
Using Combinatorial Optimization Methods for
Quantification Scheduling?

P. Chauhan1 E. Clarke1 S. Jha2 J. Kukula3 H. Veith4 D. Wang1

1 Carnegie Mellon University 2 University of Wisconsin - Madison
3 Synopsys Inc. 4 TU Vienna, Austria

Abstract. Model checking is the process of verifying whether a model of a
concurrent system satisfies a specified temporal property. Symbolic algorithms
based on Binary Decision Diagrams (BDDs) have significantly increased the
size of the models that can be verified. The main problem in symbolic model
checking is the image computation problem, i.e., efficiently computing the suc-
cessors or predecessors of a set of states. This paper is an in-depth study of the
image computation problem. We analyze and evaluate several new heuristics,
metrics, and algorithms for this problem. The algorithms use combinatorial
optimization techniques such as hill climbing, simulated annealing, and order-
ing by recursive partitioning to obtain better results than was previously the
case. Theoretical analysis and systematic experimentation are used to evaluate
the algorithms.

1 Introduction

Model Checking and State Explosion. In model checking [CGP00], the system to be
verified is represented as a finite Kripke structure or labelled transition system. A
Kripke structure over a set of atomic propositions AP is a tuple K = (S,R,L, I)
where S is the set of states, R ⊆ S × S is the set of transitions, I ⊆ S is the non-
empty set of initial states, and L : S → 2AP labels each state by a set of atomic
propositions.

Given a Kripke structure K = (S,R, I, L) and a specification φ in a temporal
logic such as CTL, the model checking problem is the problem of finding all states s
such that K, s |= φ and checking if the initial states are among these. Model checking
algorithms usually exploit the fact that temporal operators can be characterized as
µ−calculus terms. For example, the set of states where the CTL formula EFφ holds,
is given by

EFφ ≡ µS.φ ∨EXS.

Recall that EFφ expresses reachability, i.e., the existence of a path where φ eventually
holds. Such fixpoint translations directly correspond to iterative algorithms.

? This research is sponsored by the Semiconductor Research Corporation (SRC), the Gigas-
cale Research Center (GSRC), the National Science Foundation (NSF) under Grant No.
CCR-9505472, and the Max Kade Foundation. One of the authors is also supported by
Austrian Science Fund Project N Z29-INF. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the authors and do not necessarily
reflect the views of GSRC, NSF, or the United States Government.

2

Symbolic Verification. In practice, the systems to be verified are described by pro-
grams in finite state languages such as SMV or VERILOG. These programs are then
compiled into equivalent Kripke structures. The main practical problem in model
checking is the state explosion problem: the size of the state space of the system is
exponential in the size of its description. Therefore, even for systems of relatively
modest size, it is often impossible to compute their state space explicitly.

In symbolic verification, the transition relation of the Kripke structure is not explic-
itly constructed, but instead a Boolean function representing the transition relation is
computed. Sets of states are also represented as Boolean functions. Then, the fixpoint
algorithms are applied to the formulas rather than to the Kripke structure. Since
the Boolean formula is usually exponentially smaller than an explicit representation,
symbolic verification is often able to alleviate the state explosion problem in these
situations. Binary Decision Diagrams (BDDs) have been a particularly useful data
structure for representing Boolean functions; in addition to their relative succinctness
they provide a canonical representation for Boolean functions. As a result, equality
of two Boolean functions can be easily checked in this representation.

At the core of all symbolic algorithms is image computation,1 i.e., the task of
computing the set of successors Img(S) of a set of states S, where

Img(S) := {s′ : ∃s.R(s, s′) ∧ s ∈ S}.

Image computation is one of the major bottlenecks in verification. Often it is impossi-
ble to construct a single BDD for the transition relation R. Instead, R is represented
as a partitioned transition relation, i.e., as the conjunction of several BDDs, each
representing a piece of R. The problem is how to compute Img(S) without actually
computing R.

As the above definition of Img indicates, the process of image computation in-
volves quantifying state variables. In the BDD representation, this amounts to quan-
tifying over several Boolean state variables. Early quantification [BCL91b, TSL+90] is
a technique which attempts to reorder the conjuncts so that the scope of each quan-
tifier is minimized. The effect of early quantification is that the evaluation of single
quantifiers can be done over relatively small intermediate BDDs. An exact definition
of early quantification will be given in Section 2. The success of early quantification
hinges heavily upon the derivation and ordering of sub-relations. Significant effort has
been directed over the last decade to this problem. Since the problem is known to be
NP-hard, various heuristics have been proposed for the problem.

In this paper, we propose and analyze several new techniques for efficient image
computation using the partitioned representation. The main contributions of the pa-
per are the following:
• We extend and analyze image computation techniques previously developed by
Moon et al. [MKRS00]. These techniques are based on the dependence matrix of the
partitioned transition relation. We explore various lifetime metrics related to this
representation and argue their importance in predicting costs of image computation.
Moreover, we provide effective heuristic techniques to optimize these metrics.
• We show that the problem of minimizing the lifetime metric of [MKRS00] is NP

1 The techniques in this paper also apply to preimage computation. For ease of exposition,
we restrict ourselves to image computation.

3

complete. More importantly, the reduction used to prove this result explains the close
connection between efficient image computation and the well studied problem of com-
puting the optimal linear arrangement for an undirected graph.
•We model the interaction between various sub-relations in the partitioned transition
relation as a weighted graph, and introduce a new class of heuristics called ordering
by recursive partitioning.
• We have performed extensive experiments which indicate the effectiveness of our
techniques. By implementing these techniques, we have also contributed to the code
base of the symbolic model checker NuSMV [CCGR99].

The main conclusion to be drawn from our analysis is the following: For compli-
cated industrial designs, the effort initially spent on ordering algorithms is clearly
amortized during image computation. In other words, the benefits of good orderings
outweigh the cost of slow combinatorial optimization algorithms.

The remainder of this paper is organized as follows: in Section 2, we introduce
notations and definitions used throughout the paper. Section 3 reviews the state
of the art for this problem. Section 4 discusses various algorithms that facilitate
early quantification. Section 5 describes experimental results. Finally, we conclude in
Section 6 with some directions for future research.

2 Preliminaries

Notation: Every state is represented as a vector b1 . . . bn ∈ {0, 1}n of Boolean val-
ues. The transition relation R is represented by a Boolean function T (x1, . . . , xn,
x′1, . . . , x

′
n). Variables X = x1, x2, . . . , xn and X ′ = x′1, x

′
2, . . . , x

′
n are called current

state and next state variables respectively. T (X,X ′) is an abbreviation for T (x1, . . . , xn,
x′1, . . . , x

′
n). Similarly, functions of the form S(X) = S(x1, . . . , xn) describe sets of

states. We will occasionally refer to S as the set, and to T as the transition rela-
tion. For simplicity we will use X to denote both the set {x1, . . . , xn} and the vector
〈x1, . . . , xn〉. Then the set of variables on which f depends is denoted by Supp(f).

Example 1. [3 bit counter. (Running Example)] Consider a 3-bit counter with
bits x1, x2 and x3. x1 is the least significant and x3 the most significant bit. The state
variables are X = x1, x2, x3, X ′ = x′1, x

′
2, x
′
3. The transition relation of the counter

can be expressed as

T (X,X ′) = (x′1 ↔ ¬x1) ∧ (x′2 ↔ x1 ⊕ x2) ∧ (x′3 ↔ (x1 ∧ x2)⊕ x3).

In later examples, we will compute the image Img(S) of the set S(X) = ¬x1. Note
that S(X) contains those states where the counter is even.

Partitioned BDDs: For most realistic designs it is impossible to build a single BDD
for the entire transition relation. Therefore, it is common to represent the transition
relation as a conjunction of smaller BDDs T1(X,X ′), T2(X,X ′), . . . , Tl(X,X ′), i.e.,

T (X,X ′) =
∧

1≤i≤l
Ti(X,X

′),

where each Ti is represented as a BDD. The sequence T1, . . . , Tl is called a partitioned
transition relation. Note that T is not actually computed, but only the Ti’s are kept
in memory.

4

Example 2. [3 bit counter, ctd.] For the 3 bit counter, a very simple partitioned
transition relation is given by the functions T1 = (x′1 ↔ ¬x1), T2 = (x′2 ↔ x1 ⊕ x2)
and T3 = (x′3 ↔ (x1 ∧ x2)⊕ x3).

Partitioned transition relations appear naturally in hardware circuits where each
latch (i.e., state variable) has a separate transition function. However, a partitioned
transition relation of this form typically leads to a very large number of conjuncts.
A large partitioned transition relation is similar to a CNF representation. So as the
number of conjuncts increases, the advantages of BDDs are gradually lost. Therefore,
starting with a very fine partition T1, . . . , Tl obtained from the bit relations, the
conjuncts Ti are grouped together into clusters C1, . . . , Cr, r < l such that each Ci is
a BDD representing the conjunction of several Ti’s. The image Img(S) of S is given
by the following expression.

Img(S(X)) = ∃X · (T (X,X ′) ∧ S(X)) (1)

= ∃X · (
∧

1≤i≤l
Ti(X,X

′) ∧ S(X)) (2)

= ∃X · (
∧

1≤i≤r
Ci(X,X

′) ∧ S(X)) (3)

Note that in general ∃x(α∧β) is not equivalent to (∃xα)∧(∃xβ). Consequently, to com-
pute Img(S(X)), formula 3 instructs us to compute first a BDD for

∧
1≤i≤r Ci(X,X

′)∧
S(X). As argued above, partitioned transition relations have been introduced to avoid
computing this potentially large BDD.

Early Quantification: Under certain circumstances, existential quantification can be
distributed over conjunction using early quantification [BCL91b, TSL+90]. Early quan-
tification is based on the following observation: if we know that α does not contain
x, then ∃x(α ∧ β) is equivalent to α ∧ (∃xβ). In general, we have l conjuncts and
n variables to be quantified. Since loosely speaking, clusters correspond to semantic
entities of the design to be verified, it is expected that not all variables appear in all
clusters. Therefore, some of the quantifications may be shifted over several Ci’s. For
a given sequence C1, . . . , Cr of clusters, we obtain

Img(S(X)) = ∃X1 · (C1(X,X ′) ∧ ∃X2 · (C2(X,X ′) . . .

∃Xr · (Cr(X,X ′) ∧ S(X)))) (4)

where Xi is the set of variables which do not appear in Supp(C1) ∪ . . . ∪ Supp(Ci−1)
and each Xi is disjoint from each other. Existentially quantifying out a variable from
a formula f reduces |Supp(f)| which usually corresponds to a reduced BDD size.
The success of early quantification strongly depends on the order of the conjuncts
C1, . . . , Cr.

Quantification Scheduling. The size of the intermediate BDDs in image computation
can be reduced by addressing the following two questions:

Clustering: How to derive the clusters C1, . . . , Cr from the bit-relations T1, . . . , Tl?

5

Ordering: How to order the clusters so as to minimize the size of the intermediate
BDDs?

These two questions are not independent. In particular, a bad clustering results in
a bad ordering. Moon and Somenzi [MS00] refer to this combined problem as the
quantification scheduling problem. The ordering of clusters is known as the conjunction
schedule.

Our algorithms are based on the concepts of dependence matrices (introduced
in [MKRS00, MS00]) and sharing graphs.

Definition 1 (Moon et al). The dependence matrix of an ordered set of functions
{f1, f2, . . . , fm} depending on variables x1, . . . , xn is a matrix D with m rows and n
columns such that dij = 1 if function fi depends on variable xj, and dij = 0 otherwise.

Thus, each row corresponds to a formula, and each column to a variable. For
image computation, we will associate the rows with the conjuncts of the partitioned
transition relation, and the columns with the state variables. For example, fm =
S(X), fm−1 = Cr, Thus, different choices for fi, 1 ≤ i ≤ m correspond to different
orderings.

We will assume that the conjunction is taken in the order fm, fm−1, . . . , f2, f1, i.e.,
we consider an expression of the form ∃X (f1 ∧ (f2 ∧ . . .∧ (fm−1 ∧ fm))). If a variable
occurs only in fm, we can quantify it early by pushing it to the right just before fm.

Example 3. [3 bit counter, ctd.] For f4 = S(X), f3 = T3, f2 = T2, f1 = T1 the
dependency matrix for our running example looks as follows:

v1 v2 v3 v
′
1 v
′
2 v
′
3

f1 = T1 1 0 0 1 0 0
f2 = T2 1 1 0 0 1 0
f3 = T3 1 1 1 0 0 1

f4 = S(X) 1 0 0 0 0 0

In general, for a variable xj , let lj denote the smallest index i in column j such
that dij = 1. Analogously, hj denotes the largest index. We can quantify away the
variable xj as soon as the conjunct corresponding to the row lj has been considered.
The variable does not appear in any conjuncts after hj . Hence, hj − lj can be viewed
as the lifetime of a variable. Moon, Kukula, Ravi and Somenzi [MKRS00] define the
following metric and use it extensively in their algorithms.

Definition 2 (Moon, Kukula, Ravi, Somenzi). The normalized average life-
time of the variables in a dependence matrix Dm×n is given by

λ =

∑
1≤j≤n(hj − lj + 1)

m · n
Note that the definition of λ assumes that S(X) is given. Therefore, since λ depends

on S(X), the ordering has to be recomputed in each step of the fixpoint computation.
We are considering static ordering techniques here, which are computed independently
of any particular S(X), so it is necessary to make assumptions about the structure of
S(X). We obtain two lifetime metrics λU and λL depending on whether we assume

6

Supp(S) = X or Supp(S) = ∅. It is easy to see that λL ≤ λ ≤ λU . The terms average
active lifetime and total active lifetime are also used to denote λL and λU respectively.
Moon and Somenzi argue in favour of using λL. We will evaluate the effectiveness of
each of these metrics to predict image computation costs.

3 Related Work

The importance of the clustering and ordering problem was first recognized by Burch
et al. [BCL91a] and Touati et al. [TSL+90]. Geist and Beer [GB94] proposed a sim-
ple heuristic algorithm, in which they ordered conjuncts in the increasing order of
the number of support variables. All these techniques are static techniques. Subse-
quently, the same clusters and ordering are used for all the image computations during
symbolic analysis. Since the clustering and ordering problems are not independent,
these techniques typically begin by first ordering the conjuncts and then clustering
them and finally ordering the clusters again using the same heuristics. The first suc-
cessful heuristic (commonly known as IWLS95) for this problem is due to Ranjan
et al. [RAP+95]. They have an elaborate heuristic procedure for ordering the initial
conjuncts and the clusters. The ordering procedure maintains a set Q of conjuncts
that are already ordered and a set R of conjuncts that are yet to be ordered. Note that
we have used the word conjunct here to mean both the conjuncts before clustering
and the clusters in the final ordering phase. The next conjunct in the order is cho-
sen from R using a heuristic score. The score is computed by using four factors: the
maximum BDD index of a variable that can be quantified, the number of next state
variables that would be introduced, the number of support variables, and the number
of variables that will be quantified away. After the ordering phase, the clusters are
derived by repeatedly conjoining the conjuncts until the BDD of the cluster grows
larger than some partition size limit, at which point a new cluster is started. Bwolen
Yang proposed a similar technique in his thesis [Yan99]. However, he introduces a
pre-merging phase where conjuncts are initially merged pairwise based on the sharing
of support variables and the maximum BDD size constraint. His ordering heuristic
is based on six factors which are similar to those used by Ranjan et al. [RAP+95].
However, he also takes into account the relative growth in BDD sizes. The cluster-
ing algorithm Yang uses is the same as the one used in IWLS95. A recent paper by
Moon and Somenzi [MS00] presents an ordering algorithm (henceforth referred to as
FMCAD00) based on computing the Bordered Block Triangular form of the depen-
dence matrix. Their clustering algorithm is based on the sharing of support variables
(affinity). They report large performance gains with respect to the IWLS95 technique.

4 Algorithms for Ordering Clusters

The algorithms we propose also follow the order-cluster-order strategy. The ordering
algorithms that we present in this section are used before and after clustering. Our
clustering strategy is as in IWLS95. For the sake of clarity of notation, let us assume
that the clusters C1, C2, . . . , Cr have been constructed and we are ordering them. But
the discussion applies equally well to ordering the initial conjuncts T1, . . . , Tn.

We present two classes of algorithms. The first one is based on dependence matrix
and the other one on sharing graphs.

7

In Section 2 we defined a dependence matrix D corresponding to the set of clusters
C1, · · · , Cr. As already pointed out, the number of support variables provides a good
estimate of the size of a BDD. Therefore, we seek a schedule in which the lifetime of
variables is low. Moon and Somenzi [MS00] provide a method to convert a dependence
matrix into bordered block triangular form with the goal of reducing λL.

4.1 Minimizing λ is NP-complete

The main result of this subsection (Theorem 1) motivates the use of various combi-
natorial optimization methods.

Let λ-OPT be the following decision problem: given a dependence matrix D and
a number r, does there exist a permutation σ of the rows of D such that λ < r? The
following theorem shows that λ − OPT is NP-complete. The reduction is from the
optimal linear arrangement problem (OLA) [GJ79, page 200]. Due to space limitations
the proof is given in the appendix.

Theorem 1. λ-OPT is NP-complete.

The complexity of this problem was not explored by Moon and Somenzi [MS00].
There exists a variety of heuristics for solving the optimal linear arrangement problem
and related problems in combinatorial optimization. Some of these heuristics are based
on hill climbing and simulated annealing. There are two important characteristics of
this class of algorithms. First of all, they all try to minimize an underlying cost
function. Second, these heuristics use a finite set of primitive transformations, which
allows them to move from one solution to another. In our case, the set of swaps of the
rows of the dependence matrix constitutes the set of moves and the cost function can
be chosen to be either λL or λU . Our experimental results (Section 5) confirm that
λL correlates with image computation costs much better than λU does, in accordance
with the claim of [MS00]. Simulated annealing is a more general and flexible strategy
than hill climbing.

4.2 Hill Climbing

Hill climbing is the simplest greedy strategy in which at each point, the solution is
improved by choosing two rows to be swapped in such a manner as to achieve best
improvement in the cost function. This process is repeated until no further move
improves the solution. Since the best move is chosen at each point, this strategy is
also called steepest descent hill climbing. However, this algorithm can easily get stuck
in local optima. Randomization is used to alleviate this problem as follows: The best
move that improves the solution is accepted only with some probability p, and with
probability 1−p, a random move is accepted. This allows the algorithms to get out of
local optima. Note that with p = 1.0, we get the steepest descent hill climbing. The
algorithm can be run multiple number of times, each time beginning with a random
permutation, and the best solution that is achieved is accepted.

Figure 1 describes the algorithm in exact terms. The hill climbing procedure is
repeated NumStarts times. In the algorithm, σ denotes a permutation of the rows of
the dependency matrix. Hill climbing is performed until no further improvement in λ
is possible.

8

HillClimbOrder(D)

1 λbest = 2 // any number greater than 1 will do, since λ is always less than 1

2 for i = 1 to NumStarts

3 let σ′ be a random permutation of conjuncts.

4 while there exists a swap in σ′ to reduce λ

5 make the best swap with probability p,

6 or make a random swap with probability 1− p to update σ′.

7 if λ′ < λbest

8 λbest = λ′

9 σbest = σ

10 endif

11 endfor

Fig. 1. Hill climbing algorithm for minimizing λ

4.3 Simulated Annealing

The physical process of annealing involves heating a piece of metal and letting it
cool down slowly to relieve stresses in the metal. The simulated annealing algorithm
(introduced by Metropolis et al. [MRR+53]) mimicks this process to solve large com-
binatorial optimization problems [KJV83]. Drawing analogy from the physical process
of annealing, the algorithm begins at a high “temperature”, where the set of moves
is essentially random. This allows larger jumps from local to global optima. Gradu-
ally, the temperature is decreased and the moves become less random favoring greedy
moves over random moves for achieving a global optimum. Finally, the algorithm
terminates at “freezing” temperatures where no further moves are possible. At each
stage, the temperature is kept constant until “thermal quasi-equilibrium” is reached.
While random moves help in the beginning, when the algorithm has a greater ten-
dency to get stuck in local optima, the greedy moves help to achieve a global optimum
once the solution is in the proximity of one. In practice, simulated annealing has been
successfully used to solve optimization problems from several domains.

The probability of making a move that increases the cost function is related to the
temperature ti at the i-th iteration, and is given by e−∆λ/ti . Thus at higher temper-
atures, the probability of accepting random moves is high. The gradual decrease of
temperature is called the cooling schedule. If the temperature is decreased by a fraction
r in each stage, we get an exponential cooling schedule. Thus beginning with an initial
temperature of t0, the temperature in the i-th iteration is t0r

i. It has been shown that
a logarithmic cooling schedule is guaranteed to achieve an optimal solution with high
probability [B’e92, Haj85]. However, this is an extremely slow cooling schedule and
simple cooling schedules like exponential schedules perform well for many problems.
Figure 2 describes our algorithm. The parameter NumStarts controls the number of
times the temperature is decreased. The parameter NumStarts2 controls the number
of iterations at a fixed temperature ti.

4.4 Sharing Graphs and Separators

We build sharing graphs as defined below to model interaction between clusters.

9

SimAnnealOrder(D)

for i = 1 to NumStarts

1 ti ← t0r
i

2 for j = 1 to NumStarts2

3 permute two random rows of D to get Di

4 if (λi < λ) // greedy move

5 λ← λi;D ← Di

6 else // random move

7 with probability e
−(λi−λ)

ti , set λ← λi;D ← Di

8 endif

9 endfor

10 endfor

Fig. 2. Simulated annealing algorithm to minimize λ

Definition 3. A sharing graph corresponding to a set of Boolean functions {f1, f2,
. . . , fm} is a weighted graph G(V,E,we), where V = {f1, f2, . . . , fm}, E = V ×V and
we : E → < is a real-valued weight function.

We shall use heuristic weight functions to express interaction between clusters.
Intuitively, the stronger the interaction between two clusters, the closer they should
be in the ordering. IWLS95 and Bwolen Yang’s heuristics order the conjuncts based
on this type of interaction between conjuncts. We propose to use graph algorithms
on sharing graphs to order the conjuncts. We define the weight w(Ti, Tj) of an edge
(Ti, Tj) in the sharing graph as

w(Ti, Tj) = W1 ·
Supp(Ti) ∩ Supp(Tj)
|Supp(Ti)|+ |Supp(Tj)|

+W2 ·
BddSize(Ti ∧ Tj)

BddSize(Ti) +BddSize(Tj)

The first factor (W1 ≥ 0) denotes the relative weight of sharing of support between
two conjuncts, while the second factor (W2 ≤ 0) denotes the weight of the relative
growth in the sizes of BDDs if these two conjuncts are conjoined. Therefore, a higher
edge weight between two conjuncts indicates a higher degree of interaction and con-
sequently these conjuncts should appear “close” in the ordering.

A separator partitions the vertices of a weighted undirected graph into two sets
such that the total weight of the edges between two partitions is “small”. Formally,
an edge separator is defined as follows:

Definition 4. Given a weighted undirected graph G(V,E) with two weight functions
we : E → < and wv : V → <, and a positive constant γ < 0.5, an edge separator is a
collection of edges Es such that removing Es from G partitions G into two disconnected

subgraphs V1 and V2, and
|
∑

v∈V 1
wv(v)−

∑
v∈V 2

wv(v)|∑
v∈V wv(v)

< γ.

Usually, γ is chosen very close to zero so that the size of the two sets is approxi-
mately the same. The weight of the edge separator Es is simply the sum of the weight
of the edges in Es. It has been shown that finding an edge separator of minimum

10

weight is NP-complete [GJ79, pp. 209], in fact finding an approximation is NP-hard,
too [BJ92]. The problem of finding a good separator occurs in many different con-
texts and a wide range of application areas. A large number of heuristics have been
proposed for the problem. One of the most important heuristics is due to Kernighan
and Lin [KL70]. Variations of this heuristic [FM82] have been found to work very well
in practice.

By finding a good edge separator of the sharing graph, we obtain two sets of
vertices with a low level of interaction between them. Thus the vertices of these two
sets can be put apart in the ordering. A complete ordering is achieved by recursively
invoking the algorithm on the two halves. Since this ordering respects the interaction
strengths between conjuncts, we expect to achieve smaller BDD sizes.

We use the Kernighan-Lin algorithm for finding a good edge separator Es. This
produces two sets of vertices L and R. A vertex v ∈ L that has an edge of non-zero
weight to a vertex in R is called an interface vertex. LI denotes the set of interface
vertices in L. Similarly, RI denotes the set of interface vertices in R. We invoke the
algorithm to recursively order L \ LI , LI , RI , and R \ RI . Finally, the order on the
vertices is given by the order on L \ LI followed by the order on LI , followed by the
order on RI , and followed by the order on R \ RI . Figure 3 describes the complete
algorithm.

KLinOrder(G(V,E),W)

1 Find a separator Es using

Kernighan-Lin heuristic

2 Let L and R be two partitions of

vertices induced by Es.

3 Li ← Interface(L).

4 Ri ← Interface(R).

5 Recursively call the procedure on

the subgraphs induced by L \ Li, Li,
Ri and R \Ri.

6 Order the vertices as

KLinOrder(L \ Li) ≺ KLinOrder(Li) ≺
KLinOrder(Ri) ≺ KLinOrder(R \Ri).

Fig. 3. An ordering algorithm based on graph
separators

RL
Li Ri

Fig. 4. Kernighan-Lin partition

5 Experimental Results

In order to evaluate the effectiveness of our algorithms, we ran reachability and model
checking experiments on circuits obtained from the public domain and industry. The
“S” series of circuits are ISCAS’93 benchmarks, and the “IU” series of circuits are var-
ious abstractions of an interface control circuit from Synopsys. For a fair comparison,

11

we implemented all the techniques in the NuSMV model checker. All experiments
were done on a 200MHz quad Pentium Pro processor machine running the Linux
operating system with 1GB of main memory. We restricted the memory usage to
900MB, but did not set a time limit. The two performance metrics we measured are
running time and peak number of live BDD nodes. We provided a prior ordering to
the model checker and turned off the dynamic variable reordering option. This was
done so that the effects of BDD variable reordering do not “pollute” the result. We
also recorded the fraction of time spent in the clustering and ordering phases. The
cost of these phases is amortized over several image computations performed during
model checking and reachability analysis.

In the techniques that we have described, several parameters have to be chosen.
For example, the cooling schedule in the case of simulated annealing needs to be
determined. We ran extensive “tuning experiments” to find the best value for these
parameters. Due to space constraints, we do not describe all those experiments. How-
ever, the choice of lifetime metric to optimize is a crucial one and hence in our first
set of experiments, we evaluate the effectiveness of these metrics for predicting image
computation costs.

Our algorithms for combinatorial optimization of lifetime metrics can choose to
work with either upper or lower approximations of lifetimes. We ran the following
experiment to estimate the correlation between the performance, and λL and λL re-
spectively. We generate various conjunction schedules for a number of benchmarks
by different ordering methods and by varying various parameters of the optimization
methods. Each schedule gives us different values for lifetime metrics. We measure the
running time and the peak number of live BDD nodes used for the model checking or
reachability phase. For each circuit, this gives us four scatter plots for running time
vs lifetime metric and space vs lifetime metric. A statistical correlation coefficient
between runtime/space and lifetime metric indicates the effectiveness of a metric for
predicting the runtime/space requirement. The following Table 1 concisely summa-
rizes the correlation results.

Circuit Runtime Space
λL λU λL λU

IU40 0.560 0.303 0.610 0.227

IU70 0.603 0.336 0.644 0.263

TCAS 0.587 0.366 0.628 0.240

S1269 0.536 0.402 0.559 0.345

S3271 0.572 0.350 0.602 0.297

Table 1. Correlation between various lifetime metrics and runtime/space for a representative
sample of benchmarks.

It is clear from this data that the active lifetime (λL) is a much more accurate
predictor of image computation costs than total lifetime (λU). Hence, simulated an-
nealing and hill climbing techniques optimize λL.

In the following set of experiments (Table 2), we compare our techniques against
the FMCAD00 strategy [MS00]. The first column indicates the total running time
of the benchmark (including ordering/clustering and model checking/reachability

12

phases), the second column indicates the peak number of live BDD nodes in thou-
sands during the whole computation, the third column indicates time used by ordering
phase, the next two columns indicate λL and λU achieved. From hill climbing and
simulated annealing, we only report the results of simulated annealing, as both of
them belong to the same class of algorithms. Moreover, we found out that in general,
simulated annealing achieves better performance than hill climbing.

The algorithm KLin based on edge separators achieves lower peak live node count
for several circuits than FMCAD00. For the 15 large benchmarks for which FM-
CAD’00 takes more than 100 secs to finish, KLin wins 10 cases in terms of Peak live
BDD nodes, and 7 cases in terms of running time. In some cases, the savings in space
is 40%.

The result for the simulated annealing algorithm that minimizes λ is shown in
Table 2. Again, in comparison to FMCAD00, for the 15 non-trivial benchmarks, sim-
ulated annealing wins 14 cases and ties for the other in space, and wins 11 cases in
time. In some cases, the savings in space is 55%. The simulated annealing algorithm
can also complete 16 reachability steps for the S1423 circuit, which to our knowledge
has not be achieved by other techniques. Comparing KLin and simulated annealing,
simulated annealing achieves the better results for all the nontrivial benchmarks.

The improvements in execution times are less than the improvements in space,
especially for smaller circuits. This is because separator based algorithms spend more
time in the ordering phase itself. However, for larger circuits, this cost gets amortized
by the smaller BDDs achieved during analysis. An important observation that can be
made is that in general, our algorithms spend more time in the initial ordering phase
as compared to FMCAD00. This is to be expected since both KLin and simulated
annealing are optimization methods.

The last two columns in Table 2 indeed demonstrate that our algorithms improve
various λs with respect to FMCAD’00. The main objective of our algorithms was to
improve λL, though we can see that they also result in better λU s in general.

6 Conclusions and Future Work

We have given convincing evidence that variable lifetimes have a crucial impact on the
performance of image computation algorithms. We have also presented new algorithms
for conjunction scheduling based on hill climbing, simulated annealing, and graph
separators and shown the effectiveness of them. The performance of these algorithms
was comparable to that of the current best known methods. Our experiments clearly
demonstrate that for large circuits, we can achieve savings in memory in the range of
50-60%. Since fine-tuned image computation algorithms are obviously most important
for large circuits, we believe that our results are a significant contribution to model
checking and reachability analysis. On the implementation side, we have contributed
several new image computation algorithms to the NuSMV model checker, and believe
that it will be a valuable research tool.

There are some interesting research directions to pursue. First of all, we need to
understand the behavior of our algorithms on broader class of systems. The examples
were mostly chosen from the circuit domain, and we would like to see the effective-
ness of these algorithms on other class of circuits. Secondly, techniques which switch
between different conjunction schedules depending on intermediate state sets in the

1
3

Circuit #FF #inp. log2 of Total Time Peak space Ordering time λL λU
#reach I II III I II III I II III I II III I II III

IDLE 73 0 14.63 159 161 182 289 276 223 2 20 29 0.329 0.293 0.200 0.421 0.515 0.487

GUID 91 0 47.58 14 20 24 137 106 138 4 15 19 0.346 0.220 0.165 0.394 0.452 0.294

S953 29 16 8.98 1 2 3 15 13 15 1 1 3 0.290 0.290 0.271 0.507 0.485 0.410

IU30 30 138 18.07 28 104 63 290 563 290 3 24 34 0.360 0.368 0.324 0.459 0.522 0.634

IU35 35 183 22.49 13 29 11 257 366 202 4 24 6 0.364 0.373 0.304 0.573 0.360 0.308

IU40 40 159 25.85 13 37 14 353 384 232 5 21 5 0.326 0.336 0.302 0.508 0.326 0.334

IU45 45 183 29.82 MOut 11256 165 MOut 3952 483 10 32 39 0.360 0.353 0.300 0.465 0.663 0.569

IU50 50 615 31.57 476 522 540 1627 1599 1602 16 52 77 0.319 0.418 0.133 0.459 0.654 0.403

IU55 55 625 33.94 982 891 870 4683 3358 3298 14 90 84 0.384 0.386 0.324 0.583 0.432 0.515

IU65 65 632 39.32 MOut 1260 1083 MOut 7048 6793 18 81 100 0.389 0.353 0.353 0.659 0.448 0.423

IU70 70 635 42.07 5398 3033 2855 17355 9099 9964 38 95 129 0.303 0.296 0.286 0.424 0.393 0.486

IU75 75 322 46.59 5367 4218 3822 16538 12193 9404 45 115 140 0.398 0.371 0.349 0.731 0.692 0.526

IU80 80 350 49.80 MOut 6586 4824 MOut 22234 17993 49 127 136 0.372 0.335 0.322 0.570 0.628 0.345

IU85 85 362 52.14 MOut MOut 6933 MOut MOut 25661 59 141 154 0.332 0.303 0.287 0.623 0.597 0.591

TCAS 139 0 106.87 5058 5285 4598 11931 12376 9140 27 173 165 0.173 0.182 0.227 0.299 0.306 0.261

S1269 37 18 30.07 2109 2466 1875 1440 1736 893 10 19 24 0.584 0.622 0.449 0.659 0.929 0.589

S1512 57 29 40.59 799 1794 651 159 190 135 15 24 30 0.412 0.394 0.386 0.521 0.619 0.714

S5378 179 35 57.71* 18036 MOut 10168 1632 MOut 1279 42 49 67 0.124 0.114 0.099 0.219 0.164 0.152

S4863 104 49 72.35 3565 3109 3013 1124 947 910 38 45 56 0.102 0.103 0.086 0.251 0.109 0.179

S3271 116 26 79.83 4234 3286 3399 8635 6240 6203 33 30 30 0.224 0.185 0.184 0.366 0.306 0.226

S3330 132 40 86.64 23659 19533 24563 12837 9866 11381 69 123 150 0.214 0.217 0.227 0.299 0.335 0.378

SFE† 293 69 218.77 863 916 762 147 146 130 14 84 76 0.383 0.354 0.344 0.554 0.624 0.531

S1423 74 17 37.41** 23325 19265# 35876 65215 27653# 48366 10 17 35 0.486 0.501 0.301 0.622 0.622 0.460

Table 2. Comparing FMCAD00(I), Kernighan-Lin separator (II) and Simulated annealing (III) algorithms. The times are reported in seconds.
The peak space is reported by the peak number of live BDD nodes in thousands. (MOut)–Out of memory, (†)–SFEISTEL, (*)–8 reachability
steps, (**)–14 reachability steps, (#)–13 reachability steps. The lifetimes reported are after the final ordering phase.

14

fixpoint computation seem to be promising. We also plan to study in greater depth
the effect of various parameters of our methods and automatic ways to tune them.

References

[BCL91a] J. R. Burch, E. M. Clarke, and D. E. Long. Representing circuits more effi-
ciently in Symbolic Model Checking. In 28th ACM/IEEE Design Automation
Conference, 1991.

[BCL91b] J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic Model Checking with par-
titioned transition relations. In A. Halaas and P. B. Denyer, editors, Proceedings
of the International Conference on Very Large Scale Int egration, Edinburgh,
Scotland, August 1991.

[B’e92] C. J. P. B’elisle. Convergence theorems for a class of simulated annealing algo-
rithms. Journal of Applied Probability, 29:885–892, 1992.

[BJ92] T. N. Bui and C. Jones. Finding good approximate vertex and edge partitions
is NP-hard. Information Processing Letters, 42:153–159, 1992.

[CCGR99] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: A new Sym-
bolic Model Verifier. In N. Halbwachs and D. Peled, editors, Proceedings of
the International Conference on Computer-Aided Verification (CAV’99), num-
ber 1633 in Lecture Notes in Computer Science, pages 495–499. Springer, July
1999.

[CGP00] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.

[FM82] C.M. Fiduccia and R.M. Mattheyses. A linear time heuristic for improving
network partitions. In 19th ACM/IEEE Design Automation Conference, pages
175–181, 1982.

[GB94] D. Geist and I. Beer. Efficient Model Checking by automated ordering of tran-
sition relation partitions. In D. L. Dill, editor, Sixth Conference on Computer
Aided Verification (CAV’94), volume 818 of LNCS, pages 299–310, Stanford, CA,
USA, 1994. Springer-Verlag.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., 1979.

[Haj85] B. Hajek. A tutorial survey of theory and applications of simulated annealing.
In Proc. 24th IEEE Conf. Decision and Control, pages 755–760, 1985.

[KJV83] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by simulated
annealing. Science, 220:671–679, 1983.

[KL70] Brian Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graphs. The Bell System Technical Journal, pages 291–307, February 1970.

[MKRS00] In-Ho Moon, James H. Kukula, Kavita Ravi, and Fabio Somenzi. To split or to
conjoin: The question in image computation. In Proceedings of the 37th Design
Automation Conference (DAC’00), pages 26–28, Los Angeles, June 2000.

[MRR+53] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.
Equation of state calculations by fast computing machines. Journal of Chemical
Phyics, 21(6):1087–1092, 1953.

[MS00] In-Ho Moon and Fabio Somenzi. Border-block triangular form and conjunc-
tion schedule in image computation. In Warren A. Hunt Jr. and Steven D.
Johnson, editors, Proceedings of the Formal Methods in Computer Aided Design
(FMCAD’00), volume 1954 of LNCS, pages 73–90, November 2000.

[RAP+95] R.K. Ranjan, A. Aziz, B. Plessier, C. Pixley, and R.K. Brayton. Efficient BDD
algorithms for FSM synthesis and verification. In IEEE/ACM International
Workshop on Logic Synthesis, Lake Tahoe, 1995. IEEE/ACM.

15

[TSL+90] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincentelli.
Implicit enumeration of finite state machines using BDDs. In Proceedings of
the IEEE international Conference on Computer Aided Design (ICCAD), pages
130–133, November 1990.

[Yan99] Bwolen Yang. Optimizing Model Checking Based on BDD Characterization. PhD
thesis, Carnegie Mellon University, Computer Science Department, May 1999.

16

Appendix A

It is easy to see that for a given permutation σ of rows, we can compute λ in polynomial
time (O(n ·m)) and check if λ ≤ r.

To show that λ − OPT is NP-hard, we reduce a known NP-complete problem called
optimal linear arrangement (OLA) [GJ79, page 200] to λ − OPT . An instance of OLA
consists of a graph G(V,E) and a positive integer K. The question is whether there exists
a permutation f of V such that

∑
(u,v)∈E |f(u) − f(v)| ≤ K. The reduction consists of

constructing a dependence matrix D and a number r such that (V,E),K is a solution of
OLA iff D, r is a solution to λ−OPT . An example of a reduction is given in figure 5.

k
k k
kk

�
�� @

@@

v1

e6

e4
v3

e3

v5

v2

e5

v4

e1 e2

K = 9
(a)

1 2 3 4 5 6
1 1 1 0 0 0 0
2 1 0 0 1 1 0
3 0 1 1 1 0 0
4 0 0 1 0 0 1
5 0 0 0 0 1 1

(b)
r = K+n

n·m = 1/2

Fig. 5. (a) An instance of Optimal Linear Arrangement, (b) its reduction to λ−OPT . The
permutation v1, v2, v3, v5, v4 is a solution to both.

Formally, D has |V | rows corresponding to the vertices of G(V,E), and |E| columns
corresponding to the edges of G(V,E). For any edge ek = (vi, vj), set dik = djk = 1 and set
all other dij ’s to 0. Thus, in each column there are two occurences of the symbol 1. We set
r = K+n

n·m . Trivially we obtain the following equivalence:

∑
1≤j≤n(hj − lj + 1)

n ·m ≤ r

⇔
∑

1≤j≤n
(hj − lj + 1) ≤ r · (n ·m)

⇔
∑

1≤j≤n
(hj − lj + 1) ≤ K + n

Let σ be a permutation of the vertices of V . Note that σ simultaneously is a permutation of
the rows of D. We have to show that σ is a solution of G(V,E),K iff σ is a solution of D, r.

The important observation is that because of the construction of D, the only non-zero
entries in each column j correspond to the two vertices of the edge ej = (u, v). Therefore,
we conlude that hj − lj = |σ(u)− σ(v)|. Continuing the above equivalence we obtain

∑

1≤j≤n
|σ(u)− σ(v)|+ n ≤ K + n

⇔
∑

(u,v)∈E

|f(u)− f(v)| ≤ K

