Initial Value Problems

Paul Heckbert

Computer Science Department
Carnegie Mellon University

31 Oct. 2000 15-859B - Introduction to Scientific Computing

Generic First Order ODE

given
y'=t(t,y)
y(t)=Yo

solve for y(t) for t>t,,

31 Oct. 2000 15-859B - Introduction to Scientific Computing

First ODE:
y'=y

 ODE is unstable
* (solution isy(t)=ce')

e we show solutions with Euler’'s method

31 Oct. 2000 15-859B - Introduction to Scientific Computing

31 Oct. 2000

20

AL

o T
AR

-
b R R e
'y
W

=
th

N
N

AR A D]
R AR

iy

)
st S

15-859B - Introduction to Scientific Computing

Second ODE:
y'=-y

ODE is stable
(solution isy(t)= cet)

If htoo large, numerical solution is unstable

we show solutions with Euler’'s method in red

31 Oct. 2000 15-859B - Introduction to Scientific Computing

y'=-y, stable but slow solution

...
158

106

10e
150

h=0.05

...

31 Oct. 2000 15-859B - Introduction to Scientific Computing

y'=-y, stable, a bit inaccurate soln.

158

104

15¢

h=0.5

...

31 Oct. 2000 15-859B - Introduction to Scientific Computing

y'=-y, stable, rather inaccurate soln.

2

31 Oct. 2000 15-859B - Introduction to Scientific Computing

y'=-y, stable but poor solution

31 Oct. 2000 15-859B - Introduction to Scientific Computing

31 Oct. 2000

...

159

109

104

15¢

20

y

-y, unstable solution

15-859B - Introduction to Scientific Computing

11

Jacobian of ODE
ODE:y’=f(t,y), wherey is n-dimensional

. . of. .
Jacobian of is J; =§ a square matrix
J

If ODE homogeneous and linear thérs constant
andy’'=Jy

but in general varies witht andy

31 Oct. 2000 15-859B - Introduction to Scientific Computing 12

Stability of ODE depends on Jacobian

At agiven (t,y) find J(t,y) and its eigenvalues
find r_ ., = max { Re[A(J)] }
iIf r_.,<O, ODE stable, locally

.« =0, ODE neutrally stable, locally
>0, ODE unstable, locally

31 Oct. 2000 15-859B - Introduction to Scientific Computing 13

Stability of Numerical Solution

o Stability of numerical solution isrelated to, but
not the same as stability of ODE!

« Amplification factor of a numerical solution is the
factor by which global error grows or shrinks each
iteration.

31 Oct. 2000 15-859B - Introduction to Scientific Computing 14

Stability of Euler’s Method

Amplification factor of Euler's method is-hJ
Note that it depends dnand, in general, on& .

Stability of Euler's method is determined by
eigenvalues off+hJ
spectral radiup(l+hJ)= max | A;(I+hJ) |

If p(1+hJ)<1 then Euler's method stable

— If all eigenvalues dfJ lie inside unit circle centered at —1,
E.M. Is stable

— scalar case: 0&]|<2 iff stable, so choode< 2/
What if one eigenvalue dfis much larger than the others?

31 Oct. 2000 15-859B - Introduction to Scientific Computing 15

Stiff ODE

 An ODE is $iff if its eigenvalues have greatly
differing magnitudes.

 With a stiff ODE, one eigenvalue can force use of
smallh when using Euler's method

31 Oct. 2000 15-859B - Introduction to Scientific Computing 16

Implicit Methods

use information from future timg, , to take a step
fromt,

Euler method: Vir1 = Vit f(t. Yy
backward Euler methody,, ; = Y, +f(t,. 1,Yie)Nk

example:
y'=Ay f{(ty)=Ay

Yir1 = Yt AV 1Nk
(I-h A)Y,. =Y, -- Solvethis system each iteration

31 Oct. 2000 15-859B - Introduction to Scientific Computing 17

Stability of Backward Euler’s Method
« Amplification factor of B.E.M. islthJ)-1

 B.E.M. Is stable independent lo{unconditionally
stable) as long as,,,,<0, I.e. as long as ODE is stable

 Implicit methods such as this permit bigger steps to
be taken (largehn)

31 Oct. 2000 15-859B - Introduction to Scientific Computing 18

y

31 Oct. 2000

-y, B.E.M. with large step

158

208

n=0.5

15-859B - Introduction to Scientific Computing

19

31 Oct. 2000

B.E.M. with very large step

n=2.2

12 14 1% 18 20

15-859B - Introduction to Scientific Computing

20

Third ODE:
y’=-100y+100t+101

 ODE is stable, very stiff
e (solution isy(t)= 1+t+ce100)

e we show solutions:
— Euler’'s method in red
— Backward Euler in green

31 Oct. 2000 15-859B - Introduction to Scientific Computing

21

Euler’s method requires tiny step

1%

0 0.05 01 0.5 0.2 0.25 0.3 0.35 0.4

31 Oct. 2000 15-859B - Introduction to Scientific Computing

22

Euler’s method, with larger step

12

0 0,05 01 0.15 0.2 0.25 03 035 0.4

31 Oct. 2000 15-859B - Introduction to Scientific Computing

23

Euler’s method with too large a step

15

10

h=0.1

5 i i A i i
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

three solutions started at y,=.99, 1, 1.01

31 Oct. 2000 15-859B - Introduction to Scientific Computing 24

Large steps OK with Backward Euler’s
method

15

0 . 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

31 Oct. 2000 15-859B - Introduction to Scientific Computing 25

31 Oct. 2000

Very large steps OK, too

n=0.1

0.25 0.3 0.35

15-859B - Introduction to Scientific Computing

0.4

26

Popular IVP Solution Methods

Euler's method, $ order

backward Euler's method®brder

trapezoid method (a.k.aMrder Adams-Moulton)
4th order Runge-Kutta

If a method ip™ order accurate then its global error
IS O(P)

31 Oct. 2000 15-859B - Introduction to Scientific Computing 27

Matlab code used to make E.M. plots

function [tv,yv] = eul er(funcnane, h,t0,tnmax, y0)

% use Euler’s nethod to solve y’ =func(t,y)

%return tvec and yvec sanpled at t=(t0: h:tmax) as col.
% funcnanme is a string containing the nanme of func

% apparently func has to be in this file??

% Paul Heckbert 30 Cct 2000
y = yo0;
tv = [t0];
yv = [yO0];
for t = t0: h:tmax
f = eval ([funcname " (t,y)’]);
y = y+f*h;
tv = [tv; t+h];
yv = [yv; vyl;
end

function f

f =y,
return;

funcl(t,y) % Heath fig 9.6

—
1

function func2(t,y) % Heath fig 9.7
f =-y;
return;

function f = func3(t,vy) % Heat h exanple 9.11

f = -100*y+100*t +101;
return;

31 Oct. 2000 15-859B - Introduction to Scientific Computing

vectors

28

Matlab code used to make E.M. plots

function e3(h,file)
figure(4);

clf;

hol d on;

tmax = . 4;

axi s([O0 tmax -5 15]);
% axi s([0 .05 .95 2]);

% first draw "exact" solution in blue

yov = 2.7(0: 4:80);

for yO = [yOv -yOv]
[tv,yv] = euler(’'func3, .005, 0O, tnmax, y0);
plot(tv,yv, b--");

end

% t hen draw approxi mate solution in red

for yO = [(.95:.05:1.05) -5 5 10 15]
[tv,yv] = euler(’func3, h, 0, tmax, y0);
plot(tv,yv,’ro-’, 'LineWdth’,2, 'MarkerSize’,4);

end

text(.32,-3, sprintf(’h=%’, h), 'FontSize ,20, "Color’,’ r’);

eval (['print -depsc2 ' file]);

run, e.g. e3(.1, ‘a.eps)

31 Oct. 2000 15-859B - Introduction to Scientific Computing 29

