Carnegie
Mellon
University

DO WE STILL
NEED PEOPLE
TO WRITE
DATABASE
SYSTEMS?

OSACON 2021

andy_pavlo

https://twitter.com/andy_pavlo
https://db.cs.cmu.edu/
https://ottertune.com/

»|_ast 20 Years
pCurrent ML Seduction
pNext 20 Years

ANALYTICAL DATABASE SYSTEMS
BACKGROUND

Specialized DBMSs for analytics have been
around since the 197Gs.

The OLAP DBMS landscape flourished in the
2000s because more organizations have large
data sets than ever before.

ANALYTICAL DATABASE SYSTEMS

BACKGROUND

pecialized DBMSs for analytics
round since the 197Gs.

he OLAP DBMS landscape flol
000s because more organ
ata sets than ever before.

1zati(

“One

Michael Stonebraker
Computer Science and Artificial
Intelligence Laboratory, M.IT, and
StreamBase Systems, Inc.
stonebraker(@csail. mit edu

Abstract

The dast 25 years of commercial DBMS developm
can be summed up in a single phrase: “One size fits all
This phrase refers to the fact that the traditional DBMS
architecture (originally designed and optimized for
business data processing) has been wsed to support many
data-centric applications with widely varving
characteristics and requirements,

In this paper, we argue that this concept is no longer
applicable to the database marker, and that the

commercial world will fracture into a collection of

independeit database engines, some of which may be
unified by a common front-end parser. We use examples
from the stream-processing market and the data-
warehouse market to bolster our claims. We also briefly
discuss other markets for which the traditional
architecture is a poor fit and argue for @ eritical
rethinking of the current factoring of systems services
inta products.

L. Introduction

Relational DBMSs amived on the scenc as rescarch
prototypes in the 1970%s, in the form of System R (rop
and INGRES [27]. The main thrust of both prototypes
was to surpass IMS in value 1o customers on the
applications that IMS was used for, namely “business
data proc Hence, both systems were architected
e transuction processing (OLTP) applications,
and their commercial countemparts (ic. DB2 and
INGRES, respectively) found acceptance in this arena n
the 1980°s. Other vendors (e.g., Sybase, Oracle, and
Informix) followed the same basic DBMS model, which
stores relational tables row-by-row, uses B-trees for
indexing, uses a cost-based optimizer, and provides
ACID transaction propertics.

Since the early 1980°s, the major DBMS vendors have
steadfastly stuck to a “one size fits all” strategy, whereby
they maintain a single code line with all DBMS services
The reasons for this choice are straightforward — the use

ze Fits AlI”: An ldea Whose Time Has Come and Gone

Ugur Cetintemel
Department of Computer Science
Brown University, and
StreamBase Systems, Inc.
ugur@cs.brown.edu

e code lines causes various practical prol

* a cost problem, because maintenance costs incrense
at least linearly with the number of code lines;

* a compatibility problem, because all applications

have to run against every code line;

a sales problem, because salespeople get confused

about which product 1o try to sell to a customer; and

* a marketing problem, because multiple code
need to be positioned correctly in the marketplace.

nes

To avoid these problems, all the major DBMS vendors
have followed the adage “put all wood behind one
arrowhead™. In this paper we argue that this strategy has
failed already, and will fail more dramatically off into the
future.

The rest of the paper is structured as fallows. In
Section 2, we briefly indicate why the single code-line
strategy has failed already by citing some of the key
characteristics of the data warehouse matket. In Section
3, we discuss stream processing applications and indicate
@ paticular example where a specialized stream
processing engine outperforms an RDBMS by two orders
of magnitude. Section 4 then tums to the reasons for the
performance difference, and indicates that DBMS
technology is not likely to be able to adapt to be
competitive in this market. Hence, we expect stream
processing engines to thrive in the markeiplace. In
Section 5, we discuss a collection of other markets where
one size is not likely to fit all, and other specialized
database systems may be feasible. Hence, the
fragmentation of the DBM!
extensive. In Seetion 6, we offer some conments about
the factoring of system software into products. Finally,
we close the paper with some concluding remarks in
Section 7.

2. Data warchousing

In the carly 1990°, a new trend appeared: Enterprises
wanted to gather together data from multiple operational
databases into a data warchouse for business intelligence

http://cs.brown.edu/~ugur/fits_all.pdf

ANALYTICAL DATABASE SYSTEMS
LAST 20 YEARS

2000s

WHERE > 7;

Row Store

w NP O

O [\ |50 |

O 1O O[O

oo oo

w NP O

ANALYTICAL DATABASE SYSTEMS
LAST 20 YEARS

2000s Shared Nothing Shared Disk

Columnar
Storage

'y % ﬁ %

[Network

Disaggregated

Storage

olo[ololn

ANALYTICAL DATABASE SYSTEMS
LAST 20 YEARS

Vectorized Scan

2000s

I= 0
for v, in table :
Columnar simdLoad v, .key, v,)
StOrage Vp=(vdlow 2 1: 0) &
(vidhigh 21 : 0)
Disaggregated simdStore(v,, V., output[i])

i =i+]| v/hfalse |

Storage

Vectorized

Execution SELECF FROMable
WHEREey >= "G" ANDkey <= "T"

ANALYTICAL DATABASE SYSTEMS
LAST 20 YEARS

SELECT FROMable
WHEREey >= "G" ANDkey <= "T"

Key Vectof W U[T| A| N| G

2000s
1] W
Columnar g $
Storage 4 A Mask|olol1lo0l1]1
Disaggregated 2
6 G H H H H H H
All Offsets
Storage S9011 2\?;1/5
Vectorized SIMLCStore

Execution

Matched Offsef® | 4| 5

ANALYTICAL DATABASE SYSTEMS
LAST 20 YEARS

SELECT FROMfoo

201OS WHERSr_col =' abc

JIT Query
Compilation

ANDInt_col 4;

Expression Tree
:/-/ AND\:
~ N N

Attribute(str_col) Constant(" abc") Attribute(int_col) Constant(4)

@ ‘ ANALYTICAL DATABASE SYSTEMS

LAST 20 YEARS

2010s

JIT Query
Compilation

SELECT FROMfoo

WHERE&ir col
ANDInt_col

="' abc
= 4,

Code Generated Plan

bool sel eq row(string str_col , string valoO,
int int_col ,
return (str_col ==val0 && int_col ==vall);

}

int vall) {

ANALYTICAL DATABASE SYSTEMS

LAST 20 YEARS

However as you might have gathered from the title scalar functions aren’t the nice friend You may think they are.
2 O I O S If you are running queries across large tables then this may explain why you are getting poor performance.
create function PadLeft (@val varchar(10e) , @len int, @char char(1))
returns varchar(109)

JIT Query resin
. = return right(replicate(@char,@len) + @val, @len)
Compilation

go

Interpreted

O .
l ' D I I n I I n I n g Scalar functions are interpreted code that means EVERY call to the function results in your code being interpreted. That means overhead for

processing your function is proportional to the number of rows.

Running this code You will see that the native system calls take considerable less time than the UDF calls. on my machine it takes 2614 ms for the
system calls and 38758ms for the UDF. Thats a 19x increase.

Set statistics time on

go

select max(right(replicate(‘@', 100) + O.name + C.name, 100))
from msdb.sys.columns 0

Cross join msdb. sys.columns c

select max(dbo.PadLeft(o.name + C.name, 160, 'e'))
from msdb.sys.columns [¢]
Cross join msdb. sys. columns c

Source: Karthik Ramachandra

https://www.microsoft.com/en-us/research/people/karam/
https://sqlblogcasts.com/blogs/simons/archive/2008/11/03/TSQL-Scalar-functions-are-evil-.aspx

ANALYTICAL DATABASE SYSTEMS

LAST 20 YEARS

2010s

JIT Query
Compilation

UDFInlining

Source: Karthik Ramachandra

CREATEUNCTIONetVal (@x int)
RETURNShar(10) AS
BEGIN
DECLAR®&al char(10);
IF (@x > 1000)
SET@al =" high’;
ELSE
SET@al ="' low"
RETURI®al +' value’
END

SELECTetVal (5000);

Froid: Optimization of Imperative Programs in a Relational
Database

Karthik Ramachandra

Kwanghyun Park

K. Venkatesh Emani”

Microsoft Gray Systems Lab Micresoft Gray Systems Lab NT Bombay

karam@microsoft. com

Alan Halverson
Microsoft Gray Systems Lab

alanhal @micrasoft.c om

ABSTRACT

For decades, RDBMSs have supported declarative SQL as
well as imperative functions and procedures as ways for users
to express data processing tasks. While the evaluation of
declarative SQL kas roceived a lot of attention resulting in
highly sophisticated techniques, the evaluation of imperative
progeams has remained naive and highly inefficient. Inpera-
tive programs offer several benefits over SQL and hence are
often preferred and widely used. But unfortunately, their
abysmal performance discourages, and even prohibits their
use in many situations. We address this important problem
that has hitherto reccived little attention

We present Froid, an extensible framework for optimi
ing imperative programs i relational databases. Froid
novel approach mutomatically transforms entire User De-
fined Functions (UDFs) into relational algebraic expressions,
and embeds them into the ealling SQL query. This form is
uow amenble to cost-basad optimization and results in ef-
ficient, set-oriented, parallel plans as opposed to incficient
iterative, serial excention of UDFs. Froid's approach addi.
tionally brings the beuefits of many compiler optimizations
to UDFs with no additional implementation effort. We de-
seribe the design of Froid and present our experimental eval.
uation that demonstrates performance improvements of up
to multiple orders of magnitude on real workloads.
PVLDB Reference Format:
Karthik Ramachandra, Kyanghyun Park, K. Verkatesh Erni
Alan Halverson, César Galindo-Legaria and Conor Cunningham,
Froid: Optinm cuative Programs in s Relational Dot

D, 1{4): 432 444, 2017,
»

1. INTRODUCTION
SQL is arguably one of the key reasons for the popular-
ity of relational databases today SQL's declarative way of

*Waork done ss an intern at Mictosoft Giray Systems Lab,

fit or cominerial advantage and that sopics
bear this notice and the full citation an the first page. To capy othervise, i

kwparkfimicrosoft com
César Galindo-Legaria
icrosoft

cesargmicrosnft. com

venkateshek fese iit b.ac.in

Conor Cunningham
icrosoft
canorclimicrosoft, com

exprossing intent s on one hand provided high-level ab-
stractions for data processing, while on the other hund, has
enabled the growth of sophisticated query evaluation teck.
nigues and highly cfficient ways to proces data.

Despite the expressive power of declarative SQL, almast
all RDEMSs support procodural extensions that allow users
to write programs in various languages (such as Transact.
SQL, C#, Java and R) using imperative constructs such
as variable assignments, conditional branching, and loops.
These extensions are quite widely used. For instance, we
note that there are of the order of tens of millions of Tran sact-
SQL (T-SQL) UDFs in use today in the Micrasoft Azure
SQL Database serviee, with billions of daily invoca tions.

UDFs and procedures offer many advantages over stan-
dard SQL. (a) They are an elogant way to achieve modular-
ity and code reuse across SQL queries. (b) some computa-
tions (such as comy
ar (c) they allow users
to express intent using a mix of simple SQL and imperati
carde. s apposed to complex SQL gueties, therely improy-
ing readability and maintainability. These benefits are not
linited to RDBMSs. as cvidenced by the fact that many
popular BigData systems also support UDFs.

Unfortunately, the above bencfits come at a huge perfor-
mance penalty, due to the fact that UDFs are cvaluated
in a highly inefficient manner. It is a known fact amongst
practitionees that UDFs are “evil” when it coumes to perfor-
mance considerations (35, 28], In fact, users ar
experts to avoid UDFs for performance reasons. The inter-
net is replete with articles and discussions that call out the
performance overbeads of UDFs {34, 36, 57, 24, 25 This is
true for all popular RDBMSs, commercial and open sousce

UDFs encourage good programming practices and pro-
vide . powerful abstraction, and hence are very attractive
to users. But the poor pecformance of UDFs due to naive
execution strategies disconrages their use. The raot cause
of poor performance of UDFs can be attributed to what i
known as the ‘inpedance mismatch® between two distinet
programming paradigms at play - the declrative paradigm
of SQL, and the imperative paradign of procedural code
@ ing this mistateh is ceucial in order to address this

addvised by

< or st requires p
permission andlar a fee. Attcles from this volume were invited to present
theit resultsat The-44th Intemational Conference on Very Large Dats Bases,
August 2018, Rin de Janeiro, Brazil,

Proccedings of the VLDB Endovent, Vol 11, No,

Capyright 2017 VLDB Endowment 2150-8097/7/12... $ 1000

DOL 10.11453164135.3164140

432

problem, and farms the crux of our paper.

We present Froid, an cxtensible optimization framework
for imperative code in relational databases. The goal of
Froid is to enable developers to use the abstractions of UDFs
and d without on roid

https://www.microsoft.com/en-us/research/people/karam/
https://www.microsoft.com/en-us/research/publication/froid-optimization-of-imperative-programs-in-a-relational-database/

ANALYTICAL DATABASE SYSTEMS
LAST 20 YEARS

CREATEUNCTIONetVal (@x int)

SET@al =" high’;
‘]IT Query RETURI®al +' value’

RETURNSar(10) AS

BEGIN
2010 S DECLAR@al char(10);

IF (@x > 1000

ELSE

SET@al =" low),
Compilation END

. SELECTDetVal (5000);

UDFInlining Detval(5009

SELECTeturnVal FROM » SELECTeturnVal FROM » SELECTeturnVal FROM » SELECT high value *;
(SELECTASEWHENX >1000 (SELECThigh' ASval) (SELECT high value '

THEN high’ AS ASreturnVal
ELSE' low ENDAS val) OUl':FER APPLY ASPBH remvEn) D?ad C(_)de
AS Bl (SELECDTL.val + i Elimination
OUTER APPLY " value'
(SELECDTL.val +' value' ASV?eLtJL?rnVaI) ConSt .Propagatlon
ASreturnval) [BYZ AS[PYZ & FOIdlng
FroidInlining Dynamic Slicing

Source: Karthik Ramachandra

https://www.microsoft.com/en-us/research/people/karam/

ANALYTICAL DATABASE SYSTEMS
LAST 20 YEARS

CREATEUNCTIONetVal (@x int)
RETURNShar(10) AS

BEGIN
2 O 1 O S DECLAR@al char(10);
IF (@x > 1000

| =" high’;
ESLEE@a 'g SELECT high value *;
JIT Query

SET@al ="' low"
RETURI®al +' value’

Compilation Eil
SELECTeturnVal FROM »SELECTeturnVaI FROM » SELECTeturnVal FROM »
(SELECTASEVHEN®x >1000 (SEE%CThigh' ASval) (SELECT high value '
THEN high' AS[BIL ASreturnval
ELSE' low ENDAS val) OUTER APPLY AS[IR remvEn) D?ad C(_)de
AS oyl (SELECDT.val + . Elimination
OUTER APPLY ' value'
(SELECDT.val +' value' ASV?eLtJL?rnVaI) ConSt .Propagatlon
ASreturnval) [BYZ AS[PYZ & FOIdlng
FroidInlining Dynamic Slicing

Source: Karthik Ramachandra

https://www.microsoft.com/en-us/research/people/karam/

ANALYTICAL DATABASE SYSTEMS

Azure SQL Database - current v

Nondeterministic
Functions

Create
Modify
Delete
Execute
Rename
View
> Views
> Development
> Internals & Architecture

> Installation

N O

1 Download PDF

BE Microsoft SQL Docs Overview ~ Install v Secure ~ Develop v Administer ~ More ~ Download SQL Server
| p

Docs / SQL / Database design / User-defined functions Scalar inlining £ Edit | Share

Scalar UDF Inlining

02/27/2019 » 10 minutes to read « Contributors =]

APPLIES TO: @ sQL Server @ Azure SQL Database * Azure SQL Data Warehouse X
Parallel Data Warehouse

This article introduces Scalar UDF inlining, a feature under the intelligent query processing
suite of features. This feature improves the performance of queries that invoke scalar UDFs
in SQL Server (starting with SQL Server 2019 preview) and SQL Database.

T-SQL Scalar User-Defined Functions

User-Defined Functions that are implemented in Transact-5QL and return a single data
value are referred to as T-SQL Scalar User-Defined Functions. T-SQL UDFs are an elegant
way to achieve code reuse and modularity across SQL queries. Some computations (such as
complex business rules) are easier to express in imperative UDF form. UDFs help in building
up complex logic without requiring expertise in writing complex SQL queries.

Performance of Scalar UDFs

Scalar UDFs tvpically end up performing noorly due to the following reasons

Al Microsoft ~ 0

2 Dark assface

In this article

T-SQL Scalar User-
Defined Functions

performance of
Scalar UDFs

Automatic Inlining
of Scalar UDFs

Inlineable Scalar
UDFs requirements

Enabling scalar
UDF inlining
Disabling Scalar
UDF inlining
without changing
the compatibility
level

Important Notes

See Also

Code
hation

Source: Karthik Ramachandra

https://www.microsoft.com/en-us/research/people/karam/
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/scalar-udf-inlining

ANALYTICAL DATABASE SYSTEMS
CURRENT ML SEDUCTION

20203 A learned component Is an

L earned Implemented portion of a DBMS that
Components uses ML on previous observations to
determine its future behavior as

opposed a human -devised strategy.

ANALYTICAL DATABASE SYSTEMS
CURRENT ML SEDUCTION

Traditional Index Learned Index
2020s

Learned ,i.

Components

\\

Sorted Data Sorted Data

O

o

Execution

Indexes

i
I Sorting Algorithms
.

|

Hashing Algorithms

- Scheduling

LEARNED DATABASE COMPONENTS
RESEARCH EXAMPLES

A BN

Query Planning Configuration
Cardinality Estimation [Knob Tuning
Cost Models I Partitioning
Join Ordering Search I Physical Design

SQL Rewriting
Predicate Inference

LEARNED DATABASE COMPONENTS
QUERY OPTIMIZATION

SELECTF
FROM JOIN Y
ONX.id = Y.id;

Source: Ryan Marcus

https://rmarcus.info/blog/2021/06/17/bao-distributed.html

