The Personal Rover

Emily Falcone etf@andrew.cmu.edu
Rachel Gockley rgockley@andrew.cmu.edu

Eric Porter eporter @andrew.cmu.edu
[1lah Nourbakhsh illah@ri.cmu.edu

The Robotics Institute
Carnegie Mdlon University
Pittsburgh, PA 15213

Abstract

In this paper, we summarize a new gpproach for the
dissemination of robotics technologies. In a manner
analogous to the personal computer movement of the early
1980's, we propose that a productive niche for robotic
technologies is as a creative outlet for human expression
and discovery. This paper describes our ongoing efforts to
design, prototype and test a low-cost, highly competent
personal rover for the domestic environment.

I ntroduction

As with most leading technological fields, robotics
research is frequently focused upon the creation of
technology, not on creating compelling applications.
Although the search for new technologies is a valid
scientific process, one important aspect of robotics is not
appropriately explored in this manner: human-robot
interaction.

Raobotics occupies a special place in the arena of
interactive technologies because it combines sophisticated
computation with rich sensory input in a physca
embodiment that extends well beyond the desktop.
Moreover robots can exhibit tangible and expressive
behavior in the physical world.

In this regard, a centra question that occupies our
research group pertains to the social niche of robotic
artifacts in the company of the robotically uninitiated
public-at-largec What is an appropriate first role for
intelligent robot-human interaction in the daily human
environment? The time is ripe to address this question.
Robotic technologies are now sufficiently mature to enable
long-term, competent robot artifacts, at least in prototype
form, to exist (Nourbakhsh et al. 1999, Thrun et al. 2000).

We propose that an appropriate first application for
robotics within the human social domain is as a creative
and expressive tool rather than a productive tool optimized
for consumer use. Condder the history of the personal
computer. In the early 1980’'s, advances in low-cost
computer manufacturing enabled individuals to purchase
and use computers at home without specialized knowledge
of electrical or computer engineering. These early
computers were tools that forged a new crestive outlet for
programmers of all ages. Before long, video games as well
as more business-savvy applications were born from the
tinkering of these initial computer hobbyists. In effect, the
early adopters of the personal computer technology

congtituted a massively parallel effort to explore the space
of possible computer programs and thus invent new
human-computer interaction paradigms.

The goal of the Personal Rover project is analogous: to
design and deploy a capable robot that can be deployed
into the domestic environment and that will help forge a
community of creetive robot enthusiasts. Such a personal
rover is highly configurable by the end user, who is
creatively governing the behavior of the rover itsdf: a
physical artifact with the same degree of programmability
as the early persona computer combined with far richer
and more pal pable sensory and effectory capabilities.

Our goal is to produce a Personal Rover suitable for
children and adults who are not specialists in mechanical
engineering or eectrical engineering. We hypothesize that
the right robot will catalyze such a community of early
adopters and will harnesstheir inventive potential.

As in the toy indudtry, the first step toward designing a
Personal Rover for the domestic niche is to conduct a User
Experience Design study. The challenge in the case of the
Personal Rover isto ensure that there will exist viable user
experience trgjectories in which the robot becomes a
member of the household rather than a forgotten toy
relegated to the closet. Contracting with Emergent Design,
Inc., we produced an internal experience design document
that describes the interaction of a fictional child, Jenna,
with her Rover over the course of several months.

The user experience design results fed several key
congtraints into the Rover design process: the robot must
have visual perceptua competence both so that navigation
is simple and so that it can act as a videographer in the
home; the rover must have the locomotory means to travel
not only throughout the inside of a home but aso to
traverse steps to go outside so that it may explore the back
yard, for example; findly, the interaction software must
enable the non-roboticist to shape and schedule the
activities of therover over minutes, hours, days and weeks.

In Sections 2-4, this paper describes the ways in which
we are working to satisfy these constraints. In addition,
Section 5 describes the Personal Rover’s performance at
therecent 2002 AAAI Conference.

Rover M echanics and Control

Rover Hardware

The rover's physical dimensons measure about
18"x12"x24” (length, width, height). A CMUcam vision
system is mounted on top so that it can pan and tilt (Fig. 1).
Its ahility to track colorful objects permits the rover to
easily navigate a room using vision. On either side of the
rover, there are forward-facing infrared range finders. The
most unique feature of the rover is a movable center of
mass mechaniam that allows it to actively shift its weight
forwards and backwards (Fig. 2). Because of elevated
Omni-Whedls located behind the rear wheels, the rover can
tip backwards and climb steps greatly exceeding its wheel
diameter. The two sides of the rover are connected with a
differential, which lets one whed move over an obstacle
while keeping the remaining three whedls on the ground.
Two servo motors provide Ackerman steering and the
ability to rotate in place by turning the two front whedls
inward.

Figure 2: A moveable boom givestherover a variable
center of mass.

A Compag iPAQ on the rover provides 802.11
networking, communicates with the CMUcam, and sends
motion commands to the Cerebellum microcontroller. The
role of the iPAQ is mainly as a wireless to seria bridge,
but it has a tracking routine built in to control pan and tilt
of the camera a 17 frames per second, which keeps the
tracked object centered in the camera The Cerebellum
contrals the servo motors, reads the range finders, and tells
the four daughter boards (one for each wheel) a speed to
maintain. Based on the directional encoders attached to the
motors, the daughter boards use PID control to adjust the
duty cycle. The daughter boards keep track of the encoder
counts as a 16 bit unsgned value that wraps around when
the value overflows or underflows. While 16 bits allows
for values from 0 to 65535, the encoders overflow quite
often because the encoders provide 30250 ticks per
revolution. Because the whed circumference is about 9.3
inches, this means that the encoder wraps around after a
whed has moved about 20 inches.

Rover Control

Command packets from the controlling computer to the
rover can specify any combination of the following
commands: a speed, a turn angle, a boom position, camera
pan and tilt, plus commands supported by the camera
There are 36 possible turning angles: 17 to each dde,
straight ahead, and rotation in place. From the rover, the
controlling computer receives a state array containing the
velocity, encoder counts, and duty cycle from each of the
whedls. In addition it is given the servo positions, the
range from the infrareds, and the boom position.

Encoders. The controlling computer calculates the rover’s
position and angle by integrating the encoders from all four
whedls. Because the turning radius is known, only one
encoder is required for the calculations. With four
encoders, the problem is over constrained. Having four
wheds helps overcome errors and provides greater
accuracy than just one encoder. When a user wants to
update the encoders, they simply call a function that takes
the state array as an argument. This function begins by
finding the difference between the current encoder values
and the previous ones and possibly correcting for wrap
around. We check all four of the encoder differences to
make sure that they fall within an acceptable range. If the
encoder difference indicates that the wheel has spun in the
wrong direction or spun in the correct direction but too
quickly, that value is discarded.

In avehicle with Ackerman steering, the axes of rotation
for all four whedls cross at a single point. That point is
aways on the line that goes through the centers of both
rear whedls (Fig. 3).

Figure 3: The axes of rotation for all four wheels cross
at a single point.

For each pair of whedls, we calculate the ratio of the
distance traveled by each whedl. We then use the ratio to
calculate the radius of the turn. We average the results to
identify the point about which the rover is turning. We can
use the resulting turn angle and turning radius values to
correct for real-world events such as wheel resistance or
unexpected whedl angle changes over the course of the
turn.

After we have the turning radius, we need to find out
how far the rover has moved along the circle in order to
determine its new location. We use the whed that is
farthest away from the center of rotation, which is also the
whed that has moved the greatest distance. Dividing the
distance that whed traveled by the turning radius gives us
how many radians the rover has moved along itsarc. Call
thisangle apha. Calculating the final position of the rover
requires three steps. Fird, we trandate the coordinate
frame to the point around which the rover is rotating.
Second, we rotate the coordinate frame in place by alpha.
Third, we do a trandation in the opposite direction than
that of thefirst step.

More simply, given r, the positive radius, and a, the
anglein radians the rover has moved around the circle, we
can calculate the new location of the rover with the
following formulas:

X1 =r*[cos(By + O - TV2) + cos(Bp+T172) + Xq]
V1 = P*[SiN(8 + @ - T72) + SiN(Be+172) + o]
0, =64+ Q.

GoTo and TurnTo. Two smple movement functions,
GoTo and TurnTo use the encoders to move and turn
accurately. While the rover is moving, a global x, y, and
theta are continuoudly being updated. Since the movement
commands run in a separate thread, they can be interrupted
at any time. These commands are needed for more
advanced motion control.

The GoTo(x, y) function moves to an arbitrary point by
moving along the arc between the starting and ending
points. Theending position isrelative to wheretherover is
when the command is issued with the rover facing the
positive x-axis and having the positive y-axis on its left.
The rover moves along the arc of the circle having its

center on the y-axis and containing points at (0, 0) and (X,
y). Because there are only 36 possible turning angles, the
rover starts off by turning the wheds to the position that
will take it closest to the ending point. The function drives
the rover towards the destination. After each command,
the encoders are updated and the function recomputes the
best turning angle. When the rover gets close to the godl, it
slows down so as to minimize dead reckoning error while
stopping. The TurnTo(theta) function rotates in place the
specified number of degrees. It works just like GoTo, but
does not need to recompute the turning angle between
cycles.

Landmark-Relative motion. We can create advanced
motion control functions by using the tracking routine on
the iPAQ and the global coordinate frame. The function
caled “landmark latera” moves the rover a specified
distance towards a landmark, using the pan angle of the
camera to keep the rover moving straight, and using the
global coordinate frame to keep track of how far the rover
has gone. The position of the landmark in the global
coordinate frame is calculated by using the pan and tilt
angles of the camera, adong with the known height of the
camera above the ground. Once we know the position of
the landmark, we can use the GoTo function to provide
landmark-relative motion. For example, the rover is able
to stop one foot in front of the landmark or two feet to the
left of it (Fig. 4).

Figure 4: The rover useslandmarks to navigate.

Climbing. By moving its center of gravity, the rover can
climb up stairs that a robot with a fixed center of gravity
would not be ableto. Whiletherover is climbing, the code
contralling the rover detects the changes of state by
reading the motor currents in the wheds (Fig. 6, 7).
Because speed control is done on each whed
independently, we can get an idea for how much resistance
each whedl is experiencing by reading how much power it
takes to keep the whedl spinning at a constant velocity.

The omni-wheels can be moved to allow the rover to climb
up stairs as high as 7 inches tall. In the proceeding
paragraphs, | will be referring to the angle of the boom.
For reference, O degreesis al the way back (near the omni-
whedls) and 180 degreesis all the way forward. | will aso
be referring to the duty cycle, which in the units of the
robot ranges from -1024 to 1023; the duty cycle is not
represented as a percentage. While moving forward a a
small speed, the duty cycle is about 650. The actual stair
that the rover climbs in this exampleis about 6 inches high.

Climbing Up. The first step in gair climbing is moving
the boom to 50 degrees and waiting until the rover hits the
stair (Fig. 5a). We detect the rover hitting the stair by
waiting for the duty cycle from one of the rear wheelsto go
above 950. Once both front whedls have hit the qair, the
back wheels are moving forward with full power and the
front whedls are actudly applying force backwards to keep
them from moving too fast. Thisis because when the back
whedls move horizontally towards the stair one inch, the
front wheels have to move vertically up the stair by 4
inches.

The second step is to shift the boom back, causing the
rover to fall backwards onto the omni-wheels (Fig. 5b).
When the duty cycles for both back whedls drop below
900, we know that the rover has fallen back on the omni-
whedls and we start moving the boom forward to 145
degrees. With the rover moving at about half an inch per
second, the boom has moved far enough forward to tip the

Figure 5¢c

rover forward when the rear whedls are about an inch from
the step. The rover now has its center of gravity on top of
the stair.

When the duty cycles from the front wheels goes above
800, we know that the back wheds have hit the stair
because it takes more work to pull the back of the rover up
(Fig. 5¢). Once the back whedls hit the stair, things get
tricky. If we leave the boom at 145 degrees, when the
rover makes it up, its weight will be too far forward and it
will fall on its face. If we immediately move the weight
back, the rover won't be able to make it up because not
enough weight will be on the front whedls. We solve this
by waiting three seconds and then moving the boom to 125
degrees. This way the boom is moving backwards just as
the rear whedls are coming over the top of the stair. We
know that the rover has made it when the duty cycles from
all whed's go back to about 650 (Fig. 5d). Figure 6 charts
the duty cycles of the four wheds as the rover climbs a

step.

Climbing Down. To climb down, the boom is moved to
120 degrees and the rover moves backwards until the back
wheds drop off the ledge. When the rear wheds dide
down the ledge, they start spinning faster than usual and
the speed controller has to apply force in the opposite
direction of motion. The boom is moved to 100 degrees
and we wait until the front wheds drop off the ledge.
Figure 7 charts the duty cycles of the four wheds as the
rover descends a tair.

Figure 5d
Figure 5: Four different stagesin climbing up a stair.

Duty Cycle

Climbing Up a Stair

1200

1000

800

600

400

200

-200

-400

-600

-800

Samples*

Figure 6: Back-EMF trajectories during stair climb

Front left
Front right
Back left
Back right

*There are approximately 200-300ms between samples.

Duty Cycle

800

600

400

200

-200

-800

-1000

Climbing Down a Stair

Samples*

Figure 7: Back-EMF trajectories during stair descent

Front left
Front right
Back left
Back right

*There are approximately 200-300ms between samples.

Perception Based Teaching

A key aspect of thisresearch addresses the question of how
we can teach the rover to navigate an environment reliably,
when the environment is as complicated and dynamic as a
home. Our chosen approach involves the idea of
landmarks, brightly colored objects that are purposdy
placed in static locations throughout the home. In this
way, the rover can use its camera as a sensor, as well asits
other perceptions (such as IR rangefinders), to successfully
navigate its surroundings.

Goals

Our goals in developing a teaching environment for the
rover include:
* The user environment must be highly intuitive.
» The language must be expressive enough to navigate a
house.
* The navigational information must be stable to
perturbationsin the physical environment.

I mplementation

Definitions. The basic data structures used to implement
the teaching environment are Actions, LandmarkViews,
Landmarks, Locations, and Paths.

Action: any basic task that the rover can perform.
Actions include things such as pure dead-reckoning,
driving to landmarks, turning in place, and checking for the
presence of landmarks. Examples of Actionsinclude:

- ClimbAction: climb up or down astair

- DriveToAction: dead-reckon driving

- DriveTowardMarkAction: drive toward a landmark,

stopping after a set distance

- LookLandmarkAction: check for the presence of a

landmark

- SendMessageAction: send the user amessage

- SopAtMarkAction: drive toward alandmark, stopping

at a location relative to the landmark (e.g. two feet to
the left, twelve inchesin front, etc.)

- TurnToAction: turn a set number of degrees

- TurnToMarkAction: turn until facing alandmark

LandmarkView. what a landmark looks like; its “view.”
This can be thought of as a landmark “type,” that is, it
contains information about a landmark but not positional
information. It keeps track of the camera track color
parameters, aname for thistype of landmark, and an image
of the landmark.

Landmark: alandmark with positiona information. A
Landmark object contains a LandmarkView object as well
as pan and tilt values for where the rover expects to see this
landmark.

Location: alocation isidentified by a set of Landmarks
and a unique name. A Location also stores the known

paths leading away from that location. The rover neither
independently determines where it is, nor compares stored
images with what the camera currently sees. Rather, the
user must initialy tell the rover whereit is, at which point
it can verify whether it can see the landmarks associated
with that location. If it cannot see these landmarks, then it
can query the user for assistance.

Path: aseries of Actions, used to get the rover from one
Location to another. A Path executes linearly; one action
is performed, and if it completes successfully, the next
executes. Paths actually have a tree structure, so that they
have the capability of having alternate Actions specified.
Thus, for example, a Path from point A to point B might be
“driveto thered landmark, but if for some reason you can’t
see the red landmark, drive to the green one and then turn
ninety degrees.”

User Interface. While the rover can dead-reckon with a
high degree of accuracy, navigation robustness is achieved
through the use of landmarks. Our teaching interface
allows the user to specify a landmark by outlining a box
around the desired landmark on the displayed camera
frame, as is occurring in Figure 8. If the rover is able to
track the landmark the user selected, it compares the new
landmark to all the previoudy seen and named
LandmarkViews. If no match is found, the rover asks the
user whether she would like to save this new type of
landmark. Saved landmarks can then be used offline in
mission design.

To begin teaching the rover, the user must first specify
therover’s current location. To do this, the user just needs
to sdlect one or more landmarks, so that the rover can
identify the location in the future. The interface for
teaching a location is shown in Figure 8. Note that on the
right-hand side of the window is a small picture labeled
“currently saved image.” By default, this image is set to
what the rover sees straight ahead from the location.
However, the user can also choose to associate a different
image with the location. This image merely serves as a
visual aid for the user, when sdlecting locations during
mission design.

To teach the rover paths between points in a home, the
user is presented with a simple, wizard-like interface to
define each step of the path. Each of these steps map
directly to Actions, and may be something like “drive until
you are directly in front of alandmark,” “climb up a step,”
or “turn ninety degrees.” Figure 9 depicts the start of path
teaching. The user is presented with an image of what the
rover can see, the wizard for instructing the rover, a box
where the history of the actions performed will be
displayed, and other information relevant to this path. By
progressing through a series of panels, such as those shown
in Figures 10 through 13, the user can ingruct the rover
exactly as necessary. The full wizard, along with the
Actionsthat can be produced, is shown in Figure 14.

e

Currently saved image:;

Use Current

Landmark count:
1

Enter a name for this lacation {far example, "kitchen":
lah |

I need to be able to see at least one landmark to know 'm in the right place. A qood landmark is |
brightly colared and won't move around. Please show me what | can use. Click on the image to
turn my head ta that point, or click and drag a box aver a landmark to select it

[4]

Figure 8: SHlecting a landmark while saving a location

[Optional] Enter a name for this path:

~Maotion Design
To begin, select a type of motion:

@ driving
7 turning in place

) climb a stair

<Back || Next > || Dot ||

Cancel

Start: lab

| »

| Done: set location || Cancel |

Figure 9: Sart of path teaching

~Driving

) drive to a set point

@ drive toward a landmark

{_ follow a hallway

~Select Landmark

Fleaze selectthe desired landmark by clicking an the
imange and dragging a box over it

< Back Hext = Do it! Cancel

< Back Next > Da it! Cancel

Figure 10: Driving options

~Stopping Conditions

Stop:
(@ directhy in front of
1 to the right of

1 to the left of

1 after | 0|inches toward
) about | 0|inches before

this landmark.

<Back | HMext> | ol Cancel

Figure 11: Selection of alandmark

Summany

Crrive toward the red cone, stopping 24 inches in frant
of it.

< Back Mext » Do it! i@:ancél

Figure 12: Sopping conditions

Figure 13: Summary

[Basi cActionPanel]

[DrivePanel] [Turn

Panel

] [ClimbPanel]

1
[SelectLandmarkNotesPanel]

[DriveT oPointN otesPanel]

[DriveToPointPane] [SelectLandmarkPanel]

1
[AbsoluteTurnPanel] [ClimbWarningPane!]

Qe (e)

MinMaxTurnPanel

——ﬁ

Figure 14: Flow of ActionPanelsin action design wizard. Actions are shown in dark gray, panels which request user input
are shown in light gray, and panels which merely provide information are shown in white.

Future Consider ations

Repeatable L andmar k Recognition. More work needs to
be done to improve landmark recognition. While the
current algorithm can detect |andmarks repeatedly much of
the time, recognition is gill heavily dependent on lighting
conditions and various other factors. The next version of
CMUcam, currently in development, promises to offer
histogram capabilities and other features that will be useful
in thisregard.

User Interaction and Error Handling. Currently, while
path teaching is highly interactive, path execution isnot as
much so. In the future, we plan to provide a great deal of
feedback and interaction while the rover is following a
path. For example, if therover loses sight of alandmark, it
will contact the user, perhaps by email or via the internet,
asking for assigance. The user would then be able, for
example, to teleoperate the rover past an obstacle, or to
specify an alternate route that the rover could use.

Mission Design, Scheduling, and Execution

The rover’s daily activities are controlled through the
design and execution of autonomous missions. Each
mission is a task or expeiment that the user has
constructed from a set of individual rover movements and

actions. Missons may mimic the exploratory and
scientific missions performed by NASA’s Mars Rover or
accomplish new goals thought up by the user. Missions
are fairly autonomous, with varying degrees of user
interaction in the case of erors or insurmountable
obstacles. Mission scheduling allows the rover to carry out
missions without requiring the user’s presence.

Goals

Our goals in developing a user interface for mission
design, scheduling, and execution include:

* The mission design interface should alow the user to
design and program creative missions by combining
individual actions. The interface should be intuitive
enough so that the user can begin usng it
immediately, but flexible enough so as not to limit the
user’s creativity as they grow familiar with the rover.

* Mission scheduling should make the user think beyond
the rover’s immediate actions to the rover’s long-term
future over days and even months.

* Mission execution should offer adjustable degrees of
human-machine interaction and control for mission
reporting and error handling.

» The software should support communication of the
rover’s status through different means such as email,
PDA, or cdl phone.

I mplementation

Mission Development. To build a mission, the user first
clicks on the Mission Development tab. Here there is a set
of “blocks’ grouped by function, with each block
representing a different action that the rover can perform.
Some of the blocks are static, such as the block used to
take a picture. Others can be defined and changed by the
user through the teaching interface. For example, the block
used to follow a path allows the user to choose any path
that they have previoudy taught the rover.

The user can select a block by clicking on it. While a
block is sdected, clicking in the Mission Plan section will
place the block and cause a gray shadow to appear after it.
This shadow indicates where the next block in the mission
should be placed. To build a mission, the user simply
strings together alogical set of blocks. Figure 15 shows the
building of a small mission.

As each block is placed, a popup window is displayed.
Here the user can enter the necessary details for the action,
for example, the starting and ending location of a path (Fig
16).

;c_r% Rover Path Teéching
File Rowver
g || Mission Development
-Mission Components
| Other |
Send a
messae.
4| [»
-Mission Plan
Landmark
Faolkton found. Send a
from hathroom
to doorway Landmark
not found. Send a
blueCone
message,
|4l I
Delete Selected Block | | Run Mis=ion | | Schedule Mission

Fig 15: The user can build a mission by placing individual action blocks together.

[

Select a starting location.

Known Locations:

bathroom StairCase

doorway

Selected: Kitchen

| Hext = H Cancel

Starting location: Kitchen
Select an ending location.

Known Locations:

hathroom

doorway

Selected: <none>

< Back || OK H Cancel

Fig 16: A popup window prompts the user to select a starting location and then an appropriate ending location to create a
path. Ending locations which would create an invalid or unknown path are disabled.

We have currently implemented two different types of
blocks. The first simply represents a single action that can
be followed directly by another action, for example
sending a message (Fig 17). The second represents a
conditional action, in which different actions can be taken
based on the outcome. For example, when looking for a
landmark, one action can be taken if a landmark is found
and a different action can be taken if the landmark is not
found (Fig 18). These blocks can have any number of
conditions. Aswell asthe true and false conditions shown
in the landmark example, blocks can condition on equality
and inequality. For example, one could implement a block
for checking if the IR rangefinder value is less than x,
equal to x, or greater than x.

Itis possibleto build a mission that cannot be run by the
rover. For example, the simple mission “follow a path from
A to B then follow a path from C to D" does not make
sense. The step to get the rover from location B to location
Cismissing. When errors such as this occur, the mission
may not be run or scheduled. A red X icon indicates the
blocks where there are errors (Fig 19). The user can delete
the bad blocks, or right click on a block to display the
popup window and edit the details for that block. After the

errors are corrected, the user is free to run or schedule the
mission. Other than mismatched locations, -currently
supported errors are invalid paths and invalid landmark
selections.

Send a

messafe.
Fig 17: Sending a message is an unconditional action.

* Landmark
found.
Look for Landmark

landmark. not found.

Fig 18: Looking for a landmeark is a conditional action.
There are two different possible outcomes.

&'aner Path Teaching B

=10l x|

File Rower

n | Mission Development | N

Mission Components

| other |

Send a
mMessare.

il

Mission Plan

X

Follow path Send a
INVALID PATH

message.

[4]

[»]

Delete Selected Block | ‘ Run Mission | | Schedule Mission

Fig 19: Ared Xicon indicates any blockswith errors. The mission may not be run or scheduled until the errors are

corrected or removed.

One planned future improvement in the area of mission
development is to implement two new block types. One
type of block will allow sections of the mission to be
repeated. The user will be able to choose a number of
times to repeat the section, or to repeat until a certain
condition is met. The other block type will allow the user
to define her own subroutine blocks. These user-defined
blocks can then be used as functions, alowing a set of
actions to be added to the mission as a group. The user-
defined blocks will also alow the same set of actions to be
easily added to multiple missions. Other improvements
include alowing the user to save missions, open saved
missions, and copy sections of missions.

Mission Scheduling and Execution. After designing a
mission, the user has the option to run the mission
immediately or schedule the mission. Scheduling the
mission allows the user to select a starting time and date as
well ashow often and how many times the mission should
be repeated. The user also gives the mission a unique
name. Figure 20 shows the scheduling wizard.

Before accepting a mission schedule, we check for
conflicts with al of the previoudy scheduled missions. If
any conflicts are found, we prompt the user to reschedule
the mission, cancel the mission, reschedule the conflicts, or
cancd the conflicts as shown in Figure 21. In the future,
we plan to allow both the precise scheduling currently
implemented and a less rigid scheduling method. For

example, the user could schedule amission to run around a
certain time or whenever the rover has free time. For these
more flexible missions, the rover will handle conflict
avoidance without requiring additional user input.

All of the scheduled missions can be viewed by clicking
on the Mission Scheduling tab (Fig 22). The user can select

[x|
Mission Mame: [hly First Mission

Mission Length: less than 1 second

Repeat:
Start Time: rapid repeat
) now hu!my) Repeat every (1 ¥ | seconds.
@ at [i 45om] i

@ Repeat every |10 = | minutes.

Start Date: monthly P ¥
) Today donot repeat, |
@ ‘August = || 16 v" 5002 v| (@ Run mission | 15| times.

{_! Repeat infinitehy.

| Hext = ‘ | Cancel |

& x|

any of the scheduled missions to view the details of the
schedule. The user can also cancel a mission or edit the
schedule. In the future we plan to implement a graphical
view of the rover's schedule. The Mission Scheduling
panel will include a calendar showing all of the scheduled
missions.

Mission Name: My First Mission

Mission Length: less than 1 second

| < Back H OK || Cancel

Fig 20: When scheduling a mission the user selectsthe start time and date as well as how often and how many times to

repeat the mission.

& Conflicting Missions

The mission Look for signs of life can not be scheduled due to a conflict with another mission.

This Mission:

Look for signs of life

Conflicting Missions:

Check dog food
Phaotograph Plant

i Reschedule the selected conflict.

rDetails -

Mission Hame:
Mission Length:

Start Date and Time:
Repeat:

Total Humber of Runs:
Runs Completed:
Runs Remaining:

rDetails

Mission Hame:
Mission Length:

Start Date and Time:
Repeat:

Total Humber of Runs:
Runs Completed:
Runs Remaining:

Look for signs of life

2 minutes

Thu Sep 05 12:00:00 EDT 2002
repeat every 10 minutes

12

0

12

Photograph Plant

21 seconds

Sun Sep 01 05:00:00 EDT 2002
repeat every 2 hours

infinite

40

infinite

What would you like to do?
i® Reschedule mission Look for signs of life. () Cancel mission Look for signs of life.

ok |

() Cancel the selected conflict.

Figure 21: When there isa scheduling conflict, a dialog prompts the user to resolve the conflict.

& Rover Path Teaching .

File Rover

=101 x|

ﬁhtﬁﬁﬂmﬁ&ﬁ | Teleoperation | Mission Development | Mission Scheduling | Extras |

Currenthy scheduled missions:

My First Mission
Check Dog Food
rDetails
Mission HName: My First Mission
Mission Length: less than 1 second
Start Date and Time: Fri Aug 16 16:45:37 EDT 2002
Repeat: repeat every 10 minutes
;Tntal Humber of Runs: 15
Runs Completed: 0
Runs Remaining: 15
Edit Mission Schedule

Cancel Mission

Fig 22: Under the Mission Scheduling tab the user can see all of the scheduled missions and view the details of their
individual schedules. Here the user can also edit a mission schedule or cancel a mission.

Feedback. Currently under construction is a screen to
display the rover's status. As a mission is executed, the
current mission and the current step in that mission will be
displayed. If the rover gets lost or suck, this will be
displayed as well. Eventually the goal is for the rover to
ask for help in such stuations. The user could then do such
things as instruct the rover to try again later, or help the

rover to drive around an obstacle. When the user helps the
rover, therover could add the new actions to the mission in
case it gets stuck in the same way again. We aso plan to
add communication through email, web page, PDA, or cdl
phone.

Performance at the 2002 AAAI Conference

Although people enjoyed the rover at the 2002 AAAI
Conference, several things did not go as smoothly as we
would have liked:

* Wirelesss We experienced a number of issues with
wireless networking, as many groups at the conference
attempted to support their own 802.11 networks.
However, many of the issues were resolved by the
second day of the exhibition.

¢ Electrical systemt Therover that we presented is till
a fairly early prototype, and we are gill working out
bugs in the electrical system. We found that, under
the heavy use a the conference, the rover's
microcontroller would frequently freeze for a short
period. The next version of the rover will fix such
problems.

* Interface: Attendees at the conference were much
more interested in direct interaction with the rover,
such as having it track someone's clothing, than in our
teaching interface. While we were prepared for such
an occurrence, we perhaps should have also provided a
scaled-down teaching interface that could have been
briefly utilized by anyone interested.

Acknowledgments. We would like to thank NASA-Ames
Autonomy for their financial support, Peter Zhang and
Kwanjee Ng for the design and maintenance of the rover
electronics, and Tom Hsiu for the design of the rover
hardware.

References

Nourbakhsh, I.; Bobenage, J.; Grange, S.; Lutz, R.; Meyer,
R.; Soto, A. 1999. An Affective Mobile Robot Educator
with aFull-Time Job. Artificial Intelligence Journal 114(1-
2):95-124.

Thrun, S.; Beetz, M.; Bennewitz, M.; Burgard, W,
Cremers, A.B.; Dellaert, F.; Fox, D.; Haehnd, D
Rosenberg, C.; Roy, N.; Schulte, J; and Schulz, D. 2000.
Probabilistic Algorithms and the Interactive Museum
Tour-Guide Robot Minerva. International Journal of
Robotics Research 19(11):972-999.

