
31 Oct. 2000 15-859B - Introduction to Scientific Computing 1

Paul Heckbert

Computer Science Department

Carnegie Mellon University

31 Oct. 2000 15-859B - Introduction to Scientific Computing 2

given

y’=f(t,y)

y(t0)=y0

solve for y(t) for t>t0

31 Oct. 2000 15-859B - Introduction to Scientific Computing 3

y’=y

• ODE is unstable

• (solution is y(t)=cet)

• we show solutions with Euler’s method

31 Oct. 2000 15-859B - Introduction to Scientific Computing 4

y’=y

31 Oct. 2000 15-859B - Introduction to Scientific Computing 5

y’=-y

• ODE is stable

• (solution is y(t)= ce-t)

• if h too large, numerical solution is unstable

• we show solutions with Euler’s method in red

31 Oct. 2000 15-859B - Introduction to Scientific Computing 6

y’=-y,

31 Oct. 2000 15-859B - Introduction to Scientific Computing 7

y’=-y,

31 Oct. 2000 15-859B - Introduction to Scientific Computing 8

y’=-y,

31 Oct. 2000 15-859B - Introduction to Scientific Computing 9

y’=-y,

31 Oct. 2000 15-859B - Introduction to Scientific Computing 10

y’=-y,

31 Oct. 2000 15-859B - Introduction to Scientific Computing 11

y’=-y,

31 Oct. 2000 15-859B - Introduction to Scientific Computing 12

• ODE: y’=f(t,y), where y is n-dimensional

• Jacobian of f is a square matrix

• if ODE homogeneous and linear then J is constant
and y’=Jy

• but in general J varies with t and y

j

i
ij y

f
J

∂
∂=

31 Oct. 2000 15-859B - Introduction to Scientific Computing 13

At a given (t,y) find J(t,y) and its eigenvalues

find rmax = maxi { Re[λi(J)] }

if rmax<0, ODE stable, locally

rmax =0, ODE neutrally stable, locally

rmax >0, ODE unstable, locally

31 Oct. 2000 15-859B - Introduction to Scientific Computing 14

• Stability of numerical solution is related to, but
not the same as stability of ODE!

• Amplification factor of a numerical solution is the
factor by which global error grows or shrinks each
iteration.

31 Oct. 2000 15-859B - Introduction to Scientific Computing 15

• Amplification factor of Euler’s method is I+hJ

• Note that it depends on h and, in general, on t & y.

• Stability of Euler’s method is determined by
eigenvalues of I+hJ

• spectral radius ρ(I+hJ)= maxi | λi(I+hJ) |

• if ρ(I+hJ)<1 then Euler’s method stable
– if all eigenvalues of hJ lie inside unit circle centered at –1,

E.M. is stable

– scalar case: 0<|hJ|<2 iff stable, so choose h < 2/|J|

• What if one eigenvalue of J is much larger than the others?

31 Oct. 2000 15-859B - Introduction to Scientific Computing 16

• An ODE is stiff if its eigenvalues have greatly
differing magnitudes.

• With a stiff ODE, one eigenvalue can force use of
small h when using Euler’s method

31 Oct. 2000 15-859B - Introduction to Scientific Computing 17

• use information from future time tk+1 to take a step
from tk

• Euler method: yk+1 = yk+f(tk,yk)hk

• backward Euler method: yk+1 = yk+f(tk+1,yk+1)hk

• example:

• y’=Ay f(t,y)=Ay

• yk+1 = yk+Ayk+1hk

• (I-hkA)yk+1=yk -- solve this system each iteration

31 Oct. 2000 15-859B - Introduction to Scientific Computing 18

• Amplification factor of B.E.M. is (I-hJ)-1

• B.E.M. is stable independent of h (unconditionally
stable) as long as rmax<0, i.e. as long as ODE is stable

• Implicit methods such as this permit bigger steps to
be taken (larger h)

31 Oct. 2000 15-859B - Introduction to Scientific Computing 19

y’=-y,

31 Oct. 2000 15-859B - Introduction to Scientific Computing 20

y’=-y,

31 Oct. 2000 15-859B - Introduction to Scientific Computing 21

y’=-100y+100t+101

• ODE is stable, very stiff

• (solution is y(t)= 1+t+ce-100t)

• we show solutions:
– Euler’s method in red

– Backward Euler in green

31 Oct. 2000 15-859B - Introduction to Scientific Computing 22

31 Oct. 2000 15-859B - Introduction to Scientific Computing 23

31 Oct. 2000 15-859B - Introduction to Scientific Computing 24

three solutions started at y0=.99, 1, 1.01

31 Oct. 2000 15-859B - Introduction to Scientific Computing 25

31 Oct. 2000 15-859B - Introduction to Scientific Computing 26

31 Oct. 2000 15-859B - Introduction to Scientific Computing 27

• Euler’s method, 1st order

• backward Euler’s method, 1st order

• trapezoid method (a.k.a. 2nd order Adams-Moulton)

• 4th order Runge-Kutta

• If a method is pth order accurate then its global error
is O(hp)

31 Oct. 2000 15-859B - Introduction to Scientific Computing 28

• function [tv,yv] = euler(funcname,h,t0,tmax,y0)
% use Euler’s method to solve y’=func(t,y)
% return tvec and yvec sampled at t=(t0:h:tmax) as col. vectors
% funcname is a string containing the name of func
% apparently func has to be in this file??

% Paul Heckbert 30 Oct 2000

y = y0;
tv = [t0];
yv = [y0];
for t = t0:h:tmax

f = eval([funcname ’(t,y)’]);
y = y+f*h;
tv = [tv; t+h];
yv = [yv; y];

end

function f = func1(t,y) % Heath fig 9.6
f = y;
return;

function f = func2(t,y) % Heath fig 9.7
f = -y;
return;

function f = func3(t,y) % Heath example 9.11
f = -100*y+100*t+101;
return;

31 Oct. 2000 15-859B - Introduction to Scientific Computing 29

• function e3(h,file)
figure(4);
clf;
hold on;
tmax = .4;
axis([0 tmax -5 15]);
% axis([0 .05 .95 2]);

% first draw "exact" solution in blue
y0v = 2.^(0:4:80);
for y0 = [y0v -y0v]

[tv,yv] = euler(’func3’, .005, 0, tmax, y0);
plot(tv,yv,’b--’);

end

% then draw approximate solution in red
for y0 = [(.95:.05:1.05) -5 5 10 15]

[tv,yv] = euler(’func3’, h, 0, tmax, y0);
plot(tv,yv,’ro-’, ’LineWidth’,2, ’MarkerSize’,4);

end
text(.32,-3, sprintf(’h=%g’, h), ’FontSize’,20, ’Color’,’r’);

eval([’print -depsc2 ’ file]);

• run, e.g. e3(.1, ‘a.eps’)

