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• A system of equations is sparse when there are few 
nonzero coefficients, e.g. O(n) nonzeros in an nxn
matrix.

• Partial Differential Equations generally yield 
sparse systems of equations.

• Integral Equations generally yield dense (non-sparse) 
systems of equations.

• Sparse systems come from other sources besides 
PDE’s.
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• Laplace’s Equation in 2-D: ∇2u = uxx +uyy = 0
– domain is unit square [0,1]2

– value of function u(x,y) specified on boundary

– solve for u(x,y) in interior
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• Brute force: store nxn array, O(n2) memory
– but most of that is zeros – wasted space (and time)!

• Better: use data structure that stores only the nonzeros
col 1   2   3   4   5   6   7   8   9  10...

val 0   1   0   0   1  -4   1   0   0   1...

16 bit integer indices:  2, 5, 6, 7,10

32 bit floats:           1, 1,-4, 1, 1

• Memory requirements, if kn nonzeros:
– brute force: 4n2 bytes,  sparse data struc: 6kn bytes
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• System of equations Ax=b

• Solve ith equation for xi:

• Pseudocode:
until x stops changing

for i = 1 to n

x[i] ← (b[i]-sum{j≠i}{a[i,j]*x[j]})/a[i,i]

• modified x values are fed back in immediately

• converges if A is symmetric positive definite
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• Jacobi’s Method:
– Like Gauss-Seidel except two copies of x vector are kept, 

“old” and “new”

– No feedback until a sweep through n rows is complete

– Half as fast as Gauss-Seidel, stricter convergence 
requirements

• Successive Overrelaxation (SOR)
– extrapolate between old x vector and new Gauss-Seidel x

vector, typically by a factor ω between 1 and 2.

– Faster than Gauss-Seidel.
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• Generally for symmetric positive definite, only.

• Convert linear system  Ax=b
• into optimization problem: minimize  xTAx-xTb

– a parabolic bowl

• Like gradient descent
– but search in conjugate directions
– not in gradient direction, to avoid zigzag problem

• Big help when bowl is elongated (cond(A) large)
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• If K = cond(A) = λmax(A)/ λmin(A)

• then conjugate gradient method converges linearly 
with coefficient (sqrt(K)-1)/(sqrt(K)+1) worst case.

• often does much better: without roundoff error, if A
has m distinct eigenvalues, converges in m iterations!


