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given

y’=f(t,y)

y(t0)=y0

solve for y(t) for t>t0
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y’=y

• ODE is unstable

• (solution is y(t)=cet )

• we show solutions with Euler’s method
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y’=-y

• ODE is stable

• (solution is y(t)= ce-t )

• if h too large, numerical solution is unstable

• we show solutions with Euler’s method in red
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y’=-y, 
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• ODE: y’=f(t,y), where y is n-dimensional

• Jacobian of f is a square matrix

• if ODE homogeneous and linear then J is constant 
and y’=Jy

• but in general J varies with t and y
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At a given (t,y) find J(t,y) and its eigenvalues

find  rmax = maxi { Re[λi(J)] }

if rmax<0,   ODE stable, locally

rmax =0,   ODE neutrally stable, locally

rmax >0,   ODE unstable, locally
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• Stability of numerical solution is related to, but 
not the same as stability of ODE!

• Amplification factor of a numerical solution is the 
factor by which global error grows or shrinks each 
iteration.
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• Amplification factor of Euler’s method is I+hJ

• Note that it depends on h and, in general, on t & y.

• Stability of Euler’s method is determined by 
eigenvalues of I+hJ

• spectral radius ρ(I+hJ)= maxi | λi(I+hJ) |

• if ρ(I+hJ)<1 then Euler’s method stable
– if all eigenvalues of hJ lie inside unit circle centered at –1, 

E.M. is stable

– scalar case:  0<|hJ|<2 iff stable, so choose h < 2/|J|

• What if one eigenvalue of J is much larger than the others?
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• An ODE is stiff if its eigenvalues have greatly 
differing magnitudes.

• With a stiff ODE, one eigenvalue can force use of 
small h when using Euler’s method
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• use information from future time tk+1 to take a step 
from tk

• Euler method:                  yk+1 = yk+f(tk,yk)hk

• backward Euler method:  yk+1 = yk+f(tk+1,yk+1)hk

• example:

• y’=Ay     f(t,y)=Ay

• yk+1 = yk+Ayk+1hk

• (I-hkA)yk+1=yk   -- solve this system each iteration
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• Amplification factor of B.E.M. is (I-hJ)-1

• B.E.M. is stable independent of h (unconditionally 
stable) as long as rmax<0, i.e. as long as ODE is stable

• Implicit methods such as this permit bigger steps to 
be taken (larger h)
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y’=-100y+100t+101

• ODE is stable, very stiff

• (solution is y(t)= 1+t+ce-100t )

• we show solutions:
– Euler’s method in red

– Backward Euler in green
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three solutions started at y0=.99, 1, 1.01
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• Euler’s method, 1st order

• backward Euler’s method, 1st order

• trapezoid method (a.k.a. 2nd order Adams-Moulton)

• 4th order Runge-Kutta

• If a method is pth order accurate then its global error 
is O(hp)
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• function [tv,yv] = euler(funcname,h,t0,tmax,y0)
% use Euler’s method to solve y’=func(t,y)
% return tvec and yvec sampled at t=(t0:h:tmax) as col. vectors
% funcname is a string containing the name of func
% apparently func has to be in this file??

% Paul Heckbert 30 Oct 2000

y = y0;
tv = [t0];
yv = [y0];
for t = t0:h:tmax

f = eval([funcname ’(t,y)’]);
y = y+f*h;
tv = [tv; t+h];
yv = [yv; y];

end

function f = func1(t,y) % Heath fig 9.6
f = y;
return;

function f = func2(t,y) % Heath fig 9.7
f = -y;
return;

function f = func3(t,y) % Heath example 9.11
f = -100*y+100*t+101;
return;
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• function e3(h,file)
figure(4);
clf;
hold on;
tmax = .4;
axis([0 tmax -5 15]);
% axis([0 .05 .95 2]);

% first draw "exact" solution in blue
y0v = 2.^(0:4:80);
for y0 = [y0v -y0v]

[tv,yv] = euler(’func3’, .005, 0, tmax, y0);
plot(tv,yv,’b--’);

end

% then draw approximate solution in red
for y0 = [(.95:.05:1.05) -5 5 10 15]

[tv,yv] = euler(’func3’, h, 0, tmax, y0);
plot(tv,yv,’ro-’, ’LineWidth’,2, ’MarkerSize’,4);

end
text(.32,-3, sprintf(’h=%g’, h), ’FontSize’,20, ’Color’,’r’);

eval([’print -depsc2 ’ file]);

• run, e.g.  e3(.1, ‘a.eps’)


