the it for all directions, whereas at Pl expansion to
the right has heen stopped at the disparity edge. At P5,
a window is elongated either vertically or horizontally, de-
pending on the image noise, but consistently avoids the
corner of the disparity jump,

Next, let us examine the computed disparities. For com-
parison, we alse have computed disparities by running the
same iterative algorithm but with a fixed window size; that
is, in Step 2 of the stereo algorithm we use a windew of pre-
determined size rather than the window selection strategy.
We run with two window sizes, 3x 3 and 7x 7. Figures 6 {a)
and (b} show the result produced by fixed window sizes, and
(e] by the adaptive-window algorithm. We can clearly see
the problem with using a predetermined fixed window size.
A larger window is good for flat surfaces, but it blurs the
disparity edges. In contrast, a smaller window gives sharper
disparity edges at the expense of nolsy surfaces. The com-
puted disparity by the proposed algorithm shown in figure
6 (&) shows both smooth flat suefaces and sharp disparity
edges. The improvements are further wisible by plotting
the absolute difference between the computed and true dis-

PActunlly these are the average of ten runs with different
noige to abiain the general tendency, rather than aceidantal set
up,

[ G2

parities as shown in figure 7, with a table that lsts their
mean error values, The adaptive-window algorithin has the
smallest mean error, but more importantly we should ob-
serve that the algorithm has reduced two types of errors,
A small fixed window results in large random error every.
where. A large fixed window removes the random error,
but introduces systematic errors along the disparity edges,
The adaptive-window based method generates small errors
of both types. In fact, we have shown that at each point the
expected value of the error by the adaptive-window methad
is always smaller than or equal to that produced when any
fixed-size window is used [8].

<)

Figure 6: Isometric plots of the computed disparity by: [(a)
a 33 window; (b) a 7x 7 window; (¢} the adaptive window
algorithm,

Window Mean Error
Value {pixel}
3x3 | g.ag
Tt | 0.20 |
Adaptive 0.08 J
Window

(e}

Figure 7: Difference between the true disparity and the
computed disparity: (a) by a 3 > 3 window; (b} by a T= 7
window; {2} by the adaptive window,




5 Experimental Hesults

We have applied the adaptive-window based sterco match-
ing algorithm presented in this paper to real stereo images,

Figure & shows images of a town model that were taken
by moving the camera vertically. The dispaxity, therefore,
is in the vertical direction,

For initial disparity estimates, we have used a technigue
of multiple-baseline stereo matching (9] which can remove
matching ambiguities due to repetitive patterna, especially
in the top portion of the image, Figure § (a) shows the fi-
nal disparity map computed by the adaptive window algo-
fthin. In addition, the uncertainty estimate computed by
the algorithem is shown in Bgure 8 (h): inereasing brightness
corresponds to higher uncertainty, With this uncertainty
estimate we can locate the regions whose computed dispar-
ity is not very reliable {very white regions in figure § (b}).
In this example, they are either due to alinsing cansed by
{he fine texture of roof tiles of a building (in the middle part
of the image) or due to occlusion (the others). The dispar-
ity estimates of those uncertain parts can be discarded for
later processing.

Figure 10 shows perspective views of the recovered scene
by texture muapping the original intensity image on the con-
structed depth map and generating views from new posi-
tions which are outside of the original stereo views. They
can give an iden of the quality of reconstruction. This stereo
data set is the same one used in [6]. We can observe a no-
ticeable improvement of the result over the previous result.
Also it should be noted that this is extramely narrow base-
line steren; the baseline is only 1.2 cm long and the scene
is about lm away from the camera, thus the depth to the
haseline ratic is approximately 80,

Figures 11 {a) and (b) show another set of real stereo
images which are top views of a coal mine model. Figure
12 (a) shows the isometric plot of the computed dispac-
ity, For comparison, an actual picture of the model taken
from roughly the same angles is given in figure 12 (b). The
shapes of buildings, a A-shaped roof, a water tank on the
waof, and a flat ground have heen recovered without blue-
ring edges,

8 Conclusions

?D this paper, we have presented an ilerative stereo mateh-
ing algorithm nsing an adaptive window, The algorithm
selects o window adaptively for each pixel. The selected
window is aptimal in the sense that it produces the dis-
parity estimate having the least uncertainty, By evaluating
b?ﬂi the intensity and the disparity variations within a
}F!nd{:-‘-'r'., we can compute hoth the disparity estimate and
its Ill.n-!_',Ertnint:,r which can then be used for selecting the
optimnal window.

. ']:'11& key idea for the algorithm is that it employs a sta-
t-lslr-!ta] medel that represents uncertainty of disparity of
Points over the window: the nneertainty is assumed to in-
urelune with the distance of the point from the center point.
T!“S madel has enabled us to assess how disparity variation
within a window affects the estimation of disparity,

An important feature of the algorithm is that it is com-
PI]{‘ift!}’ local and does not include any global optimiza-
tion, Also, the algorithm doés not use any post-processing
amfﬂﬂthing, but smooth surfaces are recovered as smooth
while sharp disparity edges are retained.

1053

The experimental resnlts have demonstrated a clear ad-
vantage of this algorithm over algerithms with a fixed-size
windew both on synthetic and on real images,
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Figure 10: Perspective views of the recovered seene: {a} from an
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L. Figure 11: "Coal mine” stereo data set: {a) Lower image; (b) Upper image,
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-;-_ Figure 12: Tsometric plats of the computed disparity map nnd their corresponding actual view: [a) (b) Isometric plot and
b rorrespending view from the upper right corner.
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