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Specialized DBMSs for analytics have been 
around since the 1970s.

The OLAP DBMS landscape flourished in the 
2000s because more organizations have large 
data sets than ever before.
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SELECT COUNT(B)
FROM XXX
WHERE A > ?;
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Vectorized
Execution

Vectorized Scan

i = 0
for vt in table:
simdLoad(vt.key, vk)
vm = (vk≥low ? 1 : 0) &

⮱(vk≤high ? 1 : 0)
simdStore(vt, vm, output[i])
i = i + |vm≠false|

SELECT * FROM table
WHERE key >= "G" AND key <= "T"
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SELECT * FROM table
WHERE key >= "G" AND key <= "T"



2010s
JIT Query
Compilation Expression Tree

Attribute(str_col)

=

Constant("abc")

=

AND

Attribute(int_col) Constant(4)

SELECT * FROM foo
WHERE str_col = 'abc'
AND int_col = 4;



2010s
JIT Query
Compilation

bool sel_eq_row(string str_col, string val0,
int int_col, int val1) {

return (str_col == val0 && int_col == val1);
}

Code Generated Plan

SELECT * FROM foo
WHERE str_col = 'abc'
AND int_col = 4;



2010s
JIT Query
Compilation

UDF Inlining

Source: Karthik Ramachandra

https://www.microsoft.com/en-us/research/people/karam/
https://sqlblogcasts.com/blogs/simons/archive/2008/11/03/TSQL-Scalar-functions-are-evil-.aspx


2010s
JIT Query
Compilation

UDF Inlining

CREATE FUNCTION getVal(@x int) 
RETURNS char(10) AS
BEGIN
DECLARE @val char(10);
IF (@x > 1000)
SET @val = 'high';

ELSE
SET @val = 'low';

RETURN @val + ' value';
END

SELECT getVal(5000);

Source: Karthik Ramachandra

https://www.microsoft.com/en-us/research/people/karam/
https://www.microsoft.com/en-us/research/publication/froid-optimization-of-imperative-programs-in-a-relational-database/
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UDF Inlining

CREATE FUNCTION getVal(@x int) 
RETURNS char(10) AS
BEGIN
DECLARE @val char(10);
IF (@x > 1000)
SET @val = 'high';

ELSE
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RETURN @val + ' value';
END

Dynamic Slicing

Const Propagation
& Folding

Dead Code
Elimination

SELECT returnVal FROM
(SELECT CASE WHEN @x > 1000 

THEN 'high' 
ELSE 'low' END AS val)

AS DT1
OUTER APPLY
(SELECT DT1.val + ' value' 

AS returnVal) DT2

SELECT returnVal FROM
(SELECT 'high' AS val)
AS DT1
OUTER APPLY
(SELECT DT1.val +

' value' 
AS returnVal)

AS DT2

SELECT returnVal FROM
(SELECT 'high value'

AS returnVal)
AS DT1

SELECT 'high value';

SELECT getVal(5000);

Froid Inlining

Source: Karthik Ramachandra

https://www.microsoft.com/en-us/research/people/karam/
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https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/scalar-udf-inlining


A learned component is an 
implemented portion of a DBMS that 
uses ML on previous observations to 
determine its future behavior as 
opposed a human-devised strategy.

2020s
Learned
Components
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Query Planning
– Cardinality Estimation
– Cost Models
– Join Ordering Search
– SQL Rewriting
– Predicate Inference

Configuration
– Knob Tuning
– Partitioning
– Physical Design

Execution
– Indexes
– Sorting Algorithms
– Hashing Algorithms
– Scheduling



SELECT *
FROM X JOIN Y
ON X.id = Y.id;

Source: Ryan Marcus

https://rmarcus.info/blog/2021/06/17/bao-distributed.html


Traditional Optimizer

Nested Loop Join

Hash Join

Sort-Merge Join

Cost = 20

Cost = 25

Cost = 18

Model Training

Execution Engine

Alternative
Query Plans

Predicted Cost
(Learned)

( Sort-Merge Join ), Cost = 38

Actual Cost

Source: Ryan Marcus
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https://ottertune.com/blog/rds-postgres-tuning-benchmark
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Failsafe Mechanisms?

Explainability?

Human Feedback / Overrides?

Transferability?



Does ML obviate the need for humans to build 
new database systems?
No.

After we replace or supplement existing 
components with learned ones, what's next?



Challenge #1:
– Remove the need for humans to perform any 

administrative task that does not require a human 
value judgement on externalities.

Existing automation methods are reactive.
Humans are also proactive.



PERCEPTION ACTION MODEL PLANNING

Source: Lin Ma

http://www.cs.cmu.edu/~malin199/
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Challenge #2:
– Discover new optimizations and techniques that are 

currently unknown to humans.

https://www.scientificamerican.com/article/ai-generates-hypotheses-human-scientists-have-not-thought-of/


Challenge #2:
– Discover new optimizations and techniques that are 

currently unknown to humans.

This requires a DBMS to have good introspection 
and instrumentation hooks/APIs.



There are less things to automatically optimize in 
an OLTP DBMS than in an OLAP DBMS.
– There are fundamental limitations that prevent 

achieving even higher OLTP performance.

Further methods will require automatically 
inferring higher-level semantics.
– Example: Does an application really need all columns if 

it executes "SELECT *"?



Current ML methods are trying to create better 
versions of existing DBMS components.

The next challenge is how to use ML to develop 
optimizations that humans would not think of on 
their own.




