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Generic First Order ODE

given
y'=t(t,y)
y(t)=Yo

solve for y(t) for t>t,,
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First ODE:
y'=y

 ODE is unstable
* (solution isy(t)=ce')

e we show solutions with Euler’'s method
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Second ODE:
y'=-y

ODE is stable
(solution isy(t)= cet)

If htoo large, numerical solution is unstable

we show solutions with Euler’'s method in red
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y'=-y, stable but slow solution
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y'=-y, stable, a bit inaccurate soln.
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y'=-y, stable, rather inaccurate soln.
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y'=-y, stable but poor solution

31 Oct. 2000 15-859B - Introduction to Scientific Computing






31 Oct. 2000

...

159

109

104

15¢

20

y

-y, unstable solution

15-859B - Introduction to Scientific Computing

11



Jacobian of ODE
ODE:y’=f(t,y), wherey is n-dimensional

. . of. .
Jacobian of is J; =§ a square matrix
J

If ODE homogeneous and linear thérs constant
andy’'=Jy

but in general varies witht andy
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Stability of ODE depends on Jacobian

At agiven (t,y) find J(t,y) and its eigenvalues
find r_ ., = max { Re[A(J)] }
iIf r_.,<O, ODE stable, locally

.« =0, ODE neutrally stable, locally
>0, ODE unstable, locally
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Stability of Numerical Solution

o Stability of numerical solution isrelated to, but
not the same as stability of ODE!

« Amplification factor of a numerical solution is the
factor by which global error grows or shrinks each
iteration.
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Stability of Euler’s Method

Amplification factor of Euler's method is-hJ
Note that it depends dnand, in general, on& .

Stability of Euler's method is determined by
eigenvalues off+hJ
spectral radiup(l+hJ)= max | A;(I+hJ) |

If p(1+hJ)<1 then Euler's method stable

— If all eigenvalues dfJ lie inside unit circle centered at —1,
E.M. Is stable

— scalar case: 0&]|<2 iff stable, so choode< 2/
What if one eigenvalue dfis much larger than the others?
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Stiff ODE

 An ODE is $iff if its eigenvalues have greatly
differing magnitudes.

 With a stiff ODE, one eigenvalue can force use of
smallh when using Euler's method
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Implicit Methods

use information from future timg, , to take a step
fromt,

Euler method: Vir1 = Vit f(t. Yy
backward Euler methody,, ; = Y, +f(t,. 1,Yie )Nk

example:
y'=Ay f{(ty)=Ay

Yir1 = Yt AV 1Nk
(I-h A)Y,. =Y, -- Solvethis system each iteration
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Stability of Backward Euler’s Method
« Amplification factor of B.E.M. islthJ)-1

 B.E.M. Is stable independent lo{unconditionally
stable) as long as,,,,<0, I.e. as long as ODE is stable

 Implicit methods such as this permit bigger steps to
be taken (largehn)
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-y, B.E.M. with large step
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B.E.M. with very large step

n=2.2
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Third ODE:
y’=-100y+100t+101

 ODE is stable, very stiff
e (solution isy(t)= 1+t+ce100)

e we show solutions:
— Euler’'s method in red
— Backward Euler in green
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Euler’s method requires tiny step

1%
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Euler’s method, with larger step
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Euler’s method with too large a step
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three solutions started at y,=.99, 1, 1.01
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Large steps OK with Backward Euler’s
method

15
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Very large steps OK, too

n=0.1
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Popular IVP Solution Methods

Euler's method, $ order

backward Euler's method®brder

trapezoid method (a.k.aMrder Adams-Moulton)
4th order Runge-Kutta

If a method ip™ order accurate then its global error
IS O(P)
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Matlab code used to make E.M. plots

function [tv,yv] = eul er(funcnane, h,t0,tnmax, y0)

% use Euler’s nethod to solve y’ =func(t,y)

%return tvec and yvec sanpled at t=(t0: h:tmax) as col.
% funcnanme is a string containing the nanme of func

% apparently func has to be in this file??

% Paul Heckbert 30 Cct 2000
y = yo0;
tv = [t0];
yv = [yO0];
for t = t0: h:tmax
f = eval ([funcname " (t,y)’]);
y = y+f*h;
tv = [tv; t+h];
yv = [yv; vyl;
end

function f

f =y,
return;

funcl(t,y) % Heath fig 9.6

—
1

function func2(t,y) % Heath fig 9.7
f =-y;
return;

function f = func3(t,vy) % Heat h exanple 9.11

f = -100*y+100*t +101;
return;
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Matlab code used to make E.M. plots

function e3(h,file)
figure(4);

clf;

hol d on;

tmax = . 4;

axi s([O0 tmax -5 15]);
% axi s([0 .05 .95 2]);

% first draw "exact" solution in blue

yov = 2.7(0: 4:80);

for yO = [yOv -yOv]
[tv,yv] = euler(’'func3, .005, 0O, tnmax, y0);
plot(tv,yv, b--");

end

% t hen draw approxi mate solution in red

for yO = [(.95:.05:1.05) -5 5 10 15]
[tv,yv] = euler(’func3, h, 0, tmax, y0);
plot(tv,yv,’ro-’, 'LineWdth’,2, 'MarkerSize’,4);

end

text(.32,-3, sprintf(’h=%’, h), 'FontSize ,20, "Color’,’ r’);

eval (['print -depsc2 ' file]);

run, e.g. e3(.1, ‘a.eps)
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