

# Preference, Consensus, and Choice in Crowdsourced Relevance

Paul Bennett, Microsoft Research (CLUES)

Joint work with Ben Carterette, Max Chickering, Susan Dumais, Eric Horvitz, Edith Law, and Anton Mityagin.

## Road Map

- Why Preferences?
  - Learning Consensus from Preferences at Scale
  - Beyond Consensus
  - Discussion



12v car battery charger



1-10 of 3,980,000 results · Advanced

Sponsored sites

RELATED SEARCHES

12 Volt Car Battery Charger

Portable Car Battery Charger

Car Battery Corrosion

Car Battery Booster

Car Battery Tester

Car Battery Guide

8 Volt Car Battery

Motorcycle Batteries

SEARCH HISTORY

Search more to see your history

See all

Clear all . Turn off



ALL RESULTS

Shopping More▼

From \$29.99. 12v Battery Chargers for Cars & Trucks. Very Low Prices. www.harborfreight.com/chargers

Duralast® at AutoZone

12 Volt Battery Charger

Check Store Pricing & Availability. Visit Duralast Parts Official Site

www.AutoZone.com

battery car charger

he58 Re Charge Devices In Your Car W/ iGo! Order Today And Get Free Shipping! www.igo.com/carchargers

Car Battery Charger

Best Car Battery Charger, Home Car Battery Charger, Jan, Sunforce, Schumacher, Black & Decker, Jensen, Sunsei, Solar, Ac., 12v Car Battery na Var Portable Car ... carbatterycharger.us

12 Volt Smart Battery Charges, 12v Gel Cell & Solar Batteries
12 volt battery charges, 12 volt battery charges, 15 volt or affect manufactures with 15 volt. For cars, autos, motorcycles, and ...

www.batterystuff.

#### 1 12v car battery charger



Brand Aftermarket Gr... CTA Digital Macally Mace Mizco

Category Battery Chargers Chargers & Jumpers Batteries

Price below \$2 \$2-\$23 above \$23

bing.com/shopping

12v Car Battery Charger - Compare Prices, Reviews and Buy at ...

12v Car Battery Charger - 1,176 results like the Energizer 12V Alkaline Photo Cell Battery - 2 Pack, HP VV122AA Auto Adapter - 40 W For Notebook - 12 V DC, Garmin 010 ... www.nextag.com/12v-car-battery-charger

Use 12v Car Battery Charger To Keep Your Batteries Alive!

If you drive a car and you don't want to deal with the headaches of having a dead car battery, you

Sponsored sites

#### Auto Battery Chargers

Find New Batter Chargers Today. Enjoy Big Savir is at JC Whitney! C' e ey om/BatteryChargers

#### tacell® Official Site

Find The Right Duracell Product For Your Electronic Needs www.Duracell.com

#### Car Battery

Save up to 40% on Car Batteries. We Compare Best Prices! CarBatteries.ShopCompare.net

#### 12v Car Battery Charger

Explore 100+ Batteries. Save on 12v Car Battery Charger! Batteries BizRate com

#### 12v Charger at Amazon

Find Car Parts, Accessories, Tools, Garage Equipment, Car Care & More www.Amazon.com/automotive

#### car battery at Sears®

Buy Online, and Pick Up at Your Closest Sears Store. Shop Auto Now! www.Sears.com/Auto

#### Find Car Battery Chargers

Your Source For Auto Parts, Find Car. Battery Chargers Quickly. AutomotiveIndepth.com

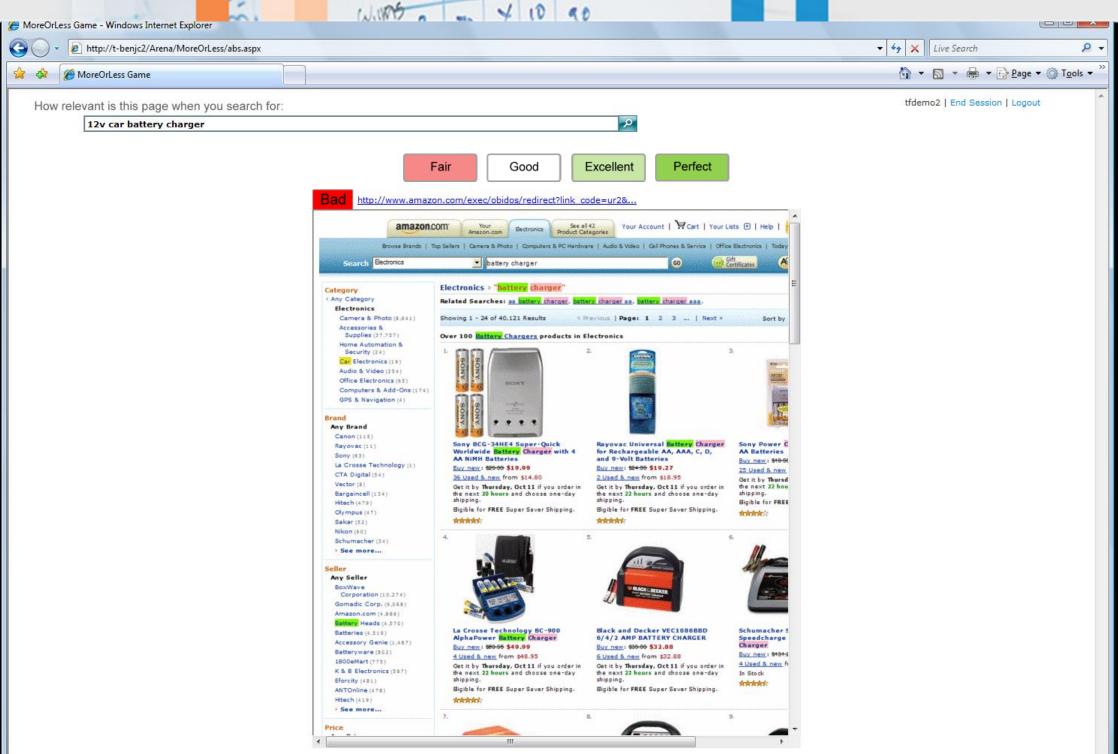
#### Largest Battery Site

Over 1.000.000 Batteries In Stock ready to ship today. www.AtBatt.com

See your message here

# Why relevance judgments?

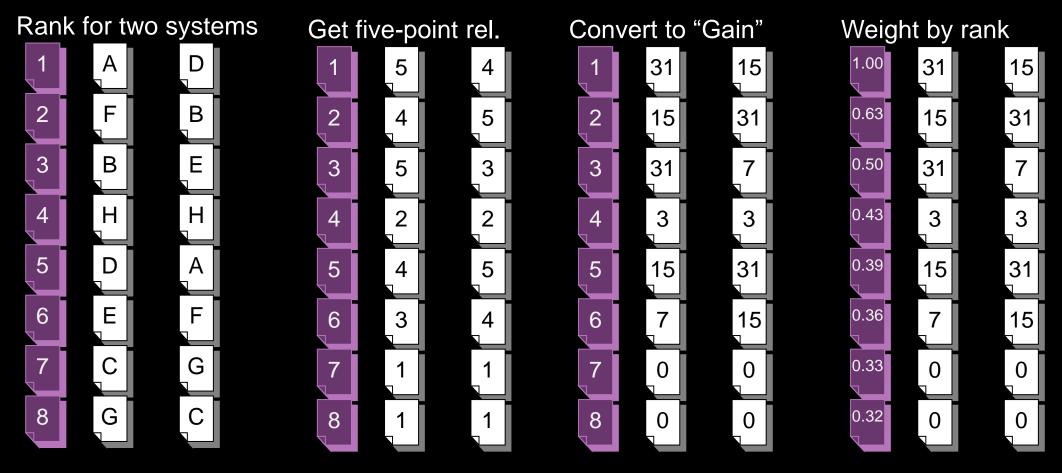
- Used widely in search and advertising to:
  - Train ranking algorithms
  - Measure progress
    - Which system to deploy
      - Is the system better than it previously was?
      - Is it better than alternative models?
      - Is that difference significant?
  - Assess performance against competitors
  - Identify which components of the system need improvement





#### From Judgments to Performance

100



Multiply and Add to get DCG

System 1: *65.55* System 2: *56.69* 

Divide by ideal (68.30) to get NDCG/100

System 1: 96.0

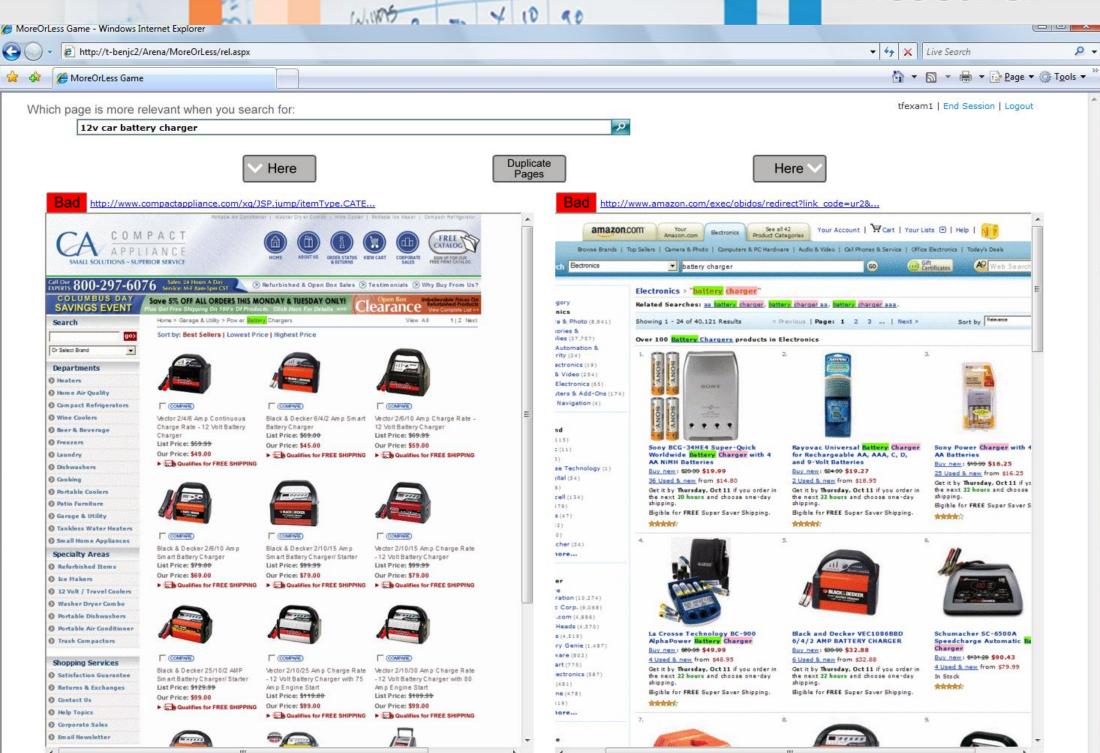
System 2: 83.0



# What's wrong with absolute?

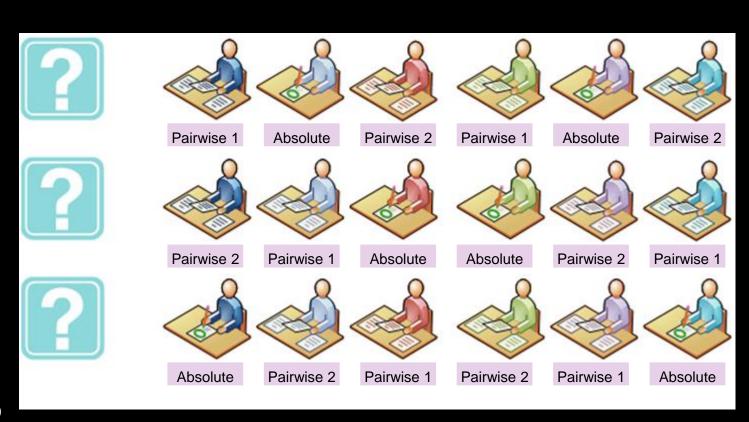
- High Variability in Judged Relevance of Page
  - Can lead to incorrect conclusions of system improvement (and deployment of wrong version).
  - Can cause incorrect assessment of performance relative to competitors.
  - Introduces noise in training data for ranker.
- Coarser-grained distinctions
  - May mask real discernible differences in page quality.

#### Research



# Comparing Judgment Types

- Judges use absolute vs. relative interfaces
- Two problem domains
  - Search
  - Ads
- Measured
  - Agreement
  - Time
  - Also, studied advanced techniques to reduce number of judgments, calibrate to actual scale, etc.





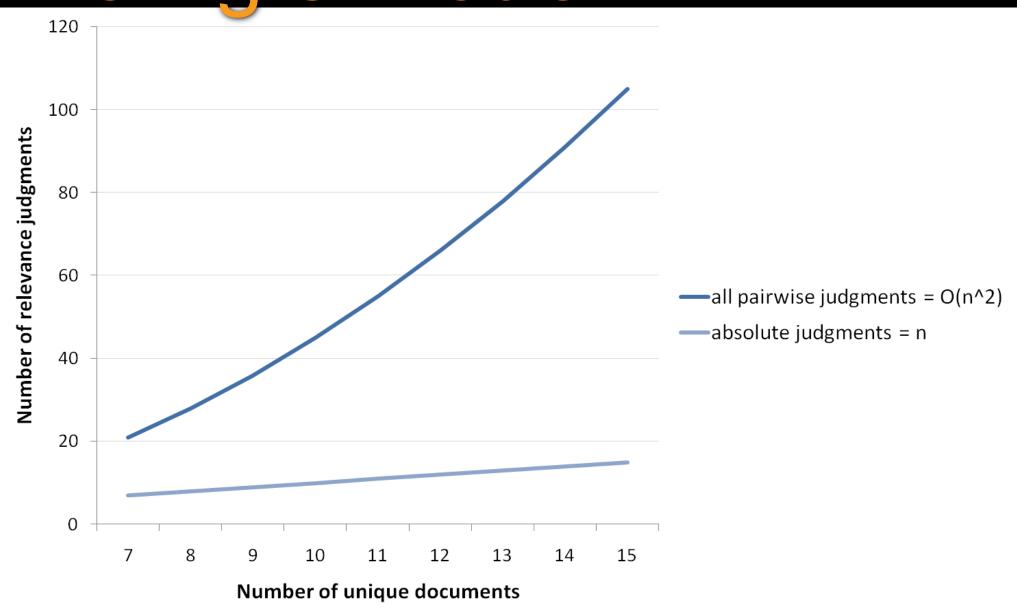
## Summary Findings

| Search Inferred Preferences from Absolute |       |         | Search Relative Preferences |       |  |                                         |           |    |                   |       |       |
|-------------------------------------------|-------|---------|-----------------------------|-------|--|-----------------------------------------|-----------|----|-------------------|-------|-------|
|                                           | A < B | A,B Bad | A > B                       | Total |  |                                         | A < B     | А  | ,B Bad            | A > B | Total |
| A < B                                     | 0.657 |         |                             |       |  |                                         | 0.7       | 52 | 0.033             | 0.215 | 2580  |
| A,B Bad                                   | 0.297 | 0.380   | J.J_5                       | .57   |  | , 5 5 6 6                               | <u> </u>  |    | 0.567             | 0.225 | 413   |
| A > B                                     | 0.278 | 0.053   | 0.669                       |       |  |                                         | J.,_      |    |                   | 0.765 | 2757  |
|                                           |       |         |                             |       |  |                                         |           |    |                   |       |       |
| Ad Inferred Preferences from Absolute     |       |         | Ad Relative Preferences     |       |  |                                         |           |    |                   |       |       |
|                                           | A < B | A,B Bad | A > B                       | Total |  |                                         | A <       | D  | A,B Bad or<br>Dup | A > B | Total |
| A < B                                     | 0.635 |         |                             |       |  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 0.7       |    | 0.022             | 0.277 | 2691  |
| A,B Bad                                   | 0.263 | 0.436   |                             |       |  | A,D Dau OF L                            | Jup  0.24 |    | 0.500             | 0.279 | 272   |
| A > B                                     | 0.377 | 0.009   | 0.614                       |       |  |                                         | 0.2       |    | 0.020             | 0.724 | 2985  |

- Relative Preferences have higher interjudge agreement than absolute.
- Faster per judgment (Two to Three times quicker)
- Other Observations
  - Finer-grained
  - Judges like it better!
- So what are the problems?



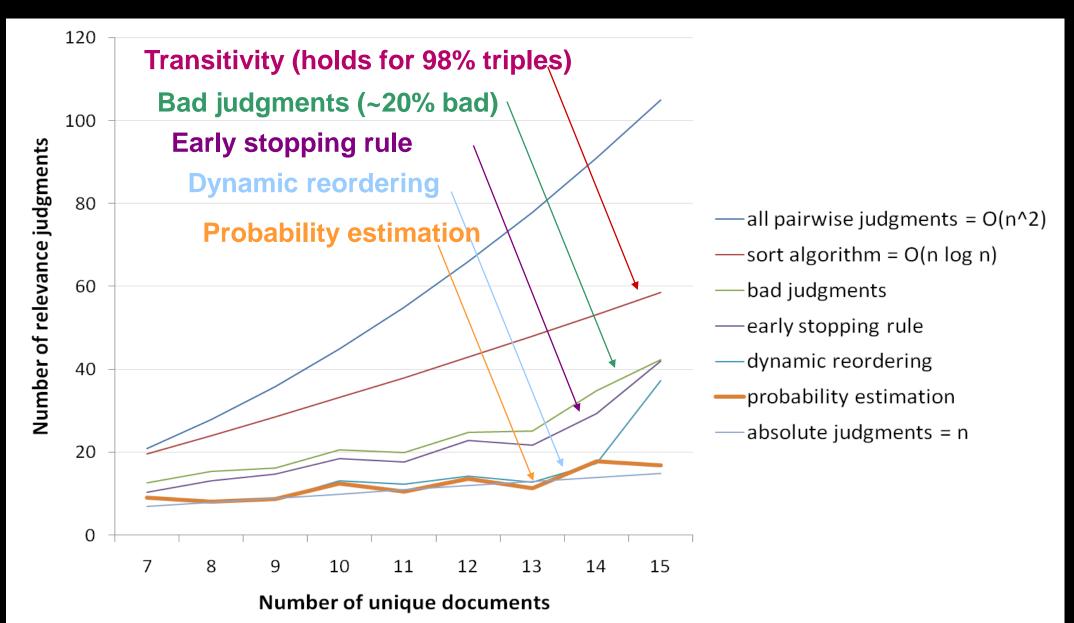
#### The Big O Problem



100



### The Road from n<sup>2</sup> to n



100

#### Computing Average Preference Precision

100

Count Out-of-Order Pairs Above Each Rank Rank for two systems Or Full Order **Get Partial Order** В 3 Η Н D G

Out-Of-Order Count

System 1: 2

System 2: 8

1 - Out-Of-Order/[n(n-1)/2]

System 1: 0.857

System 2: 0.714

Carterette & Bennett, SIGIR 2008



# Summarizing Preferences for Relevance

- Absolute judgments are noisy and effect system evaluation.
  - Relative judgments have much higher agreement.
  - Relative judgments are faster per judgment.
  - Can reduce total number of relative judgments needed.
  - Relative judgments situate the assessor in a higher degree of context.
- Both learning algorithms and evaluation measures for preference-based judgments are available.

## Road Map

- Why Preferences?
- Learning Consensus from Preferences at Scale
  - Beyond Consensus
  - Discussion



# Ranking for Search

- Start with a dataset of ground truth
  - An editorial judgment of relevance?
  - A click?
- Apply your favorite ranking learning algorithm

Problem solved!

## Editorial Judgments as Truth

- Pros
  - Control full process
  - Can (somewhat) calibrate judges to a consensus standard
- Cons
  - Ownership of query what is the user's need?
  - Is relevance topical only?
    - Does the quality, authoritativeness, readability matter?
    - How about focus, composition, or artistry for images?

#### Clicks as Truth

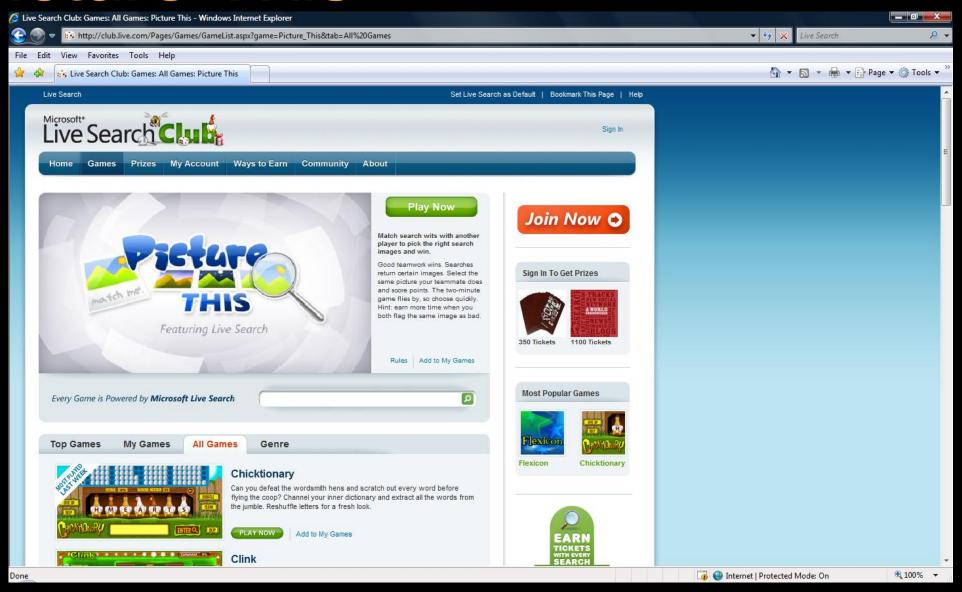
- Pros
  - Whatever properties are rolled into relevance for the user, it all gets wrapped into that click.
- Cons
  - Positional Biases
  - What does "no click" mean?
  - An item that isn't displayed can't be clicked.

# Consenus Opinion

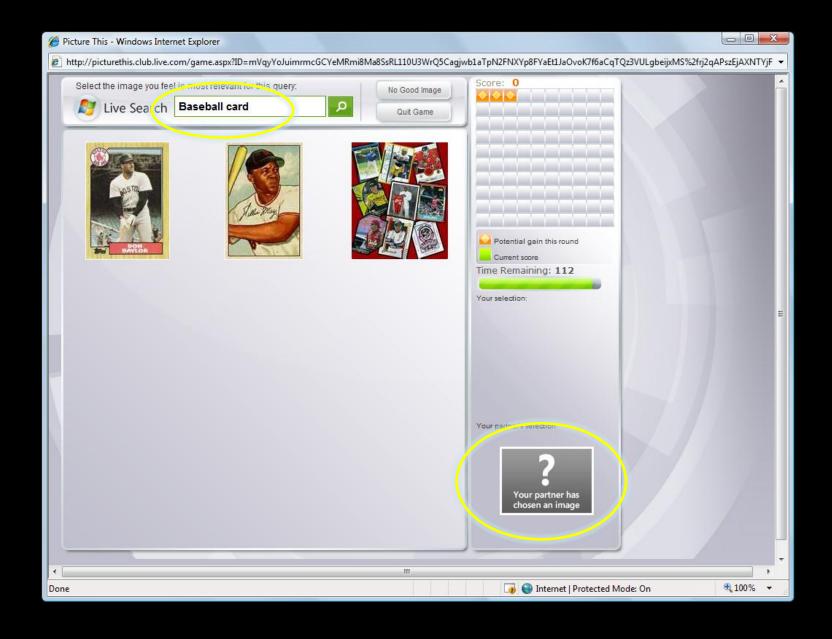
- Desired as ground truth
  - A ranking that is as close to consensus opinion as possible.

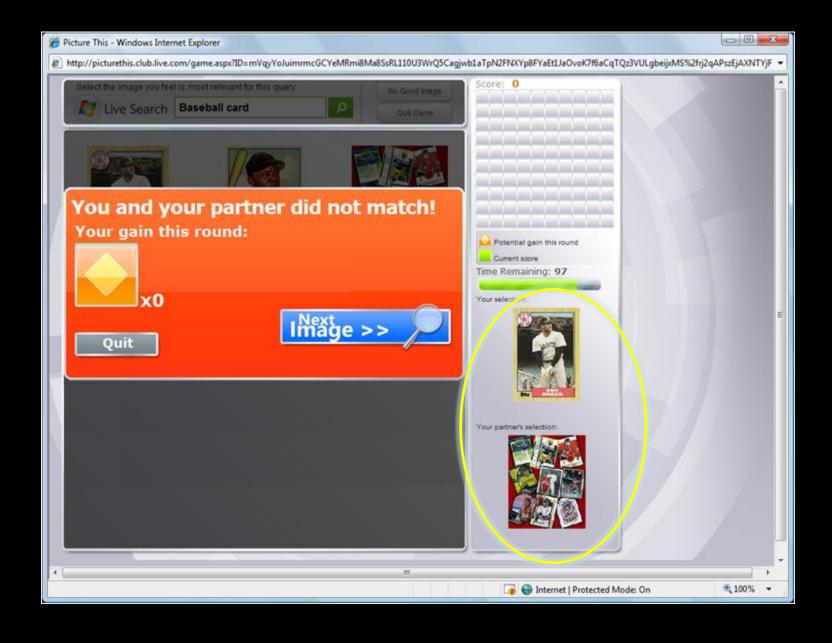
- Get rankings from a large number of users
  - Sample the query stream
  - Have a large number of users rank items for many different queries.

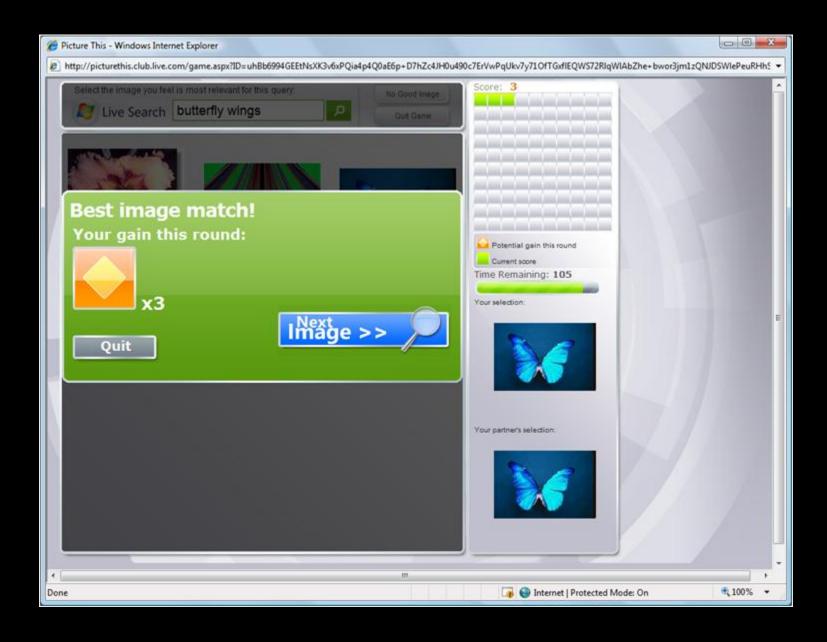
#### Picture This



lot







#### A Different Kind of Click

- Positional Biases
  - Order of choices is randomized.
- What does "no click" mean?
  - Clicks are required to play the game.
  - User can choose "No Good Image" or flag an image as "Bad" (irrelevant or detrimental)
- An item that isn't displayed can't be clicked.
  - Can experiment with potentially irrelevant items without risking reputation of search.

### Adaptive Game Elements

- Number of images to choose from varies from 2 to 10 (based on performance).
- Comparison set varies from "easy" to "hard"
  - Easy: Images estimated relevance spread across spectrum.
  - Hard: Images close to the same level of relevance.
- Adaptivity
  - Take advantage of more "discerning" partners by increasing game difficulty.
  - Make the game more entertaining.



#### Partner Robots

- Sometimes no human is available to partner with (e.g. odd man out, low system usage)
- Robot partner is used to play the game.
- Robot chooses non-deterministically using basic model of relevance from preferences collected so far.

# Fraud Mitigation

- Discussion boards dedicated to how to cheat on Club Bing.
- Random pairing of partners
- No fixed strategy
  - randomization of choices, no score for "no good image"
- Weeding out Bots
  - Players occasionally challenged with a CAPTCHA
  - Game site uses bot detection algorithm
  - Honeypot queries (queries with a highly agreed upon right answer)

### Are Responses Random?

- Users permanently routed by ID to a "training" or "testing" server
- Training Set:
  - 49% agreement on human-human rounds.
  - 3.53 actions available on average.
  - Random clicking would yield 28% agreement.
- Testing Set:
  - 50% agreement on human-human rounds.
  - Random clicking would yield 28% agreement.

#### Game Data

- Simple Experiment
  - Split users into train and test.
  - Use preferences of "train" users to predict preferences of "test" users when partners agree.
  - Default hypothesis is user preferences are explained by Image Search's ranking
- Goal is to predict preferences where two users agree in the test set.
- Agreement only and Raw (Full) used in training.
- 34 days, 427 queries, 95 images/query, 18M (effective) pairwise preferences.

# Preprocessing

- "Raw" form
  - Our robots preferences removed.
- "Agreement" form
  - Removed all preferences where partners disagreed.
  - Removed all preferences where human was paired with a robot.
  - Kept only one preference for every pair of preference agreements.



## Data Overview

- 34 days, 427 queries
- 95 images per query (94 + "neutral")
  - More than 50 because of churn

|          | Games   | Rounds    | Human-Human Rounds |
|----------|---------|-----------|--------------------|
| Training | 154,060 | 1,491,206 | 1,144,409          |
| Testing  | 155,322 | 1,522,375 | 1,159,570          |

|              | Preferences | <b>Effective Pairwise Preferences</b> |
|--------------|-------------|---------------------------------------|
| Raw Training | 2,599,531   | 8,860,418                             |
| Raw Testing  | 2,645,984   | 9,267,890                             |

|                    | Preferences | <b>Effective Pairwise</b> | No Good Image |
|--------------------|-------------|---------------------------|---------------|
| Agreement Training | 537,651     | 1,731,317                 | 1,800         |
| Agreement Testing  | 612,736     | 1,838,987                 | 1,447         |

## Consensus Ranking

- Goal Reminder: Learn a ground truth ranking.
- Input: Features are "Was image ID X displayed?"
- Label: which ID was chosen as best.
- Model: Gives us consensus ranking.
  - Intuition: a good model predicts what people think is best.

#### Preference Models

- Progression from most naïve (simplest) to fewest assumptions (most complex)
  - Frequency Model
    - Global win probability of an image
  - Pairwise Probability Model
    - Models pairwise interactions but not comparison set
  - Go Model
    - Interactions in comparison set by conditioning on current set and response when learning and predicting.

### Data Representation

- Introduce virtual "Neutral Image" to handle
  - "No Good Image": Preference for neutral image over every image displayed
  - "Flag as Bad": Preference for neutral image over image flagged.
- Pairwise preferences:
  - Image A preferred to B, C, and D can be represented as three pairwise preferences: A>B, A>C, A>D.



# Error Relative to Image Search

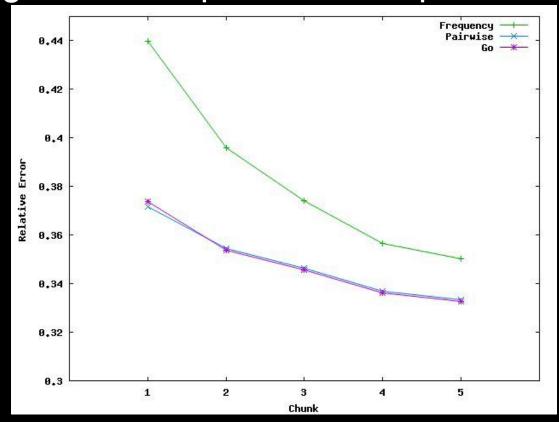
|           | Agreement Training | Raw Training |  |  |  |
|-----------|--------------------|--------------|--|--|--|
| Frequency | 0.3713             | 0.3504       |  |  |  |
| Pairwise  | 0.3451             | 0.3335       |  |  |  |
| Go        | 0.3408             | 0.3325       |  |  |  |

- All methods perform at least twice and up to three times better than search baseline.
- Given a large enough training sample, simple method works well.
- More structured, complex models can use the (potentially) noisier raw training versions better.



## Learning Curve

- Break raw training data into 5 ~7-day chunks
- Each training set is a superset of the previous.





## Learning Curve Lessons

- Frequency model performs increasingly worse with less data
  - Higher sparsity relative to number of pairs.
- Worth using complex models if we want to get the minimal number of preferences per query and cover more queries.



## Versus Editorial Judgments

- Kendall's Tau: (agreements – disagreements) / num\_differing\_pairs
- Use set of already collected editorial judgments for 60 of 427 queries.
- Examined correlation of Pairwise model (trained on Agree)

|          | Kendall's<br>Tau | Differing Pairs | Agreements | Disagreements | Raw Pairs |
|----------|------------------|-----------------|------------|---------------|-----------|
| Pairwise | 0.6742           | 27299           | 22852      | 4447          | 67638     |

### Related Work

- Social Labeling: ESP Game (von Ahn & Dabbish, 2004), Peekaboom (von Ahn et al., 2006), TagATune (Law et al., 2007)
  - ESP does not tell you about relevance and tends to least common denominator descriptions.

- Preference Learning
  - Similar in spirit to Joachims (2002) with different source of data. No experimenting with engine itself as in Radlinski & Joachims (2005) or Radlinski et al. (2008)

### Our Contributions

- Versus other social labeling
  - We use queries drawn from search logs → language distribution seen in practice drives labeling.
- First study of large-scale preference data as a signal to augment other sources of relevance information.
- Unique approach yields click-like relevance data
  - No positional biases, no risk of frustrating users when given non-relevant results, no danger to product reputation.
- Systematic study of a number of preference models
  - For plentiful data, many models are fine.
  - For sparse data, pairwise and Go both work well.
- April 2008 Jan 2009
  - 2.5M visitors, 60M searches (~90M clicks)
  - Conceivable to collect judgments in academic setting.

## Road Map

- Why Preferences?
- Learning Consensus from Preferences at Scale
- Beyond Consensus
  - Discussion

### The need for expertise

WIND



leD



See larger image
Share your own customer images

#### Clam Base by Better Than Bouillon

★本本介章 ▼ (2 customer reviews)

Price: \$5.95

#### In Stock.

Ships from and sold by Superior Quality Foods.



#### **Product Features**

- No Added MSG
- · Made primarily from clams
- · Highly Concentrated



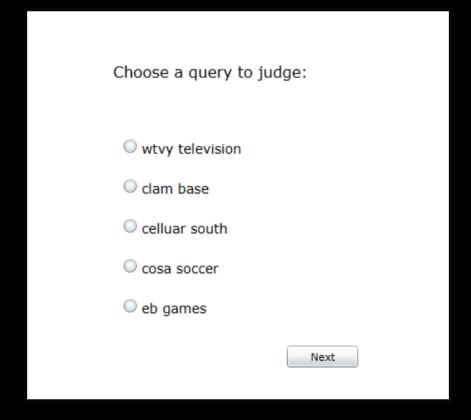
#### The Ideal Assessor

Interest: Assessor for a query is someone who would likely issue a query.

Expertise: Assessor can distinguish relevant, satisfying results from irrelevant ones.

Confidence: Assessors judgments agree with measured utility (high signal to noise).

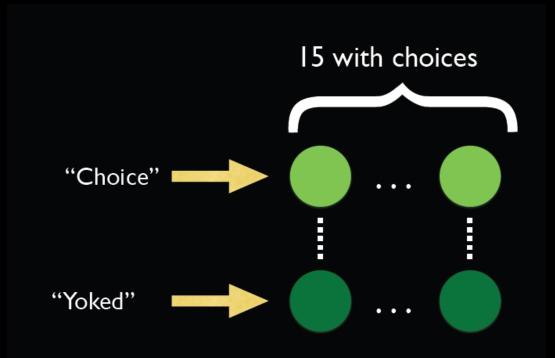
### Choice



let

For relevance judgments, can we leverage choice as a signal of expertise, interests and confidence?

## Experiment Design





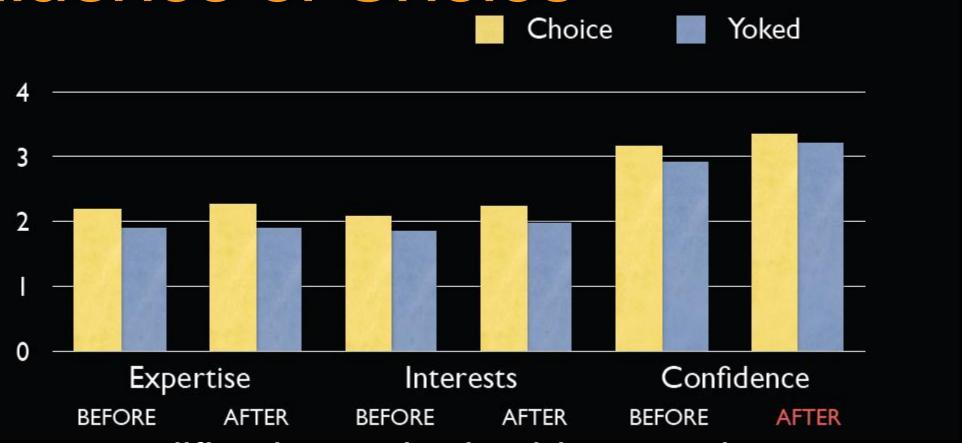
- Balance choices by length, ambiguity, and topic as a proxy for ease of choice selection, difficulty of task, and differentiability of candidates.
- For each query, pre- and post-judgment survey.

# Survey

| Current Search Query: | clam base                              | [Task 4 of 25] Step 1 of 7                                                                                   |         |                        |                        |                        |                 |  |  |  |
|-----------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------|---------|------------------------|------------------------|------------------------|-----------------|--|--|--|
|                       | Before you judge the relev             | Before you judge the relevance of the webpages for this search query, please answer the following questions: |         |                        |                        |                        |                 |  |  |  |
|                       | (1) Specify up to 3 inter  Most Likely | nts (i.e., what the u                                                                                        | iser wa | ns looking for) behind | i the search query and | mark the one that is t | he most likely. |  |  |  |
|                       | (2) How confident are                  | (2) How confident are you that the most likely intent you specified is what the user is looking for?         |         |                        |                        |                        |                 |  |  |  |
|                       |                                        | Very unsure                                                                                                  |         | Very confident         |                        |                        |                 |  |  |  |
|                       |                                        | <ul><li>•</li></ul>                                                                                          |         |                        |                        |                        |                 |  |  |  |
|                       |                                        | 1 2                                                                                                          | 3       | 4                      |                        |                        |                 |  |  |  |
|                       | (3) How knowledgeabl                   | (3) How knowledgeable are you in the topic of the search query:                                              |         |                        |                        |                        |                 |  |  |  |
|                       |                                        | Zero knowledge                                                                                               |         | Expert                 |                        |                        |                 |  |  |  |
|                       |                                        | <ul><li>O</li></ul>                                                                                          |         |                        |                        |                        |                 |  |  |  |
|                       |                                        | 1 2                                                                                                          | 3       | 4                      |                        |                        |                 |  |  |  |
|                       | (4) How interested are                 | (4) How interested are you in the topic of the search query:  Zero interests Very interested                 |         |                        |                        |                        |                 |  |  |  |
|                       |                                        | 0 0                                                                                                          | 0       | ©                      |                        |                        |                 |  |  |  |
|                       |                                        | 1 2                                                                                                          | 3       | 4                      |                        |                        |                 |  |  |  |
|                       |                                        |                                                                                                              |         |                        |                        |                        |                 |  |  |  |
|                       |                                        |                                                                                                              |         | Next                   |                        |                        |                 |  |  |  |

100

### Influence of Choice



Intent modification: yoked subjects make nonsuperficial changes to the intentions more often (13.84% of all, and 5.35% of most likely intention).



## Summary & Challenges

- Demonstrated
  - Simple mechanism of choice increased self-assessed interest, expertise, and confidence.
  - Also reduces the impact of exposure to the task as measured by intent modification – implying expertise.
- Challenges
  - Objective measurements of expertise beyond intent modification.
  - Given choices, predict interests/expertise and narrow set of choices around them.
  - Balance available experts with demand for tasks.

## Road Map

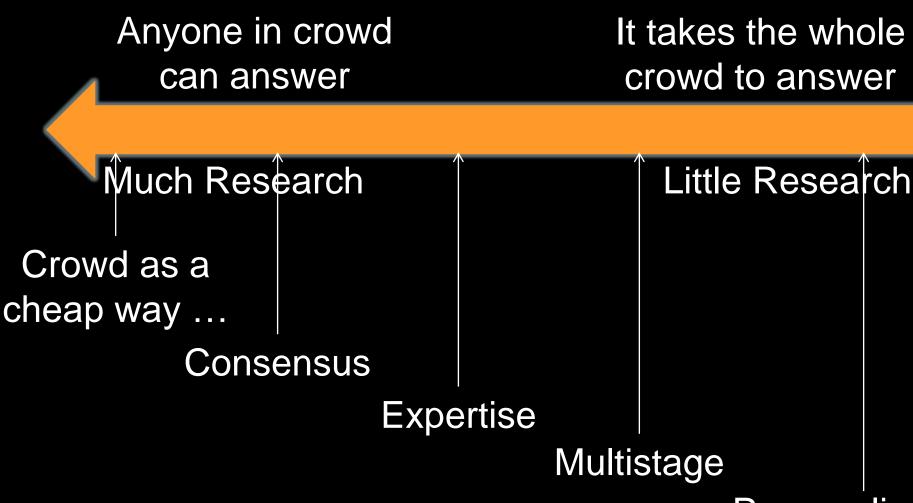
- Why Preferences?
- Learning Consensus from Preferences at Scale
- Beyond Consensus
- Discussion

## Specific Challenges

- Modeling player/judgment/worker performance
  - Personalized rankings, discrimination skill, identifying expertise
- Active Learning for Query & Result Selection
  - Which query, which results, and how many opinions?
- Using crowdsourcing to identify noisy editorial judgments or difficult to interpret click data.
- Identifying, measuring, and exploiting sources of expertise.



## A Spectrum of Crowdsourcing



Personalization

Research

# Mcrosoft®

Your potential. Our passion.™