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• aerospace: simulate subsonic & supersonic air flow 
around full aircraft, no wind tunnel
– divide space into millions of tetrahedra or parallelepipeds, 

solve sparse linear or nonlinear PDE

• nuclear: simulate nuclear explosion!
– especially important because of nuclear test bans

• weather prediction: entire planet, 2 weeks into future

• astrophysics: galactic collisions

• automotive: simulate car crash

• biology: simulate protein folding – drug design



26 Sept. 2000 15-859B - Introduction to Scientific Computing 3

• replace infinite process with finite process
– e.g. integrals to sums

• replace general matrices with simple matrices
– e.g. diagonal

• replace complex functions with simple ones
– e.g. polynomials

• replace nonlinear problems with linear problems
• replace differential equations with algebraic equations

– e.g. linear systems

• replace high-order systems with low-order systems
• replace infinite-dimensional spaces with finite-dim. ones

– e.g. all real functions on [0,1] with samples on n-element grid



26 Sept. 2000 15-859B - Introduction to Scientific Computing 4

error type example: car crash simulation

modeling approximate car geometry

empirical measurements incorrect tire friction coeff.

previous computations error in initial speed of car

truncation or discretization numerical solution to dif.eq.

rounding used floats, not doubles

Each step introduces some error, but magnitudes may differ greatly.

Look for the largest source of error – the weak link in the chain.
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(absolute error) = (approximate value) – (true value)

Fundamental difficulty with measuring error:

For many problems we cannot compute the exact 
answer, we can only approximate it!

Often, the best we can do is estimate the error!

(absolute error) (approximate value)
(relative error) 1

(true value) (true value)
= = −
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main() {

float f = 1./3.;

printf("%.20f\n", f);  // print to 20 digits

}

0.33333334326744080000

we get 7 significant digits;  the rest is junk!

When reporting results, only show the significant digits!
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• very widely used standard for floating point

• C float is 4 bytes: 24 bit mantissa, 8 bit exponent
– about 7 significant digits

– smallest pos. no: 1.3e-38, largest: 3.4e+38

• C double is 8 bytes: 53 bit mantissa, 11 bit exponent
– about 16 significant digits

– smallest pos.: 2.3e-308, largest: 1.7e+308

• special values
– Inf - infinity (e.g. 1/0)

– NaN - “not a number”, undefined (e.g. 0/0)
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#include <math.h>

main() {
int i;
float f;
double d;

for (i=0; i<55; i++) {
f = 1. + pow(.5, i);
d = 1. + pow(.5, i);
printf("%2d  %.9f  %.18f\n", i, f, d);

}
}
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i  float        double  1+2^(-i)

0  2.000000000  2.000000000000000000
1  1.500000000  1.500000000000000000
2  1.250000000  1.250000000000000000
3  1.125000000  1.125000000000000000
4  1.062500000  1.062500000000000000

21  1.000000477  1.000000476837158200
22  1.000000238  1.000000238418579100
23  1.000000119  1.000000119209289600
24  1.000000000  1.000000059604644800

50  1.000000000  1.000000000000000900
51  1.000000000  1.000000000000000400
52  1.000000000  1.000000000000000200
53  1.000000000  1.000000000000000000
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• some problems are harder to solve accurately than 
others

• The condition number is a measure of how sensitive a 
problem is to changes in its input

• Cond<1 or so problem is well-conditioned
• Cond>>1 problem is ill-conditioned
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well conditioned ill-conditioned

taking a step on level ground step near cliff

tan(x) near x=45°, say tan(x) near x=90°
(because f’ infinite)

cos(x) not near x=90° cos(x) near x=90°
(because f zero)
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• Solve Ax=b for x

• A is n×n matrix

• x and b are n-vectors (column matrices)

• Later we’ll look at overdetermined and 
underdetermined systems, where the matrix is not 
square (#equations not equal to #unknowns)
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For a square, n×n matrix:

• rank is the max. no. of linearly independent rows or 
columns

• full rank = rank is n

• rank-deficient = rank is less than n

• singular matrix = determinant zero = no inverse = 
linearly dependent = rank-deficient = (Ax=0 for some 
nonzero x)
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intersection of 2 lines
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Rank 1 matrix means lines are parallel.

For most a, lines non-coincident, so no solution.

For a=-9, lines coincident, one-dimensional subspace of solutions.
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Gaussian Elimination on square matrix A

computes an LU decomposition
L is unit lower triangular (1’s on diagonal)
U is upper triangular

2 4 2 1 0 0 2 4 2

4 9 3 2 1 0 0 1 1

2 3 7 1 1 1 0 0 4

A LU
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• G.E. can be done on any square matrix

• if A singular then diagonal of U will contain zero(s)

• usually partial pivoting is used (swapping rows 
during elimination) to reduce errors

• G.E. is an example of an explicit method for solving 
linear systems – solve for solution in one sweep

• Other, more efficient algorithms can be used for 
specialized matrix types, as we’ll see later
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to solve Ax=b:
– decompose A into LU -- cost 2n3/3 flops
– solve Ly=b for y by forw. substitution -- cost n2 flops
– solve Ux=y for x by back substitution -- cost n2 flops

slower alternative:
– compute A-1 -- cost 2n3 flops
– multiply x=A-1b -- cost 2n2 flops
this costs about 3 times as much as LU

lesson:
– if you see A-1 in a formula, read it as “solve a system”, not 

“invert a matrix”
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Symmetric Positive Definite – an important matrix class
– symmetric: A=AT

– positive definite:   xTAx>0 for x≠0   Ø all λi>0

if A is spd,
LU decomposition can be written A=LLT,
where L is lower triangular (not unit)

this is the Cholesky factorization -- cost n3/3 flops
no pivoting required
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• A method for solving n×n linear systems

• What is its cost?
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norms differ by at most a constant factor, for fixed n
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matrix norm defined in terms of vector norm:

geometric meaning: the maximum stretch resulting from 
application of this transformation

exact result depends on whether 1-, 2-, or ∞-norm is 
used
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A measure of how close a matrix is to singular

• cond(I) = 1

• cond(singular matrix) = ∞

1cond( ) ( )

maxmaximum stretch
             

maximum shrink min

i
i

i
i

A A A Aκ

λ

λ

−= = ⋅

= =


