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Overview

1. What isthe multigrid method?

High level survey of applications of multigrid
methods across science and engineering. (Articles
on thisare hard to find!)

— what Is the state of the art?

— what are multigrid’s strengths & weaknesses?
— what is current research?
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Inspiration for Multigrid Method

e Typical problem:
— Solving a PDE over simple domain (e.g. square)
— Get sparse system Av=f

* |f we solve iteratively with Gauss-Seidel
— Initial iterations reduce residual a lot
— later iterations yield less benefit
— why? Iterations reduce high frequencies in residual

e |dea:
— Iterate on coarser gridsto reduce lower frequencies
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Example: Poisson’s Equation

—-0%u = f(X,y), solvefor u(x,y)
discretize v, ; = u(ih, jh)

[_Vi—l,j |, +4V | j+1 I+1j

[/h?=f,

o Sweep of Gauss-Seidel “relaxes” each grid value to
be the average of its four neighbors plug afiset

« Many relaxations required to solve this on a fixed
grid.

« Multigrid solves it on a hierarchy of grids.
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Elements of Multigrid Method

e relax on a given grid a few times
e coarsen (restrict) a grid

 refine (interpolate) a grid
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A Common Multigrid Schedule

Full Multigrid V Cycle:
final solution

\

finest grid kxk
k/2xk/2

coarsest grid 1x1
time—»

®=reglax /:interpolate \:restrict
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Some Iterative Methods

o Gauss-Seidel
— converges for all symmetric positive definite A

Conjugate Gradient (CG) Method

— convergence rate determined by condition number
— note that condition number typically larger for finer grids

Preconditioned Conjugate Gradient

— instead of solving Av=f, solve MAv=M-f where M!is cheap and M
IS close to A

— often much faster than CG, but conditioner M is problem-dependent
Multigrid
— convergence rate iIs independent of condition number, problem size

— but algorithm must be tuned for a given problem; not as general as
others

note: don’t need matrix A in memory — can compute it on the fly!
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Cost Comparison

on 2-D Poisson Equation, kxk grid, n=k? unknowns

METHOD COST

Gaussian Elimination O(k®) = O(n3)
Gauss-Seidel O(k*logk) = O(n4logn)
Conjugate Gradient  O(k3) = O(nt»)
FFT/cyclic reduction O(k4logk) = O(nlogn)
multigrid O(k?) = O(n)

optimal!
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Memory Requirements of Multigrid

2-D:
finest grid: K2 (v & f arrays)
k?/4
k?/16

coarsest grid: 1
total: k?(1+1/4+1/16+1/64+...) = 4/3xk?

Costs only 33% more memory than storing the solution
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Critique of Multigrid 1

works well for certain problems

— In particular, elliptic PDE's (linear or nonlinear) with smooth boundary
— solves a problem with n unknowns in O(n) time

« constants usually small, e.g. 10 "work units"

« 1 work unit = the work of one relaxation on the fine grid

but multigrid methods are currently several orders of
magnitude slower for non-elliptic steady-state (time-
Independent BV) problems

low memory requirements: need mem for v & f on finest grid,
plus coarser grids; don’t need A

parallelizes easily

— (but requires more communication than some other parallel
solvers)
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Critique of Multigrid 2

e less theory than some other methods
— it's a bit of a black art

e requires careful tuning to get it working on a new problem

— not a black box, like, say, the conjugate gradient method or Gauss-
Seidel

— but when it works well, it's often the fastest

* Dbut other fast methods often require tuning too

— to get top performance out of the conjugate gradient method often
requires an application-specific preconditioner
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History of Multigrid

1964 first paper, Fedorenko, Russia
— large constants: ~40,000 work units, no implementation?

1977: Achi Brandt, Israel, made it practical, wrote seminal paper

late 70's: Nicolaides, Hackbusch, and others proved convergence for certai
PDE's; Brandt proved fast convergence

Interest took off around 1981

but there was (and still Is) much skepticism from some because there was
little theory

today used to solve PDE's in many disciplines

current research: a drive to achieve "textbook efficiency" for general flow
simulations (all Mach numbers and Reynolds numbers)

somewhat superseded by wavelet methods?
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Multigrid Guidelines

“multigridders” prefer structured grids

grid and relaxation method are the only parts of the method that are highly
problem-dependent; restriction and interpolation are generic

on complex domains, need extra relaxation steps near boundary

— for rough boundary conditions

— for concave corners
grid can be adaptive: can restrict processing at finer levels to subdomains
schedule parameters (how many relaxation steps and V cycles) can be:

— fixed

— accommodative
e.g. software loops until residual at each step is below some tolerance

for CFD, align the grid with the boundary and the flow
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Brandt’s Research Philosophy

To do multigrid research, you should "very gradually increase
the complexity of the problems” you attempt

"we Insist on obtaining for each problem the full efficiency”
(e.g. 10 work units)

strives for linear time with small constants
"stalling numerical processes must be wrong”

constants are particularly important when discussing
algorithms that are O(n); more than for algorithms that are,
say, O(R)

strives for convergence proofs with small constants: “almost
all other multigrid theories give estimates which are not
guantitative or very unrealistic, rendering them useless in
practice”
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Computational Fluid Dynamics (CFD)

e equations
— Euler equation - linear, inviscid (no viscosity)
— Navier-Stokes equation - nonlinear, models viscosity

 now possible to simulate flow around an airplane, with engines
— first achieved in 1986
— done with multigrid?
* Reynolds Number (Re)
— a measure of the ratio of inertial and viscous forces
— Re large => turbulence, difficult simulation
— for an airplane, Re ~ 107
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CFD 2

transonic flow
— flow is both below and above speed of sound (Mach no. <1 or >1)
— => PDE is elliptic where subsonic and hyperbolic where supersonic
high Reynolds number steady state flows
=> non-elliptic
use boundary-fitted structured grids

boundary layer tricky

— in viscous simulation, flow near surface (of e.g. wing) has high gradient, since
flow speed at surface is zero, but speed inches away could be high

— Yyou often want the elements (grid quadrilaterals) to be highly stretched (e.qg.
"aspect ratio" of 4000:1) in boundary layer to get accurate simulations

— high aspect ratio slows convergence or complicates the relaxation method
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Multigrid Applications 1

e computational fluid dynamics (CFD)
— application for which multigrid has been most used
— weather prediction (whole earth simulations)

e structured grid generation
— use elliptic PDE to define geometry of grid nodes, create grid using
multigrid!
 ill-posed (underdetermined) problems
— edge detection in noisy image
» can find all straight features (lines, edges) in kxk pixel image in O(k log k)
time
— Image segmentation
— tomography (i.e. CAT scan)

— approximating noisy data with a piecewise smooth function with
known or unknown discontinuities
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Multigrid Applications 2

 Integral operators
— multiplication by a dense nxn matrix in O(n) time
— easy If matrix (or kernel) is smooth; slower if not
— n-body force computations
e gravity
* molecular interactions
« thermal radiation

— Fast Multipole Method is faster than @(alg. only for n>1000, they
say
 Is Brandt's method faster? (unpublished)
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Multigrid Applications 3

e global optimization
— works even if many local minima

— "each step can be interpreted as an optimization over a certain
subspace"

— protein folding

e constrained optimization
— optimal control, e.g. robot motion planning

e solid mechanics

— set up using finite element methods (unstructured grid), not finite
difference
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Multigrid Applications 4

e quantum chemistry

— compute eigenfunctions of Schroedinger's eqn. (the PDE governing
guantum mechanics) to find electron density functions

e macroscopic from microscopic
— statistical physics, particle physics (QCD)

 derive macroscopic properties (e.g. nonlinear elasticity) by using multigrid
on microscopic level (on atomic forces)

— unified wave/ray methods for simulating electromagnetic radiation

e combine wave model (to simulate diffraction, interference, when
wavelength comparable to scale of objects) and

* ray model (to simulate free flight of photons in air/vacuum)

 VLSI design

— highly nonlinear
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Related Methods

e unstructured multigrid

— uses an unstructured grid (irregular topology), not structured one

— this complicates relaxation, restriction, & interpolation, but permits

solution on complex domains (e.g. around an aircraft wing with flaps)

e algebraic multigrid

— multigrid without the grid

— analyze and do clustering on graph implied by matrix A

— input is A only -- no high level problem knowledge

e domain decomposition

— divide domain into (possibly overlapping) pieces

— solve alternately on each piece, using solution of other pieces as
boundary conditions

— useful for complex domains, parallelizes easily
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