US007729542B2

a2 United States Patent 10) Patent No.: US 7,729,542 B2
Wobbrock et al. (45) Date of Patent: Jun. 1, 2010
(54) USING EDGES AND CORNERS FOR FOREIGN PATENT DOCUMENTS
CHARACTER INPUT
WO WO 00/72300 A1l * 11/2000
(75) Inventors: Jacob O.Wobbrock, Lake Oswego, OR
(US); Brad A. Myers, Pittsburgh, PA
(US)
OTHER PUBLICATIONS
(73) Assignee: Carnegie Mellon University, Pittsburgh,
PA (US) T.L. Dimond, Devices for Reading Handwritten Characters, Proceed-
ings of the Eastern Computer Conference, pp. 232-237, Bell Tele-
(*) Notice: Subject to any disclaimer, the term of this phone Labs, Inc., Murray Hill, N.J.
patent is extended or adjusted under 35
U.S.C. 154(b) by 1265 days. (Continued)
(21) Appl No.: 10/811,761 Primary Examiner—Sath'V Perungavoor
(74) Attorney, Agent, or Firm—IJones Day; Edward L.
(22) Filed: Mar. 29,2004 Pencoske
(65) Prior Publication Data 1)) ABSTRACT
US 2004/0196256 Al Oct. 7, 2004
Related U.S. Application Data A new unistroke text entry method for handheld or wearable
(60) Provisional application No. 60/460,296, filed on Apr. deVi.ces is designed to provide high accuracy aI,ld stability of
4,2003. motion. The user makes characters by traversing the edges
and diagonals of a geometric pattern, e.g. a square, imposed
(51) Int.CL over the usual text input area. Gesture recognition is accom-
GO6K 9/00 (2006.01) plished not through pattern recognition but through the
(52) US.CL ..covvvnne 382/187; 382/186; 382/189; sequence of corners that are hit. This means that the full stroke
345/17; 345/161; 345/179 path is unimportant and the recognition is highly determinis-
(58) Field of Classification Search 382/187 tic, enabling better accuracy than other gestural alphabets.
See application file for complete search history. This input technique works well using a template with a
(56) References Cited square hole placed over a touch-sensitive surface, such as on
a Personal Digital Assistant (PDA), and with a square bound-
U.S. PATENT DOCUMENTS ary surrounding a joystick, which might be used on a cell-
400,141 A 3/1889 Stone phone or game controller. Another feature of the input tech-
1,231,821 A 7/1917 Walton nique is that capital letters are made by ending the stroke in a
3,108,254 A * 10/1963 Dimondccevvvvunenenn. 382/187 particu]ar corner, rather than through a mode Change as in
3,142,039 A * 7/1964 Irlandetal. 379/93.19 Gther gestural input techniques. Because of the rules govern-
3,199,078 A §/1965 Gaffney, Jr. et al. ing abstracts, this abstract should not be used to construe the
3,253,258 A 5/1966 Hughes . ’
3,559,170 A * /1971 BAmes ..coocoomrrerenees 235441 claims.
(Continued) 60 Claims, 5 Drawing Sheets

ALLIE

TP 7NN

I 7 2 N vl

mmtmml e

7 74 v < o

HEAN

Punctuation Mode:
Stroke up on efther side D

punctuation

-

LI T L TN

RO AR NS

NN

US 7,729,542 B2

Page 2
U.S. PATENT DOCUMENTS 6,212,297 Bl 4/2001 Sklarew
6,212,298 Bl 4/2001 Yoshii
3,676,848 A 7/1972 Hall 6,215,901 Bl 4/2001 Schwartz
3,704343 A 11/1972 Howard 6,366,697 Bl 4/2002 Goldberg et al.
3,835,453 A 9/1974 Narayanan 6,493,464 Bl 12/2002 Hawkins et al.
3,903,502 A 9/1975 Moss 6,498,601 Bl 12/2002 Gujar et al.
3,909,785 A 9/1975 Howells D472,265 S * 3/2003 Chepaitis D18/24
3,996,557 A 12/1976 Donahey 6,597,345 B2* 7/2003 Hirshberg . . 345/168
4,005,400 A * 1/1977 Engdahlcccccoeeeeeeee 341/5 6,647,145 B1* 11/2003 Gay 382/187
4,047,010 A 9/1977 Perotto 6,754,387 B1* 6/2004 Bera 382/181
4,070,649 A /1978 Wright 2003/0006956 Al* 1/2003 Wuetal. .. 345/156
4,139,837 A 2/1979 Liljenwall et al. 2003/0076306 AL* 4/2003 Zadesky et al. 345/173
4,149,164 A * 4/1979 RelI.ls etal. ..ooeoiiiiiinnnn. 345/531 2003/0234766 Al* 12/2003 Hildebrand .. . 345/168
4,159471 A * 6/1979 Whitaker 2004/0145576 Al* 7/2004 Zondag 345/173
4,184,147 A /1980 Seelbach 2004/0263487 Al* 12/2004 Mayoraz et al. . 345/173
4,199,751 A 4/1980 Piguet 2005/0088415 A1* 4/2005 TO wovvveveverererererernnnnn. 345/168
4,241,409 A 12/1980 Nolf
4,338,673 A * 7/1982 Browncccceeeeeen OTHER PUBLICATIONS
4,477,797 A * 10/1984 Nakagiri
4,495,646 A 1/1985 Gharachorloo David Goldberg and Cate Richardson, Touch-Typing With a Stylus,
4,542,526 A 9/1985 Satoh Interchi 93, Apr. 24-29, 1993, pp. 80-87, Xerox Corporation, Palo
4,561,105 A 12/1985 Crane et al. Alto, CA.
4,633,243 A * 12/1986 Bresenhametal. 345/17 I. Scott Mackenzie and R. William Soukoreff, Text Entry for Mobile
4,695,828 A 9/1987 Yamamoto Computing: Models and Methods, Theory and Practice, Human-
4,724,423 A 2/1988 Kinoshita Computer Interaction, 2002, pp. 147-198, vol. 17.
4,727,357 A 2/1988 Curtin Poika Isokoski and Roope Raisamo, Device Independent Text Input:
4,771,268 A 9/1988 Sone A Rationale and an Example, Dept. of Computer Science, 2000, pp.
4,905,007 A 2/1990 Rohm 76-83, Univ. of Tampere, Finland.
4,953,225 A 8/1990 Togawa I. Scott Mackenzie and S. Zhang, The Immediate Usability of Graf-
4,985,929 A 1/1991 Tsuyama fiti, Dept. of Computing & Information Science, 1997, pp. 129-137,
5,010,579 A 4/1991 Yoshida Univ. of Guelph, Canada.
5,022,086 A 6/1991 Crane et al. Ken Perlin, Quikwriting: Continuous Stylus-based Text Entry, Dept.
5,125,039 A 6/1992 Hawkins of Computer Science, 1998, pp. 215-216, New York Univ., New York.
5,140,645 A * 8/1992 Whitaker 382/184 Shumin Zhai, Michael Hunter and Barton A. Smith, Performance
5,194,852 A 3/1993 More et al. Optimization of Virtual Keyboards, Human-Computer Interaction,
5,214,428 A * 5/1993 Allenccceevvveeeevennnns 382/313 2002, pp. 89-129, vol. 17.
5,297,216 A * 3/1994 Sklarew 382/189 Fleetwood, M.D., et al; An evaluation of text-entry in Palm
5,303,312 A * 4/1994 Comerford et al. . 382/182 OS—Graffiti and the virtual keyboard; Proceedings of the Human
5305433 A * 4/1994 Ohnocceceevveenuenene 345/469 Factors and Ergonomics Society 46th Annual Meeting (HFES *02);
5,313,527 A 5/1994 Guberman et al. Sep. 30-Oct. 4, 2002; Human Factors and Ergonomics Society; Bal-
5,365,598 A 11/1994 Sklarew timore, Maryland; pp. 617-621.
5,467,407 A 11/1995 Guberman Plamondon, R., Privitera, C.M.; The segmentation of cursive hand-
5,521,986 A * 5/1996 Curtinetal. 382/187 Writing; An appr()a_ch based on off-line recovery of the motor-tem-
5,596,656 A * 1/1997 Goldbergco.e.. 382/186 poral information; IEEE Transactions on Image Processing; 1999;
5,764,794 A 6/1998 Perlin 8(1); pp. 80-91.
5,832,113 A * 11/1998 Sanoccceeeeveeeveennene 382/187 Tappert, C.C., Cha, S.-H.; English language handwriting recognition
6,031,525 A 2/2000 Perlin interfaces; In Text Entry Systems: Mobility, Accesibility, Universal-
6,044,174 A 3/2000 Sinden ity; I.S. MacKenzie and K. Tanaka-Ishii (eds); 2007; San Francisco:
6,057,845 A 5/2000 Dupouy Morgan Kaufmann; pp. 123-138.
6,185,333 Bl 2/2001 Arai
6,208,757 Bl 3/2001 Sinden * cited by examiner

U.S. Patent Jun. 1, 2010 Sheet 1 of 5 US 7,729,542 B2

105

106 S

-G ¢

U.S. Patent

Jun. 1, 2010

-

Sheet 2 of 5

US 7,729,542 B2

) |
|

N
NE_
, L

TZ-

N

ENEnt
N
)

%
.t

N
||

To capitalize, make

LN
N
Uw

LN

FIG. 2

U.S. Patent Jun. 1, 2010 Sheet 3 of 5 US 7,729,542 B2

5302

30

301
FIG. 3

FIG. 4

502

U.S. Patent Jun. 1, 2010 Sheet 4 of 5 US 7,729,542 B2

LN
o Lo N A o
L N
603
nlm i NP
L 7N
605 606
10 NS
FIG. 6
703
802
80

801
FIG. 8

U.S. Patent Jun. 1, 2010 Sheet 5 of 5 US 7,729,542 B2

1004 1002 1003 1005 1006 1007
Start Is(xy)in an En pen
(due to pen Penis inflated comer? Deflate » (quL;?:e move Penis
down anywhere at(x.y) comers oyl at
in square) yes point queue ¥
1004 pen up
Ignore (x.y) v
1008|
Dequeue
1013 {xy) from
Isresulta point queue
defined character2 Look up
sequence of
1015 comers IDs
1009

Append
comer ID to

sequence

Output
character

101

Is (x,y) in a new
deflated corner?

Dequeue
(x.y}

FIG.9

US 7,729,542 B2

1

USING EDGES AND CORNERS FOR
CHARACTER INPUT

This application claims priority from U.S. application Ser.
No. 60/460,296 entitled Using Edges and Corners for Char-
acter Input, filed Apr. 4, 2003, the entirety of which is hereby
incorporated by reference.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

This work was supported by NSF contract no.
UA-0308065. The federal government may have certain
rights in this invention.

BACKGROUND

This invention relates to methods and systems for entering
characters into a handheld or wearable computerized device,
such as a handheld computer also called a “personal digital
assistant,” a cell phone, a watch, a computer game console, or
the like.

Text input is difficult on handheld and wearable comput-
erized devices. Handheld devices include cell phones, two-
way pagers, game console controllers, and “Personal Digital
Assistants” (PDAs), including those made by Palm, Inc. and
the devices which run Microsoft’s WindowsCE operating
system. In the future, we expect that wearable devices such as
wristwatches and other small computerized devices will need
good text entry methods. Today, PDAs and two-way pagers
primarily use on-screen “soft” keyboards, handwriting rec-
ognition, tiny physical keyboards used with the thumbs, or
special gestural alphabets such as Graffiti from Palm, Inc. or
Jot from Communication Intelligence Corporation (CIC).
Cell phones primarily use multiple taps on the standard
12-key number pad, possibly combined with a prediction
technique such as T9. Game controllers primarily use a joy-
stick to iterate through characters, or else to select letters from
a keyboard displayed on the television screen.

On-screen “soft” keyboards are small and the keys can be
difficult to acquire. They also consume precious screen space.
To address these problems, some researchers have attempted
to discover the “optimal” soft keyboard. Zhai, S., Hunter, M.,
Smith, B. A. “Performance optimization of virtual key-
boards”, Human-Computer Interaction 17, Lawrence
Erlbaum, 2002. pp. 229-269. Many soft keyboard designs
exist, and an overview is provided in MacKenzie, 1. S.,
Soukoreff, R. W. “Text entry for mobile computing: Models
and methods, theory and practice”, Human-Computer Inter-
action 17, Lawrence Erlbaum, 2002, pp. 147-198. On-screen
“soft” keyboards also require the user to focus attention on the
keyboard rather than on the output, resulting in errors related
to increased focus-of-attention. This is particularly a problem
when the user does not want to look at the handheld device,
such as when walking, driving, or producing output that
appears on a separate display, such as on a television or
desktop monitor. MacKenzie, 1. S., Zhang, S., “The immedi-
ate usability of Graffiti”, Proc. Graphics Interface *97. Cana-
dian Information Processing Society, 1997. pp. 129-137.
Gestural text entry techniques, such as Graffiti and Jot, also do
not completely solve the problem of text input. They can be
difficult to learn and error-prone. Early gestural text entry
techniques have a history dating back to as early as 1957.
Diamond, T. L. “Devices from reading handwritten charac-
ters”, Eastern Computer Conference, 1957, pp 232-237.
Unistroke methods, for example, separate characters during
text entry by pen-down/pen-up sequences. The term “unis-

20

25

30

40

45

55

60

65

2

troke” originated from the alphabet by the same name-Unis-
trokes-developed at Xerox PARC [Goldberg, D., Richardson,
C., “Touch typing with a stylus”, proc. INTERCHI *93, pp
80-87] and U.S. Pat. No. 5,596,656, January, 1997, Goldberg.
But Unistrokes did not resemble real letters, and for this
reason, they were difficult to learn and memorize. Graffiti
from Palm, Inc. carried the unistroke concept to the masses by
making the character forms similar to handwritten forms that
proved much easier to learn and memorize. A later unistroke
research effort discovered that the easiest gestures to make on
a variety of devices were in the four cardinal directions, so a
“device independent” alphabet called MDITIM was created
using them. Isokoski, P., “A minimal device-independent text
input method”, unpublished thesis, University of Tempere,
Finland, 1999.

In contrast to unistrokes, continuous gesture techniques do
not require lifting the stylus between characters, which can
improve the speed of input. Rather than making character
forms, the user moves the stylus through different regions,
and segmentation between letters is accomplished by exiting
one region and entering another. An example is Quikwriting
[Perlin, K. Quikwriting, “Continuous stylus-based text
entry”, Proc. UIST "98. ACM Press, 1998. pp. 215-216.],
described in U.S. Pat. No. 6,031,525, February, 2000, Perlin.
These methods generally have the same increased focus of
attention problems as soft keyboards because they require
constant visual attention.

Entering text using the standard 12-key number pad or
using tiny keyboards is slow and unnatural, and techniques
such as T9 help only a little.

All of these techniques are especially difficult to use in a
number of circumstances, such as when the user is walking,
riding a frequently-stopping bus, or not looking at the screen
(“eyes free” entry). Even expert users of these techniques will
make many errors that they must correct using the backspace
key or backspace stroke.

People with motor impairments have a particularly difficult
time entering text using these existing technologies. People
with Cerebral Palsy, Muscular Dystrophy, and Parkinson’s
Disease, for example, often lose their gross motor control and
arm strength before losing their fine motor control and may
therefore still be able to use a stylus or joystick. But they often
do not have sufficient accuracy of movement to hit the tiny
keys of an on-screen keyboard. The gestural text entry tech-
niques may be impossible for people with motor impairments
due to tremor and fatigue, which dramatically affect a user’s
ability to make smooth, accurate, and controlled movements.
Another result of tremor is that many users “bounce” the
stylus on the screen, triggering unwanted modes and
unwanted characters in today’s gestural systems. A more
stable means of text entry is necessary for users of handheld
devices who have motor impairments.

Able-bodied users would also benefit from more stable
means of text entry. Since PDAs are designed to be used “on
the go,” many situations arise where added stability would be
beneficial: riding a bus, walking, or annotating slides during
a presentation while standing.

Another disadvantage for all users of the gestural and on-
screen keyboard techniques is that they require a relatively
large touch-sensitive surface, which can significantly
increase the expense of creating a handheld device.

US 7,729,542 B2

3

Therefore, the need exists for anew method oftext entry for
handheld and wearable devices that provides greater accuracy
and stability of motion.

SUMMARY OF THE INVENTION

The present invention is a new unistroke text entry method
for handheld and wearable devices designed to provide high
accuracy and stability of motion. The user makes characters
by traversing the edges and diagonals of a shape (e.g., a
square) imposed over the usual text input area. The present
invention employs a high percentage of strokes in the four
cardinal directions. But unlike other unistroke techniques, the
present invention is not a pattern recognizer, and does not
depend on the whole path of the character for recognition.
Thus, moderate wiggle (e.g., caused by hand tremor) in the
stroke does not deter high recognition rates.

The present invention improves the quality of text entry
using physical edges. Physical edges offer many desirable
properties. Applying pressure against an edge while entering
a character provides greater stability (decreased movement
variability and movement offset), greater speed (the ability to
move quickly yet remain on the target line), higher accuracy
(targets along an edge or in a corner are easier to acquire), and
tangible feedback (no longer is visual feedback the only
means of self-correction during movement, as tactile feed-
back is available).

This invention exploits these benefits of edges in a text
entry technique, and avoids other factors such as cognitive or
mnemonic difficulties. We call this input technique Edge-
Write. It relies heavily on edges and corners, both interac-
tively and algorithmically.

BRIEF DESCRIPTION OF THE DRAWINGS

For the present invention to be easily understood and
readily practiced, preferred embodiments will now be
described, for purposes of illustration and not limitation, in
which:

FIG. 1 is the preferred embodiment of the invention on a
PDA with a template with a square hole.

FIG. 2 is an example character chart showing one form of
each of the characters using the present invention.

FIG. 3 is another embodiment of the invention as a joystick
in a square mounting area.

FIG. 4 is another embodiment of the invention as a joystick
mounted on a game controller.

FIG. 5 is another embodiment of the invention as a joystick
mounted on a mobile phone.

FIG. 6 shows how the corner areas are implemented in the
preferred embodiment on a PDA.

FIG. 7 shows another embodiment on a wrist watch.

FIG. 8 shows another embodiment on a touch pad, which
uses a finger in place of a stylus.

FIG. 9 is a flow chart summarizing one embodiment of a
recognition algorithm.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 shows one embodiment of the present invention
where these edges are imposed on the text entry area ofa PDA
by means of a transparent plastic template 103 with, in this
embodiment, a square hole 104. All text entry is performed
inside this hole. Our experimental results show that extensive
iteration of the character set has made the character forms
highly guessable and easy to learn, maintaining a low cogni-
tive workload for the user.

20

25

30

35

40

45

50

55

60

65

4

In particular, we found that when compared to Graffiti, the
present invention was 18% more accurate during text entry
for able-bodied users formerly unfamiliar with either tech-
nique. This benefit came without a significant cost in speed.
Users with motor impairments (such as Parkinson’s, Cerebral
Palsy, and Muscular Dystrophy) succeeded at using the
present invention but were largely unable to use Graffiti.

The present invention can be used as a stylus-based unis-
troke input technique. To make a character, the user places the
stylus 105 down inside the square hole 104 (FIG. 1), moves
the stylus in a specific pattern along edges and diagonals into
corners of the square, and lifts upon completion of the char-
acter. A processor 107 is responsive to the input and to a
memory 108 which carries software for implementing the
character recognition method of the present invention.

One difference between the preferred embodiment of the
present invention and gestural techniques like Graffiti is that
all stylus motion in the present invention occurs within a
confined geometric shape, for example, a small plastic square
hole that, in the preferred embodiment, is 1.3 cm on a side
(1.69 cm®). This square hole bounds the input area with firm
physical edges.

A second difference between the present invention and
gestural techniques like Graffiti is that recognition does not
depend on the path of movement, nor is the recognizer a
pattern matcher. Instead, recognition only depends on the
order in which the corners are hit. The advantages of this
include:

Users can “wiggle” or slide in moderation and this does not

degrade recognition.

The recognition algorithm is elegant and fast, as hit-testing
corner areas is an operation capable of being performed
rapidly even by a weak processor.

Users can teach the system their own custom gestures with
one example, as training sets for a pattern matching
algorithm are not necessary.

From a design standpoint, it is easy to iterate character
forms, as changing them requires changing only a corner
sequence value. No sets of ideal points or paths are
necessary.

A third difference between the present invention and Graf-
fiti is the reduction of modes. In particular, the present inven-
tion uses no shift, caps lock, or extended shift modes. The
only mode in the present invention is a punctuation mode
(which is not required for a period, as it is such a common
character).

FIG. 2 shows an embodiment of a character chart for pri-
mary character forms according to the present invention. In
addition, multiple alternate forms exist for nearly every char-
acter (not shown). These character forms are a product of
hours of user testing and extensive iteration. In user testing,
most subjects discovered and used several of the alternate
character forms despite their absence from the chart, suggest-
ing a high degree of guessability for the EdgeWrite character
forms.

Though many of the characters look vaguely like their
handwritten counterparts, the mnemonic power of these char-
acters comes less from their appearance and more from their
“feel.”” One person noted this when, after entering 20 phrases
using the present invention, he said, “I don’t remember any of
the pictures in my mind, but I still feel them in my hand.”

As in some other gestural alphabets, some letters resemble
lowercase forms, while others resemble uppercase forms. All
letters produce a lowercase form unless the capitalization
suffix stroke is appended to the usual letter stroke. The suffix
stroke may simply be a motion to, for example, the upper-left
corner (think “up,” to “make it big”) after the regular letter

US 7,729,542 B2

5

form is made but before lifting the stylus. Note that, by
design, no letters finish in the upper-left corner, allowing for
this suffix stroke to be appended. In user studies, subjects had
no trouble with this method of capitalization.

Another thing to notice about the character chart (FIG. 2) is
that it is representational, not literal. We faced a design chal-
lenge in depicting the strokes on paper, as many characters
have strokes that pass over the same edge more than once. If
such a “double pass” is drawn literally, then the result is
merely a single line. We chose to arc the paths into the
intended corners. These arcs make it possible to depict a
double pass over the same edge. In the present invention, all
movements are, in the ideal case, straight lines. As mentioned,
however, straight line motion is not necessary for recognition,
only hitting the corners in the proper order.

If we define a “segment” to be a straight line stroke
between two vertices (or corners), then for gestures made
inside a closed shape with v vertices, the number of possible
character forms using s segments is given by the formula:

s

forms = Z v-(v—1y

i=0

This formula treats a tap at a vertex as a legal stroke, and
assumes that the same corner is never used twice in a row.

For the preferred embodiment using a square, v=4. If s=0,
meaning we use no segments, we see from the formula that we
have 4 possible forms available to us: a tap in each of the
square’s four corners. With 1 segment, there are 16 possible
forms (4+4x3), with 2 segments we get 52 forms, and with 3
segments we get 160 forms. Thus, there is a wealth of forms
to choose from with relatively few segments.

The character chart in FIG. 2 represents 100 characters: 26
lowercase letters, 26 uppercase letters via the capitalization
suffix stroke, 10 digits, 4 white space characters, 2 punctua-
tion mode-setters, and 32 punctuations. We do not count
period twice, as it is the same form in and out of punctuation
mode. Not pictured in the chart are the four directional arrow
keys, which are also implemented, making for 104 unique
characters in one embodiment of the current set of characters.

The average primary character form as shown in FIG. 2 has
2.47 segments in it, excluding capitalization. If we include
capitalization and its associated suffix stroke, this average
increases to 2.84. The average number of segments per char-
acter for the whole character set, including all alternates and
capitals, is 3.49. Incidentally, the whole character set in the
preferred embodiment contains 228 forms. Note that these
values exclude the punctuation mode setting stroke required
for some characters.

Because we have 102 characters excluding punctuation
mode-set, the forms equation above dictates that we must use
3 segments for at least some of the characters—50 of them to
be exact. If we designed the character set with the fewest
number of possible segments and no modes, and with only
one form for each character, then the average number of
segments per character in that set would be 2.39. So even with
high learnability and guessability, the average segments per
primary character according to the present invention (2.84) is
not much higher than this theoretical lower bound (2.39). For
entry without capitals (e.g., instant messaging), the average is
even closer (2.47). This is due, in part, to the use of a punc-
tuation mode, allowing for the reuse of certain character
forms. It is also due to the choice of minimal-length character
forms, without sacrificing their mnemonic feel.

20

25

30

35

40

45

50

55

60

65

6

The corners began naively as points rather than areas, and
this proved to be inadequate, as users rarely hit the exact pixel
in the corners. This was because users held their styluses at
various angles. An angled stylus 105 impacts the edge of the
plastic template hole 104 a few millimeters above its tip,
causing the tip to jut a few pixels into the square even when
the stylus is flush against the edge (FIG. 1).

After we increased the corner size to an appreciable area,
two other problems emerged. Once moving, users would
accidentally hit corners, particularly when making a diagonal
stroke, as in an “s.” But if the corners were made too small,
users would often fail to hit them on pen-down, particularly in
the backspace stroke (across the top or bottom edge from right
to left). It seemed we needed large corners for when the stylus
went down, but then small corners thereafter.

The next step in our design process added precisely this
(FIG. 6): We inflated the corners until the stylus was detected
within one of them, and then deflated all of them while the
stylus was moving. Thereafter, users were able to easily hit
the corners on pen-down and also avoid hitting them acciden-
tally while moving the stylus.

An observation during a user study prompted the next
iteration on the corners. A right-handed user with a chronic
wrist injury held the stylus at a fairly shallow angle relative to
the PDA screen. The result was that the elevated edge of the
plastic square prevented the tip of the stylus from getting
close to the right side of the square. We provided extra corner
area along the x-axis for the dominant-hand side of the square
to account for users who hold their styluses at steep angles. A
property of this iteration was that it did not negatively impact
users who held their styli more vertically.

An alternative embodiment would use other shapes for the
corner regions. One example is to use triangular corner
regions rather than rectangles. FIG. 6 shows the design using
rectangles changing to triangles 601-602, and providing extra
corner area on the dominant-hand side for both right-handed
603-604 and left-handed 605-606 users. This design was
shown to lessen accidental corner hits even more. Many other
alternatives are possible. For example, inflation/deflation can
be modified so that the inflated and deflated corners are both
triangles.

Though Graffiti is popular, it also has problems. We took
some lessons from studies of Graftiti in an effort to alleviate
some of its problems, or at least to avoid reproducing them.
Certain letters in Graffiti have specific problems. For
example, many people handwrite an n beginning at the top-
left of the letter and initially going down. In Graffiti, this
almost always results in an h. The present invention supports
an optional initial down stroke on letters that commonly have
them: b, d, m, n, p, q, and r. Similarly, many people make a
down stroke at the end of u, and in Graffiti this almost always
produces an h or w. The present invention allows this down
stroke on u. Graffiti also often produces a u when novices
make a v but forget to add an unnatural serif on the right. The
present invention avoids this u-v confusion, as every form is
more than just subtly different from every other form.

Another problem for novices is confusion between the x
and k in Graffiti, as these are mirror images of each other. The
present invention removes this similarity by redesigning the k
so that it starts at the top-left, where a handwritten k starts, not
at the top-right, where a Graffiti k starts. The preferred
embodiment does leave the top-right k as an alternate form for
current Graffiti users.

As mentioned above, motor impaired users sometimes
“bounce” inadvertently on the screen. One embodiment of the
present invention has characters that are entered by taps in the
corners. We removed all of these except period (.) to reduce

US 7,729,542 B2

7

the likelihood of entering an accidental mode or character by
inadvertent “bounces” on the screen.

In the present invention, we differentiate position based on
the known location of the square. Hence, we can tell i from 1
even though they are the same stroke because they are on
different edges. This is a powerful concept, as it allows for
input in a very small area. It also means we do not need
separate regions of the screen devoted to letters, numbers,
capitals (e.g., as Jot does), and so on.

The implementation of the preferred embodiment for the
present invention enables fast character recognition. With
reference to FIG. 9, the recognizer does nothing until it
detects a pen-down event 1001. If the down event is in an
inflated corner 1003, then it deflates the corners 1005, and
begins queuing up all the points over which the stylus moves
until the stylus is lifted 1006-1007. No recognition or filtering
is done during the stylus movement to maximize the number
of movement points queued. Once the stylus is lifted, the
recognizer notes the first corner where the recognition started
1008, and then loops through the point queue and hit-tests the
points against the deflated corner regions, collecting the
sequence of corners 1009-1012. The result of this loop is a
32-bit integer value representing the sequence in which the
corners were hit. This integer is assembled efficiently: when
anew corner is hit, the existing integer sequence is bit-shifted
to the left and the new corner is “appended” with bitwise-OR.
This sequence is then sent to a lookup function 1013 that finds
the character corresponding to the corner sequence, if any
1014, by comparing the determined sequence of corner hits to
a library of stored sequences of corner hits which is represen-
tational of a printed alphabet. [f aresult is a defined character,
the character is output at 1015 and the process ends at 1016.

Another embodiment eliminates the enqueuing of the
points while the mouse is moving 1005-1008 by testing the
points for being in corners 1003, 1012 while the pen is mov-
ing, and then queuing only the corner ids. This results in
simpler code, but code which takes more processor time for
each input point.

This recognition algorithm is fast in linear time O(n), and it
could be implemented on a weak processor with a poor digi-
tizer sampling rate and a noisy digitization of stylus coordi-
nates. Anecdotally, it was not possible for us to move the
stylus faster than the present invention could recognize the
stroke on a Palm Vx, which polls its screen for the pen every
20 ms.

Another aspect of the present invention is implemented not
in software but in plastic in the preferred embodiment. The
template 103 is important for the present invention to work
well, and designing and fabricating this plastic piece involved
just as iterative a process as developing the software. We have
numerous prototypes. Some are small and sit on the PDA’s
screen. We found this to work fine for able-bodied people, but
users with motor impairments sometimes put pressure with
their fingers on the template, causing it to press against the
screen and confuse the digitizer. We designed another model
to avoid putting pressure on the screen 102. It sits on top of the
Palm chassis and therefore cannot touch the screen (as shown
in FIG. 1).

As an alternative embodiment, FIG. 7 shows that the square
hole 703 might be on the faceplate of a wrist watch 701 which
has a touch-sensitive screen. Then the user could use a stylus
702 to enter text on the watch using the character set of the
present invention. Another alternative embodiment is shown
in FIG. 8, where a slightly larger touch sensitive surface 801
is used, and the pointing is performed with a finger 802 on the
surface 803 instead of a stylus. The finger can feel the edges
and corners. The touch sensitive surface might be mounted on

20

25

30

35

40

45

50

55

60

65

8

the front or back of a mobile device, or somewhere in an
automobile to enable text entry while driving. In all cases, the
same alphabet is used (for example, as shown in FIG. 2).

The present invention’s recognition technology and meth-
odology for generating character recognition data can be
implemented on other types of electronic devices, be they
handheld or wearable, including those without the luxury of a
fully-digitized touch screen. All that is required are four cor-
ner sensors and either one other sensor or a timer. These
sensors could be crude: they do not have to determine coor-
dinates, only whether the stylus is in contact with them or not.
Thus, the invention is a reliable character recognizer without
being a pattern-matcher that depends on the whole path of
movement.

Another advantage of the present invention is that it can be
implemented using a simple, low-cost joystick instead of
using a stylus on a touch-sensitive screen. For example, the
joystick 301 in FIG. 3, shown as a freestanding joystick
although it need not be, has a stick 302 that is constrained to
move within a square mounting area 303. The same character
forms, shown for example in FIG. 2, can be made by moving
the stick 302 within the square mounting area 303. Pressing
down on a button on top of the stick 302, or a separate button,
could be used to signal the beginning and end of strokes.
Another way to segment strokes is to wait until there is no
movement for a predetermined period of time (such as 100
milliseconds). Alternatively, when a self-centering joystick is
used, segmentation is possible by detecting when the stick
snaps-to-center, which can be sensed by watching the joystick
for two consecutive points in the center.

As shown in FIG. 4, a joystick 402 could be mounted on a
game controller 401, or as shown in FIG. 5, a joystick 502
might be part of a mobile phone 501. It will be understood by
those skilled in the art that this joystick could be mounted on
any other kind of handheld device, such as a pager, a remote
control, a calculator, etc. The recognition algorithm and char-
acter forms could remain the same in all cases.

Another advantage of the present invention is that it is very
easy to allow the users to create their own forms for charac-
ters. A user can go into a special mode for doing customiza-
tions, and make the desired pattern only once; the system then
records and remembers the sequence of corners that were hit.
Then the user can specify the result of performing that pat-
tern, which may be the entry of a character, or it may be a
shortcut for entering a sequence of characters or for giving a
command to the system (e.g., to launch a favorite applica-
tion). In this way, the users can customize the text entry
technique to their own preferences. This is an advantage over
existing unistroke techniques (such as Graffiti), since most
techniques do not allow user-defined strokes. If they did, they
would require numerous training examples, not just one,
since they are full-path pattern matchers.

While the invention has been particularly shown and
described with reference to the preferred embodiments
thereof, it will be understood by those skilled in the art that
various changes in form and detail may be made therein
without departing from the spirit and scope of the invention.
Although numerous advantages of the present invention are
described, it is not necessary that the subject matter set forth
in the following claims embody all of the advantages
described

US 7,729,542 B2

9

What is claimed is:

1. A character recognition method, comprising:

using a processor to perform the following method;

queuing continuous path data made by traversing edges

and diagonals and into corners within a confining geo-
metric shape constraining an input device to less than the
input device’s total area;
searching the queued continuous path data to generate a
sequence of corner hits, where a corner hit corresponds
to a corner defined by said geometric shape;

identifying a character based on said sequence of corner
hits independently of the remainder of the continuous
path data;

wherein each of said sequences of corner hits defines a

single stroke, and wherein each single stroke is repre-
sentative of one of a letter, number, punctuation or mode;
and

identifying a letter character as being upper case when said

stroke representative of said character ends in a common
predetermined corner and lower case when said stroke
does not end in said common predetermined corner.

2. The method of claim 1 wherein said input device is a
touch sensitive surface, said method additionally comprising
detecting loss of contact with the touch sensitive surface, said
loss of contact indicating the end of a stroke.

3. The method of claim 1 additionally comprising detecting
the actuation of a switch, said actuation indicating the end of
a stroke.

4. The method of claim 1 wherein said input device is a
joystick, said method additionally comprising detecting lack
of movement of the joystick for a predetermined period of
time, said lack of movement indicating the end of a stroke.

5. The method of claim 4 wherein said detecting lack of
movement includes detecting the joystick at two identical
positions within said predetermined period of time.

6. The method of claim 5 wherein said positions corre-
spond to a center point.

7. The method of claim 1 wherein said identifying a char-
acter is comprised of comparing the determined sequence of
corner hits to data representative of a plurality of stored
sequences of corner hits, selecting one of the stored
sequences of corner hits based on said comparing, and out-
putting a character linked to said selected one of said stored
sequences of corner hits.

8. The method of claim 7 wherein said comparing includes
comparing the determined sequence of corner hits to a library
of'stored sequences of corner hits which is representational of
a printed alphabet.

9. The method of claim 7 additionally comprising changing
the stored sequences of corner hits that are linked to a char-
acter.

10. The method of claim 9 wherein said changing includes
providing one example of a sequence of corner hits and the
character to which that sequence is to be linked.

11. The method of claim 1 wherein said corner hits include
corner area hits, said method additionally comprising varying
the size of the corner areas while said continuous path data is
being queued.

12. The method of claim 11 wherein said varying the size
includes decreasing the size of only certain corner areas.

13. The method of claim 11 wherein said varying the size
includes decreasing the size of certain corner areas more than
the size of other corner areas.

14. The method of claim 1 wherein said corner hits include
corner area hits, said method additionally comprising varying
the shape of the corner areas while said continuous path data
is being queued.

20

25

30

35

40

45

50

55

60

65

10

15. A letter character recognition method, comprising:

using a processor to perform the following method;

queuing continuous path data made by traversing edges
and diagonals and into corners within a confining geo-
metric shape constraining an input device to less than the
input device’s total area;

searching the queued continuous path data to generate a

sequence of corner hits within a single unistroke, where
a corner hit corresponds to a corner defined by said
geometric shape;
identifying a letter character based on said sequence of
corner hits independently of the path therebetween; and

identifying said letter character as being upper case when
said single unistroke defining the character ends in a
common predetermined corner and lower case when
said unistroke does not end in the common predeter-
mined corner;

wherein each of said sequences of corner hits defines a

single stroke, and wherein each single stroke is repre-
sentative of one of a letter, number, punctuation or mode.

16. The method of claim 15 additionally comprising
detecting loss of contact with a touch sensitive surface, said
loss of contact indicating the end of the unistroke.

17. The method of claim 15 additionally comprising
detecting the actuation of a switch, said actuation indicating
the end of the unistroke.

18. The method of claim 15 additionally comprising
detecting lack of movement of a joystick for a predetermined
period of time, said lack of movement indicating the end of
the unistroke.

19. The method of claim 18 wherein said detecting lack of
movement includes detecting the joystick at two identical
positions within said predetermined period of time.

20. The method of claim 19 wherein said positions corre-
spond to a center point.

21. The method of claim 15 wherein said identifying a
letter character is comprised of comparing the determined
sequence of corner hits to data representative of a plurality of
stored sequences of corner hits, selecting one of the stored
sequences of corner hits based on said comparing, and out-
putting the letter character linked to said selected one of said
stored sequences of corner hits.

22. The method of claim 21 wherein said comparing
includes comparing the determined sequence of corner hits to
a library of stored sequences of corner hits which is represen-
tational of a printed alphabet.

23. The method of claim 21 additionally comprising
changing the stored sequences of corner hits that are linked to
a letter character.

24. The method of claim 23 wherein said changing
includes providing one example of a sequence of corner hits
and the letter character to which that sequence is to be linked.

25. The method of claim 15 wherein said corner hits
include corner area hits, said method additionally comprising
varying the size of the corner areas while said single unistroke
is created.

26. The method of claim 25 wherein said varying the size
includes decreasing the size of only certain corner areas.

27. The method of claim 25 wherein said varying the size
includes decreasing the size of certain corner areas more than
the size of other corner areas.

28. The method of claim 15 wherein said corner hits
include corner area hits, said method additionally comprising
varying the shape of the corner areas while said single unis-
troke is created.

US 7,729,542 B2

11

29. A method of generating a stroke, comprising:

using a processor to perform the following method;

queuing continuous path data made by traversing edges

and diagonals and into corners within a confining geo-
metric shape constraining an input device to less than the
input device’s total area;

searching the queued continuous path data to generate a

sequence of corner hits independently of the remainder
of the continuous path data, with each corner hit in said
sequence of corner hits corresponding to a corner
defined by said geometric shape;

receiving information indicative of the end of each stroke;

wherein each of said sequences of corner hits defines a

single stroke, and wherein each single stroke is repre-
sentative of one of a letter, number, punctuation or mode;
and

identifying a letter character as being upper case when said

stroke representative of said character ends in a common
predetermined corner and lower case when said stroke
does not end in said common predetermined corner.

30. The method of claim 29 wherein said input device is a
touch sensitive surface, and wherein said information
includes information generated by lifting an object out of
contact with the touch sensitive surface.

31. The method of claim 29 wherein said information
includes information generated by activating a switch.

32. The method of claim 29 wherein said input device is a
joystick, and wherein said information includes information
generated by returning the joystick to a predetermined posi-
tion for a predetermined period of time.

33. A computer readable memory carrying software which,
when executed, performs a method comprising:

queuing continuous path data made by traversing edges

and diagonals and into corners within a confining geo-
metric shape constraining an input device to less than the
input device’s total area;
searching the queued continuous path data to generate a
sequence of corner hits, where a corner hit corresponds
to a corner defined by said geometric shape;

identifying a character based on said sequence of corner
hits independently of the remainder of the continuous
path data;

wherein each of said sequences of corner hits defines a

single stroke, and wherein each single stroke is repre-
sentative of one of a letter, number, punctuation or mode;
and

identifying a letter character as being upper case when said

stroke representative of said character ends in a common
predetermined corner and lower case when said stroke
does not end in said common predetermined corner.

34. The memory of claim 33 wherein said input device is a
touch sensitive surface, said method additionally comprising
detecting loss of contact with the touch sensitive surface, said
loss of contact indicating the end of a stroke.

35. The memory of claim 33 additionally comprising
detecting the actuation of a switch, said actuation indicating
the end of a stroke.

36. The memory of claim 33 wherein said input device is a
joystick, said method additionally comprising detecting lack
of movement of the joystick for a predetermined period of
time, said lack of movement indicating the end of a stroke.

37. The memory of claim 36 wherein said detecting lack of
movement includes detecting the joystick at two identical
positions within said predetermined period of time.

38. The memory of claim 37 wherein said positions corre-
spond to a center point.

20

25

30

35

40

45

50

55

60

65

12

39. The memory of claim 33 wherein said identifying a
character is comprised of comparing the determined
sequence of corner hits to data representative of a plurality of
stored sequences of corner hits, selecting one of the stored
sequences of corner hits based on said comparing, and out-
putting a character linked to said selected one of said stored
sequences of corner hits.

40. The memory of claim 39 wherein said comparing
includes comparing the determined sequence of corner hits to
a library of stored sequences of corner hits which is represen-
tational of a printed alphabet.

41. The memory of claim 39 additionally comprising
changing the stored sequences of corner hits that are linked to
a character.

42. The memory of claim 41 wherein said changing
includes providing one example of a sequence of corner hits
and the character to which that sequence is to be linked.

43. The memory of claim 33 wherein said corner hits
include corner area hits, said method additionally comprising
varying the size of the corner areas while said continuous path
data is being queued.

44. The memory of claim 43 wherein said varying the size
includes decreasing the size of only certain corner areas.

45. The memory of claim 43 wherein said varying the size
includes decreasing the size of certain corner areas more than
the size of other corner areas.

46. The memory of claim 33 wherein said corner hits
include corner area hits, said method additionally comprising
varying the shape of the corner areas while said continuous
path data is being queued.

47. A computer readable memory carrying software which,
when executed, performs a method, comprising:

queuing continuous path data made by traversing edges

and diagonals and into corners within a confining geo-
metric shape constraining an input device to less than the
input device’s total area;

searching the queued continuous path data to generate a

sequence of corner hits within a single unistroke, where
a corner hit corresponds to a corner defined by said
geometric shape;
identifying a letter character based on said sequence of
corner hits independently of the path therebetween; and

identifying said letter character as being upper case when
said single unistroke defining the character ends in a
common predetermined corner and lower case when
said unistroke does not end in the common predeter-
mined corner;

wherein each of said sequences of corner hits defines a

single stroke, and wherein each single stroke is repre-
sentative of one of a letter, number, punctuation or mode.

48. The memory of claim 47 additionally comprising
detecting loss of contact with a touch sensitive surface, said
loss of contact indicating the end of the unistroke.

49. The memory of claim 47 additionally comprising
detecting the actuation of a switch, said actuation indicating
the end of the unistroke.

50. The memory of claim 47 additionally comprising
detecting lack of movement of a joystick for a predetermined
period of time, said lack of movement indicating the end of
the unistroke.

51. The memory of claim 50 wherein said detecting lack of
movement includes detecting the joystick at two identical
positions within said predetermined period of time.

52. The memory of claim 51 wherein said positions corre-
spond to a center point.

53. The memory of claim 47 wherein said identifying a
letter character is comprised of comparing the determined

US 7,729,542 B2

13

sequence of corner hits to data representative of a plurality of
stored sequences of corner hits, selecting one of the stored
sequences of corner hits based on said comparing, and out-
putting the letter character linked to said selected one of said
stored sequences of corner hits.

54. The memory of claim 53 wherein said comparing
includes comparing the determined sequence of corner hits to
a library of stored sequences of corner hits which is represen-
tational of a printed alphabet.

55. The memory of claim 53 additionally comprising
changing the stored sequences of corner hits that are linked to
a letter character.

56. The memory of claim 55 wherein said changing
includes providing one example of a sequence of corner hits
and the letter character to which that sequence is to be linked.

14

57. The memory of claim 47 wherein said corner hits
include corner area hits, said method additionally comprising
varying the size of the corner areas while said single unistroke
is created.

58. The memory of claim 57 wherein said varying the size
includes decreasing the size of only certain corner areas.

59. The memory of claim 57 wherein said varying the size
includes decreasing the size of certain corner areas more than
the size of other corner areas.

60. The memory of claim 47 wherein said corner hits
include corner area hits, said method additionally comprising
varying the shape of the corner areas while said single unis-
troke is created.

