Initial Value Problems

Paul Heckbert

Computer Science Department
Carnegie Mellon University

Generic First Order ODE

given

$$y'=f(t,y)$$

$$y(t_0)=y_0$$

solve for y(t) for $t > t_0$

First ODE: y'=y

- ODE is unstable
- (solution is $y(t)=ce^t$)
- we show solutions with Euler's method

Second ODE:

$$y'=-y$$

- ODE is stable
- (solution is $y(t) = ce^{-t}$)
- if h too large, numerical solution is unstable
- we show solutions with Euler's method in red

y'=-y, stable but slow solution

y'=-y, stable, a bit inaccurate soln.

y'=-y, stable, rather inaccurate soln.

y'=-y, stable but poor solution

y'=-y, oscillating solution

y'=-y, unstable solution

Jacobian of ODE

• ODE: y'=f(t,y), where y is n-dimensional

• Jacobian of f is
$$J_{ij} = \frac{\partial f_i}{\partial y_j}$$
 a square matrix

• if ODE homogeneous and linear then J is constant and y'=Jy

• but in general J varies with t and y

Stability of ODE depends on Jacobian

At a given (t,y) find J(t,y) and its eigenvalues

```
find r_{\text{max}} = \max_{i} \{ \text{Re}[\lambda_{i}(J)] \}
```

```
if r_{\text{max}}<0, ODE stable, locally
```

 $r_{\text{max}} = 0$, ODE neutrally stable, locally

 $r_{\rm max}$ >0, ODE unstable, locally

Stability of Numerical Solution

• Stability of numerical solution is related to, but not the same as stability of ODE!

• Amplification factor of a numerical solution is the factor by which global error grows or shrinks each iteration.

Stability of Euler's Method

- Amplification factor of Euler's method is I+hJ
- Note that it depends on h and, in general, on t & y.
- Stability of Euler's method is determined by eigenvalues of I+hJ
- spectral radius $\rho(I+hJ) = \max_i |\lambda_i(I+hJ)|$
- if $\rho(I+hJ)<1$ then Euler's method stable
 - if all eigenvalues of hJ lie inside unit circle centered at -1, E.M. is stable
 - scalar case: 0 < |hJ| < 2 iff stable, so choose h < 2/|J|
- What if one eigenvalue of *J* is much larger than the others?

Stiff ODE

• An ODE is stiff if its eigenvalues have greatly differing magnitudes.

• With a stiff ODE, one eigenvalue can force use of small *h* when using Euler's method

Implicit Methods

- use information from future time t_{k+1} to take a step from t_k
- Euler method: $y_{k+1} = y_k + f(t_k, y_k)h_k$
- backward Euler method: $y_{k+1} = y_k + f(t_{k+1}, y_{k+1})h_k$
- example:
- y'=Ay f(t,y)=Ay
- $\bullet \quad y_{k+1} = y_k + Ay_{k+1}h_k$
- $(I-h_kA)y_{k+1}=y_k$ -- solve this system each iteration

Stability of Backward Euler's Method

- Amplification factor of B.E.M. is $(I-hJ)^{-1}$
- B.E.M. is stable independent of h (unconditionally stable) as long as $r_{\text{max}} < 0$, i.e. as long as ODE is stable
- Implicit methods such as this permit bigger steps to be taken (larger *h*)

y'=-y, B.E.M. with large step

y'=-y, B.E.M. with very large step

Third ODE:

$$y' = -100y + 100t + 101$$

- ODE is stable, very stiff
- (solution is $y(t) = 1 + t + ce^{-100t}$)
- we show solutions:
 - Euler's method in red
 - Backward Euler in green

Euler's method requires tiny step

Euler's method, with larger step

Euler's method with too large a step

three solutions started at y_0 =.99, 1, 1.01

Large steps OK with Backward Euler's method

Very large steps OK, too

Popular IVP Solution Methods

- Euler's method, 1st order
- backward Euler's method, 1st order
- trapezoid method (a.k.a. 2nd order Adams-Moulton)
- 4th order Runge-Kutta
- If a method is p^{th} order accurate then its global error is $O(h^p)$

Matlab code used to make E.M. plots

```
function [tv,yv] = euler(funcname,h,t0,tmax,y0)
% use Euler's method to solve y'=func(t,y)
% return tvec and yvec sampled at t=(t0:h:tmax) as col. vectors
 % functame is a string containing the name of func
 % apparently func has to be in this file??
 % Paul Heckbert
                          30 Oct 2000
y = y0;
tv = [t0];
yy = [y0];
 for t = t0:h:tmax
    f = eval([funcname '(t,y)']);
    y = y+f*h;
    tv = [tv; t+h];
    yv = [yv; y];
 end
function f = func1(t,y) % Heath fig 9.6
f = y;
return;
 function f = func2(t,y) % Heath fig 9.7
f = -y;
return;
function f = func3(t,y) % Heath example 9.11
f = -100*y+100*t+101;
return;
```

Matlab code used to make E.M. plots

```
function e3(h,file)
 figure(4);
 clf;
 hold on;
 tmax = .4;
 axis([0 tmax -5 15]);
 % axis([0 .05 .95 2]);
 % first draw "exact" solution in blue
 y0v = 2.^(0:4:80);
 for y0 = [y0v - y0v]
     [tv,yv] = euler('func3', .005, 0, tmax, y0);
     plot(tv,yv,'b--');
 end
 % then draw approximate solution in red
 for y0 = [(.95:.05:1.05) -5 5 10 15]
     [tv,yv] = euler('func3', h, 0, tmax, y0);
     plot(tv,yv,'ro-', 'LineWidth',2, 'MarkerSize',4);
 end
 text(.32,-3, sprintf('h=%g', h), 'FontSize',20, 'Color','r');
 eval(['print -depsc2 ' file]);
run, e.g. e3(.1, 'a.eps')
```