Introduction
&
Systems of Linear
Equations

Paul Heckbert

Computer Science Department
Carnegie Mellon University

5-859B - Introduction to Scientific Computing

State of the Art in Scientific
Computing

aerospace: simulate subsonic & supersonic air flow
around full aircraft, no wind tunnel

— divide space into millions of tetrahedra or parallelepipeds,
solve sparse linear or nonlinear PDE

nuclear: simulate nuclear explosion!
— especially important because of nuclear test bans

weather prediction: entire planet, 2 weeks into future
astrophysics: galactic collisions

automotive: simulate car crash

biology: simulate protein folding — drug design

26 Sept. 2000 15-859B - Introduction to Scientific Computing 2

Strategies for Simplifying Problems

replace infinite process with finite process
— e.g. integrals to sums

replace general matrices with simple matrices

— e.g. diagonal

replace complex functions with simple ones

— e.g. polynomials

replace nonlinear problems with linear problems

replace differential equations with algebraic equations
— e.g. linear systems

replace high-order systems with low-order systems

replace infinite-dimensional spaces with finite-dim. ones
— e.qg. all real functions on [0,1] with samplesmalement grid

26 Sept. 2000 15-859B - Introduction to Scientific Computing 3

Sources of Error

error type example: car crash ssmulation
modeling approximate car geometry
empirical measurements Incorrect tire friction coeff.
previous computations error ininitial speed of car
truncation or discretization ~ numerical solution to dif.eq.
rounding used floats, not doubles

Each step introduces some error, but magnitudes may differ greatly.
Look for the largest source of error — theweak link in the chain.

26 Sept. 2000 15-859B - Introduction to Scientific Computing

Quantifying Error

(absolute error) = (approximate value) — (true value)

_ (absolute error) _ (approximate value) 1
(true value) (true value)

(relative error)

Fundamental difficulty with measuring error:

For many problems we cannot compute the exact
answer, we can only approximate it!

Often, the best we can doastimate the error!

26 Sept. 2000 15-859B - Introduction to Scientific Computing 5

Significant Digits

mai n() {
float f = 1./3.;
printf("%20f\n", f); [/ print to 20 digits

}

0. 33333334326744080000
we get 7 significant digits; therest isjunk!

When reporting results, only show the significant digits!

26 Sept. 2000 15-859B - Introduction to Scientific Computing 6

IEEE Floating Point Format

very widely used standard for floating point

C float Is 4 bytes: 24 bit mantissa, 8 bit exponent
— about 7 significant digits
— smallest pos. no: 1.3e-38, largest: 3.4e+38

C doubleis 8 bytes: 53 bit mantissa, 11 bit exponent
— about 16 significant digits
— smallest pos.: 2.3e-308, largest: 1.7e+308

special values
— | nf -infinity (e.g. 1/0)
— NaN - “not a number”, undefined (e.g. 0/0)

26 Sept. 2000 15-859B - Introduction to Scientific Computing 7

C program to test floating point

#1 ncl ude <nmat h. h>

mai n() {
Nt | ;
float f;
doubl e d;
for (1=0; 1<55; 1++) {
f =1. + powm(.5, 1);
d=1. + powm.5, 1),
printf("%2d %Oof %18f\n", 1, f, d);

}
}

26 Sept. 2000 15-859B - Introduction to Scientific Computing

Output: precision of float & double

26 Sept. 2000

P WONEFO

22
23
24

50
51
52
53

fl oat

RPRRRER RPRERPEN

Y

. 000000000
. 500000000
. 250000000
. 125000000
. 062500000

. 000000477
. 000000238
. 000000119
. 000000000

. 000000000
. 000000000
. 000000000
. 000000000

doubl e

RPRRPREFE RPRERPERN

N Y

1427 (- 1)

. 000000000000000000
. 500000000000000000
. 250000000000000000
.125000000000000000
. 062500000000000000

. 000000476837158200
. 000000238418579100
. 000000119209289600
. 000000059604644800

. 000000000000000900
. 000000000000000400
. 000000000000000200
. 000000000000000000

15-859B - Introduction to Scientific Computing

Condition Number of a Problem

e some problems are harder to solve accurately than
others

 Thecondition number Is a measure of how sensitive a
problem Is to changes in its input

relative change in output| ‘[f(x)- f(x)]/ f(x)‘
relative change in input [x=x]/X

'
f (x)

Cond =

wheref (X) represents the exact solution to problem with input x

e Cond<lorso problem is well-conditioned
« Cond>>1 problem is ill-conditioned

26 Sept. 2000 15-859B - Introduction to Scientific Computing 10

Condition Number -- Examples

well conditioned IlI-conditioned
taking astep on level ground step near cliff

tan(x) near x=45°, say tan(x) near x=90°
(because f’ infinite)

cos(X) not near x=90° cos(X) near x=90°

(because f zero)

26 Sept. 2000 15-859B - Introduction to Scientific Computing 11

Systems of Linear Equations

Solve Ax=b for X
A IS nxn matrix
X and b aren-vectors (column matrices)

Later we’ll look at overdetermined and
underdetermined systems, where the matrix is not
sguare (#equations not equal to #unknowns)

26 Sept. 2000 15-859B - Introduction to Scientific Computing 12

Matrix Properties

For a square, nxn matrix:

* rank is the max. no. of linearly independent rows or
columns

e full rank = rank ian
e rank-deficient = rank is less than

e singular matrix = determinant zero = no inverse =
linearly dependent = rank-deficient = (Ax=0 for some
nonzero X)

26 Sept. 2000 15-859B - Introduction to Scientific Computing 13

Matrix Rank Examples

Rank 2 Rank 1 Rank O
1 O] 1 Or 0 0O
0 14 0 O ® o
1 20 1 2[

3 41 0 o

0 0 200 01 20

26 Sept. 2000

15-859B - Introduction to Scientific Computing

14

Geometric Interpretation - 2x2 System

Intersection of 2 lines

1 2

4 -1

XO O x+2y=5

yd 20 x-y=2

2

X0 BO x+2y=3

11
43 -6

yH BH™ -3x-6y=a

Rank 1 matrix means lines are parallédl.
For most a, lines non-coincident, so no solution.
For a=-9, lines coincident, one-dimensional subspace of solutions.

26 Sept. 2000

y

~N

~N

15-859B - Introduction to Scientific Computing

15

Gaussian Elimination and
LU Decomposition

Gaussian Elimination on square matrix A

;2 4 —2; ;1 O O12 4 —2;
A=—4 9 -3—=-2 1 0=0 1 1_-—=LU
+2 -3 7/ 31 1 1 0 44

computes an LU decomposition
L Iis unit lower triangular (1's on diagonal)
U Is upper triangular

26 Sept. 2000 15-859B - Introduction to Scientific Computing 16

Gaussian Elimination - comments

G.E. can be done on any square matrix
If A singular then diagonal &f will contain zero(s)

usually partial pivoting Is used (swapping rows
during elimination) to reduce errors

G.E. I1s an example of axplicit method for solving
linear systems — solve for solution in one sweep

Other, more efficient algorithms can be used for
specialized matrix types, as we’ll see later

26 Sept. 2000 15-859B - Introduction to Scientific Computing 17

Solving Systems with LU Decomposition

to solve Ax=D:
— decomposé@ into LU -- cost 23/3 flops
— solveLy=b for y by forw. substitution -- cogt? flops
— solveUx=y for x by back substitution -- cost flops

sower aternative:

— computeAl -- cost 2 flops
— multiply x=Ab -- cost 2¥ flops
this costs about 3 times as much as LU

lesson:

— if you seeAlin a formula, read it as “solve a system”, not
“Invert a matrix”

26 Sept. 2000 15-859B - Introduction to Scientific Computing 18

Symmetric Positive Definite

Symmetric Positive Definite — an important matrix class
— symmetricA=A"
— positive definite: XTAx>0 forx20 <& all A>0

If A isspd,
LU decomposition can be written A=LLT,
where L islower triangular (not unit)

thisis the Cholesky factorization -- cost n3/3 flops
no pivoting required

26 Sept. 2000 15-859B - Introduction to Scientific Computing 19

Cramer’s Rule

* A method for solvingwxn linear systems

e What Is Its cost?

26 Sept. 2000 15-859B - Introduction to Scientific Computing

20

Vector Norms

Ix[, = i\)g\ 1-norm, Manhattan norm
] 1
Ix], = MZE 2-norm, Euclidean norm
[, =max|x| eo-norm
norms differ by at most a constant factor, for fixed n

XL, <[, < I, = ~nllx], < ni.

26 Sept. 2000 15-859B - Introduction to Scientific Computing

21

Matrix Norm

matrix norm defined in terms of vector norm:

geometric meaning: the maximum stretch resulting from
application of thistransformation

exact result depends on whether 1-, 2-, or co-normis
used

26 Sept. 2000 15-859B - Introduction to Scientific Computing 22

Condition Number of a Matrix

A measure of how close amatrix isto singular

cond(A) =k (A) = | A [HMH

_ maximum stretch maXW
maximum shrink min|A]

e« cond() =1
e cond(singular matrix) =o

26 Sept. 2000 15-859B - Introduction to Scientific Computing

23

