Carnegie
Mellon
University

DO WE STILL
NEED PEOPLE
TO WRITE
DATABASE
SYSTEMS?

OSACON 2021

andy_pavlo

https://twitter.com/andy_pavlo
https://db.cs.cmu.edu/
https://ottertune.com/

- Last 20 Years
- Current ML Seduction
- Next 20 Years

ANALYTICAL DATABASE SYSTEMS
BACKGROUND

Specialized DBMSs for analytics have been
around since the 1970s.

The OLAP DBMS landscape flourished in the
2000s because more organizations have large
data sets than ever before.

ANALYTICAL DATABASE SYSTEMS

BACKGROUND

s for analytics
1970s.

Specialized DBM
around since th

The OLAP DBMS landscape floq
2000s because more organizati
data sets than ever before.

“One

Michael Stonebraker
Computer Science and Artificial
Intelligence Laboratory, M.IT, and
StreamBase Systems, Inc.
stonebraker@ecsail.mit. edu

Abstract

The dast 25 years of commercial DBMS developm
can be summed up in a single phrase: “One size fits all
This phrase refers to the fact that the traditional DBMS
architecture (originally designed and optimized for
business data processing) has been wsed to support many
data-centric applications with widely varving
characteristics and requirements,

In this paper, we argue that this concept is no longer
applicable o the dotabase market, and that the

commercial world will fracture into a collection of

independeit database engines, some of which may be
unified by a common front-end parser. We use examples
from the stream-processing market and the data-
warehouse market to bolster our claims. We also briefiy
discuss other markets for which the traditional
architecture s a poor fit and argue for a eritical
rethinking of the current factoring of systems services
inta products.

L. Introduction

Relational DBMSs amived on the scenc as research
prototypes in the 1970's, in the form of System R [10]
and INGRES [27]. The main thrust of both prototypes
was 0 surpass IMS in value 10 customers on the
applications that JMS was used for, namely “business
data proc Hence, both systems were architected
e transaction processing (OLTP) applications,
and their commercial countemparts (ic. DB2 and
INGRES, respectively) found acceptance in this arena in
the 1980°s. Other vendors (e.g.. Sybase, Oracle, and
Informix) followed the same basic DBMS madel, which
stores relational tables row-by-row, uses B-trees for
indexing, uses a cost-based optimizer, and provides
ACID transaction properties,

Since the early 1980°, the major DBMS vendors have
steadfastly stuck to o “one size fits all” strategy, whereby
they maintain a single code line with all DBMS services
The reasons for this choice are straightforward — the use

ze Fits AlI”: An ldea Whose Time Has Come and Gone

Ugur Cetintemel
Department of Computer Science
Brown University, and
StreamBase Systems, Inc.
ugur@cs.brown.edu

e code lines causes various practical prol

* a cost problem, because maintenance costs incrense
at least linearly with the mumber of code lines;

* a compatibility problem, because all applications

have to run against every code line;

a sales problem, because salespeople get confused

about which produet 10 iry 10 sell to a customer; and

* a marketing problem, because multiple code
need to be positioned correctly in the marketplace.

nes

To avoid these problems, all the major DBMS vendors
have followed the adage “put all wood behind one
arrowhead™. In this paper we argue that this strategy has
failed already, and will fail more dramatically off into the
future.

The rest of the paper is structured as fallows. In
Section 2, we briefly indicate why the single code-line
strategy has failed already by citing some of the key
characteristics of the data warehouse matket. In Section
3, we discuss stream processing applications and indicate
@ paticular example where a specialized stream
processing engine outperforms an RDBMS by two orders
of magnitude. Section 4 then tums to the reasons for the
performance difference, and indicates that DBMS
technology is not likely to be able to adapt to be
competitive in this market. Hence, we expect stream
processing engines to thrive in the markeiplace. In
Section 5, we discuss a collection of other markets where
one size is not likely to fit all, and ather specialized
database systems may be feasible. Hence, the
fragmentation of the DBM:
extensive. In Seetion 6, we offer some conments about
the factoring of system software into products. Finally,
we close the paper with some concluding remarks in
Section 7.

2. Data warchousing

In the carly 1990°, a new trend appeared: Enterprises
wanted to gather together data from multiple operational
databases into a data warchouse for business intelligence

http://cs.brown.edu/~ugur/fits_all.pdf

@ ‘ ANALYTICAL DATABASE SYSTEMS

LAST 20 YEARS
Row Store
0 EEEed A, | B, | C, | D,
zooos Il Header A, | B, | C | D
PAl Header A, | B, | C,|D,
Columnar SELECT COUNT(B) E) reacer [N IEM MO I
Storage FROM XXX
WHERE A > ?;
Column Store
o
0 | A B, Co Dy
1 | A, B, C, D,
2 1A |lB |lC|]|D,
3 LA B, C, D,

ANALYTICAL DATABASE SYSTEMS
LAST 20 YEARS

2000 S Shared Nothing Shared Disk

Columnar
Storage

NetworRk

o oo g

Disaggregated

[Network___

Storage
JEE (CEuEE

ANALYTICAL DATABASE SYSTEMS
LAST 20 YEARS

Vectorized Scan
2000s —
for v, in table:

Columnar simdLoad(v,.key, v,)
Storage Vp = (vizlow 2 1 : 0) &

% (vi<high 2 1 : 0)
Disaggregated simdStore(v,, v,, output[i])
Storage i=1+ |v#false|
Vectorized
Execution SELECT * FROM table

WHERE key >= "G" AND key <= "T"

ANALYTICAL DATABASE SYSTEMS
LAST 20 YEARS

SELECT * FROM table
WHERE key >= "G" AND key <= "T"

KeyVector |1WlUITIAINIG
S ID | KEY

1w

Columnar § $

Storage 4 | A Mask [glo]|1]0]1]1

. q 5 [

S{(S)?gggegate 6 | G ALLOffsets [112131415
\ |/

Vectorized
Execution

Matched Offsets [2| 4| 5

ANALYTICAL DATABASE SYSTEMS
LAST 20 YEARS

SELECT * FROM foo

201os WHERE str_col = 'abc'

AND int_col = 4;

JIT Query
Compilation

Expression Tree
f_/ AND \=
~ NN

Attribute(str_col) Constant("abc") Attribute(int_col) Constant(4)

ANALYTICAL DATABASE SYSTEMS
LAST 20 YEARS

SELECT * FROM foo

201os WHERE str_col = 'abc'

AND int_col = 4;

Code Generated Plan

bool sel_eq_row(string str_col, string valo,
int int_col, int vall) {
return (str_col == val@ && int_col == vall);

3

JIT Query
Compilation

ANALYTICAL DATABASE SYSTEMS
LAST 20 YEARS

create function PadLeft (@val varchar(lae), @len int, @char char(1))

returns varchar(109)

JIT Query o

return right(replicate(@char,@len) + @val, @len)

Compilation o

Interpreted

° °
U D F I n l I n I n g Scalar functions are interpreted code that means EVERY call to the function results in your code being interpreted. That means overhead for

processing your function is proportional to the number of rows.

Running this code You will see that the native system calls take considerable less time than the UDF calls. on my machine it takes 2614 ms for the
system calls and 38758ms for the UDF. Thats a 19x increase.

Set statistics time on

go

select max(right(replicate(‘@', 100) + O.name + C.name, 100))
from msdb.sys.columns 0

Cross join msdb. sys.columns c

select max(dbo.PadLeft(o.name + C.name, 160, 'e'))
from msdb.sys.columns [¢]
Cross join msdb. sys. columns c

Source: Karthik Ramachandra

https://www.microsoft.com/en-us/research/people/karam/
https://sqlblogcasts.com/blogs/simons/archive/2008/11/03/TSQL-Scalar-functions-are-evil-.aspx

ANALYTICAL DATABASE SYSTEMS
LAST 20 YEARS

2010s

JIT Query
Compilation

UDF Inlining

Source: Karthik Ramachandra

CREATE FUNCTION getVal(@x int)
RETURNS char(10) AS
BEGIN

DECLARE @val char(10);

IF (@x > 1000)

SET @val 'high';

ELSE

SET @val "Tow';

RETURN @val + ' value';
END

SELECT getVal(5000);

Froid: Optimization of Imperative Programs in a Relational
Database

Karthik Ramachandra

Kwanghyun Park

K. Venkatesh Emani”

Microsoft Gray Systems Lab Micresoft Gray Systems Lab NT Bombay

karam@microsoft. com

Alan Halverson
Microsoft Gray Systems Lab

alanhal @micrasoft.c om

ABSTRACT

For decades, RDBMSs have supported declarative SQL as
well as imperative functions and procedures as ways for users
to express data processing tasks. While the evaluation of
declarative SQL kas roceived a lot of attention resulting in
highly sophisticated techniques, the evaluation of imperative
progeams has remained naive and highly inefficient. Inpera-
tive programs offer several benefits over SQL and hence are
often preferred and widely used. But unfortunately, their
abysmal performance discourages, and even prohibits their
use in many situations. We address this important problem
that has hitherto reccived little attention

We present Froid, an extensible framework for optimi
ing imperative programs i relational databases. Froid
novel approach mutomatically transforms entire User De-
fined Functions (UDFs) into relational algebraic expressions,
and embeds them into the ealling SQL query. This form is
uow amenble to cost-basad optimization and results in ef-
ficient, set-oriented, parallel plans as opposed to incficient
iterative, serial excention of UDFs. Froid's approach addi.
tionally brings the beuefits of many compiler optimizations
to UDFs with no additional implementation effort. We de-
seribe the design of Froid and present our experimental eval.
uation that demonstrates performance improvements of up
to multiple orders of magnitude on real workloads.
PVLDB Reference Format:
Karthik Ramachandra, Kyanghyun Park, K. Verkatesh Erni
Alan Halverson, César Galindo-Legaria and Conor Cunningham,
Froid: Optinm cuative Programs in s Relational Dot
D, 1{4): 432 444, 2017,

»

1. INTRODUCTION
SQL is arguably one of the key reasons for the popular-
ity of relational databases today SQL's declarative way of

*Waork done ss an intern at Mictosoft Giray Systems Lab,

fit or cominerial advantage and that sopics
bear this notice and the full citation an the first page. To capy othervise, i

kwparkfimicrosoft com
César Galindo-Legaria
icrosoft

cesargmicrosnft. com

venkateshek fese iit b.ac.in

Conor Cunningham
icrosoft

canorcilimicrosoft. com

exprossing intent s on one hand provided high-level ab-
stractions for data processing, while on the other hand, has
enabled the growth of sophisticated query evaluation teck.
nigues and highly cfficient ways to proces data.

Despite the expressive power of declarative SQL, almast
all RDEMSs support procodural extensions that allow users
to write programs in various languages (such as Transact.
SQL, C# a and R) using imperative constructs such
as variable assignments, conditional branching, and loops.
These extensions are quite widely used. For instance, we
note that there are of the order of tens of millions of Tr ansact-
SQL (T-SQL) UDFs in use today in the Micrasoft Azure
SQL Database serviee, with billions of daily invocations

UDFs and procedures offer many advantages over stan-
dard SQL. (a) They are an elogant way to achieve modular-
ity and code reuse across SQL queries. (b) some computa-
tions (such as comy
ar

(c) they allow users
to express intent using a mix of simple SQL and imprras
carde. s apposed to complex SQL gueties, therely improy-
ing readability and maintainability. These benefits are not
linited to RDBMSs. as cvidenced by the fact that many
popular BigData systems also support UDFs.
Unfortunately, the above bencfits come at a huge perfor-
mance penalty, due to the fact that UDFs are cvaluated
in a highly inefficicnt manner. It is a known fact amongst
practitionees that UDFs are “evil” when it coumes to perfor-
mance considerations (35, 28], In fact, users are advised by
experts to avoid UDFs for performance reasons. The inter-
net is replete with articles and discussions that call out the
performance overheads of UDFs (34, 36, 37, 24, 25]. This is
true for all popular RDBMSs, commercial and open source
UDFs encourage good programming practices and pro-
vide a powerful abstraction, and hence are very attractive
to users. But the poor performance of UDFs due to naive
execution strategies disconrages their use. The raot cause
of poor performance of UDFs can be attributed to what i
known as the ‘inpedance mismatch® between two distinet
programming paradigms at play - the declrative paradigm
of SQL, and the imperative paradign of procedural code
@ ing this mistateh is ceucial in order to address this

ive

< or st requires p
permission andlar a fee. Attcles from this volume were invited to present
theit resultsat The-44th Intemational Conference on Very Large Dats Bases,
August 2018, Rin de Janeiro, Brazil,

Proccedings of the VLDB Endovent, Vol 11, No,

Capyright 2017 VLDB Endowment 2150-8097/7/12... $ 1000

DOL 10.11453164135.3164140

432

problem, and farms the crux of our paper.

We present Froid, an cxtensible optimization framework
for imperative code in relational databases. The goal of
Froid is to enable developers to use the abstractions of UDFs
and d without on roid

https://www.microsoft.com/en-us/research/people/karam/
https://www.microsoft.com/en-us/research/publication/froid-optimization-of-imperative-programs-in-a-relational-database/

2010s

JIT Query
Compilation

UDF Inlining

Source: Karthik Ramachandra

LAST 20 YEARS

@ ‘ ANALYTICAL DATABASE SYSTEMS

CREATE FUNCTION getVal(@x int)
RETURNS char(10) AS
BEGIN
DECLARE @val char(10);
IF (@x > 1000)
SET @val = 'high';
ELSE
SET @val = 'low';
RETURN @val + ' value';
END

As DI

OUTER APPLY
(SELECT DT1.val + ' value'

SELECT getVal(5000);

(SELECT 'high' AS val)

SELECT returnVal FROM »SELECT returnVal FROM
(SELECT CASE WHEN @x > 1000
THEN 'high' AS
ELSE 'low' END AS val) OUTER APPLY
(SELECT DT1.val +

' value'
AS returnvVal)

AS returnval) AS
Froid Inlining Dynamic Slicing

» SELECT returnVal FROM
(SELECT 'high value'
AS returnval)

As 0]

Const Propagation
& Folding

»SELECT 'high value';

Dead Code
Elimination

https://www.microsoft.com/en-us/research/people/karam/

2010s

JIT Query
Compilation

UDF Inlining

Source: Karthik Ramachandra

LAST 20 YEARS

@ ‘ ANALYTICAL DATABASE SYSTEMS

CREATE FUNCTION getVal(@x int)
RETURNS char(10) AS
BEGIN
DECLARE @val char(10);
IF (@x > 1000)
SET @val = 'high';
ELSE
SET @val = 'low';
RETURN @val + ' value';
END

SELECT getVal(5000);

SELECT 'high value';

SELECT returnVal FROM »SELECT returnval FROM »SELECT returnval FROM »
(SELECT CASE WHEN @x > 1000 (SEﬁT 'high' AS val) (SELECT 'high value'
THEN 'high' AS [Nl AS returnval)
ELSE 'low' END AS val) OUTER APPLY AS D e.ad_COd.e
AS (SELECT DT1.val + Elimination
OUTER APPLY ' value' Const Propagatton
(SELECT DT1.val + ' value' AS returnvVal) .
AS returnval) AS & Folding
Froid Inlining Dynamic Slicing

https://www.microsoft.com/en-us/research/people/karam/

ANALYTICAL DATABASE SYSTEMS

Azure SQL Database - current v

Nondeterministic
Functions

Create
Modify
Delete
Execute
Rename
View
> Views
> Development
> Internals & Architecture

> Installation

N O

1 Download PDF

BE Microsoft SQL Docs Overview ~ Install v Secure ~ Develop v Administer ~ More ~ Download SQL Server
| p

Docs / SQL / Database design / User-defined functions Scalar inlining £ Edit | Share

Scalar UDF Inlining

02/27/2019 » 10 minutes to read « Contributors =]

APPLIES TO: @ sQL Server @ Azure SQL Database * Azure SQL Data Warehouse X
Parallel Data Warehouse

This article introduces Scalar UDF inlining, a feature under the intelligent query processing
suite of features. This feature improves the performance of queries that invoke scalar UDFs
in SQL Server (starting with SQL Server 2019 preview) and SQL Database.

T-SQL Scalar User-Defined Functions

User-Defined Functions that are implemented in Transact-5QL and return a single data
value are referred to as T-SQL Scalar User-Defined Functions. T-SQL UDFs are an elegant
way to achieve code reuse and modularity across SQL queries. Some computations (such as
complex business rules) are easier to express in imperative UDF form. UDFs help in building
up complex logic without requiring expertise in writing complex SQL queries.

Performance of Scalar UDFs

Scalar UDFs tvpically end up performing poorlv due to the followina reasons

Al Microsoft ~ 0

2 Dark assface

In this article

T-SQL Scalar User-
Defined Functions

performance of
Scalar UDFs

Automatic Inlining
of Scalar UDFs

Inlineable Scalar
UDFs requirements

Enabling scalar
UDF inlining
Disabling Scalar
UDF inlining
without changing
the compatibility
level

Important Notes

See Also

Code
pation

Source: Karthik Ramachandra

https://www.microsoft.com/en-us/research/people/karam/
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/scalar-udf-inlining

2020s

Learned
Components

ANALYTICAL DATABASE SYSTEMS
CURRENT ML SEDUCTION

A learned component is an

iImplemented portion of a DBMS that
uses ML on previous observations to
determine its future behavior as

opposed a human-devised strategy.

ANALYTICAL DATABASE SYSTEMS
CURRENT ML SEDUCTION

Traditional Index Learned Index
2020s

Learned ,i.

Components

----- 'O~
- Lo v,
« \
\

\

)

\

\

/

B

< .,

.

S

’

/

J

’ l'

’ ~ N

~ W 1

4 <% 1

\\

Sorted Data Sorted Data

.
S
.
7
0"
i
¥ -
"
X
N
X
5
.
.

'
pJ
.

0

0 ‘ LEARNED DATABASE COMPONENTS

RESEARCH EXAMPLES

Execution Query Planning Configuration
— Indexes — Cardinality Estimation [= Knob Tuning

— Sorting Algorithms | — Cost Models — Partitioning

— Hashing Algorithms — Join Ordering Search — Physical Design
— Scheduling — SQL Rewriting

— Predicate Inference

LEARNED DATABASE COMPONENTS
QUERY OPTIMIZATION

SELECT *
FROM X JOIN Y
ON X.id = Y.id;

Source: Ryan Marcus

https://rmarcus.info/blog/2021/06/17/bao-distributed.html

LEARNED DATABASE COMPONENTS
QUERY OPTIMIZATION

Traditional Optimizer
Nested Loop Join Cost = 20 — a Execution Engine
Hash Join Cost = 25 l
(Sort-Merge Join)
Sort-M] = ’
Actual Cost

Alternative Predicted Cost
Query Plans (Learned)

1 m Model Training

Source: Ryan Marcus

https://rmarcus.info/blog/2021/06/17/bao-distributed.html

LEARNED DATABA
SE COMP
QUERY OPTIMIZATION ONENTS

raditional Optimiz

Nested Loop Join

Hash Join

Sort-Merge Join

LEO -DB2’s LEarning Optimizer

Michael Slmgcr"‘ Guy Lohman', Volker Markl', Mokhtar Kandi®

BM Almaden Research Center 2IBM Canada L. Giebel Systems, Tnc.
650 Harry Road. K558 1150 Eglinton Ave. E. 2207 Bridgepointe Parkway
San Jose, CA, 951 39 Toronto, ON M3C 1H7 San Mateo, CA 94404
Us Canada USA
arkly } @almaden ibm.com. mkandil@c

A
mstilger(@siebel com, {lohman, m

Abstract
1. Introduction

Mast modern DBMS optimizers ety upot a cost model
to choose the best auery exceution plan (QEP) for any Most modern query optimizers for relational databasc
Cost estimates are heavily dependent management Y e (DBMSS) determin the Dest Query
smates for the number of WS ecution plan (QEP) for execting a% SOL query by
mathematically modeling the exccution cost for each plan
nd choosing the cheapest QEP This execution cost is
Jargely dependent upon the aumber of rows that will be
by cach operator in the QEP Estimating the
Damber of rows — or cardinality - afier one of MOTE
ctof much

iven que
upon the OpHMIZEr’S €
U will resul at esch step of the QEP for complex
queries involving many prdicates jons.
hose estimates ey upon statisties o he dutabase and
imodeling assumptio
given datsbase. In tis paper We introd
 Erning Optimizer, as @ coppretien
incomect statistics and cards
execution plan. By monitosin

e that may or may not be true for 8 processed
uee LEQ, DB2'S

predicates have been applicd has been the subj
escarch for over =
ARMS9, Lyn8S)
querics, LEO compare qatistics of database characienst
acwals at cach sep m @ QEP, sumber of rows for cach table, MY a filter factor
adjusimenis (0 cost esumales ‘and statistics that may be T electivity — for each predicat, derived Trom the
wsed during fature query optimiztions. sumber of distinet values and othee statistics on columns.
an be done cither on-line or offlioe 8 wparate The selectivity ra predicate P eflectively represents the
stem, and either inerementally ot in batches. in this y that any TOW in the database will satisly P
way, LEO introduces & feedback loop 10 query query opHmIZeTS do a remarkably good job of
imizati N i etipating both the cost and the cardinality of most

probabifit
P

Alternative
Query Plans

Source: Ryan Marcus

p that enran:
Uhe dambase where the most gue bave occurred, gueries, many assumptions. undedie s mathematical
lowing the optimizer 1o acwally pa Aodel. Examples of these assamptions include:
our technique is generl and can be applied Carrency of information: The suatistics are assumed
joins, derived 1o reflect the current s@te of the database, 1.6 that the
results alter several predicates have been applicd, and database characteristics are relatively stable
even to DISTINCT and GROUP-BY operators. A Uniformity: _Alihough RISIOETEDS deal with ske
“hown by performance measuremeTis 0 & ToGBTPC. vatues for “ocdl” ction predicates (to a single whie),
H data set, the runtme overhend of LEO™S monitoring we are unaware of any available product that exploits
i insignificant, whereas the potential benefit 1o them for joins.
response time from more AECUTAE cardinality and cost Independence of predicates: Selectivities for each
ctimates can be orders of magnitude. predicate are ealoutated individually and muld iplicd
"~ cven though the underyiveg columns may be
g by e functional dependency- While mul

o]
lo any operation in & QEP- including

5

om0 copy wihaw fee ail o7 pat of s maerial is granted
provided that ihe copies are 0t made ihted for direct o, again they have never been applied to join

SDE - pred
P wwmercial advantage. the VEDE gt notce and the file of 6 peedicaies, sgercgation, ¢k Applications common ¢ oday
tave hundreds of columps in cach table and thousinds of

b ication a is date ogpear, and potee B “aven that copying s bY
ke Very Large Date Base Endovment To copy ‘
bles, making it impossible (© Know o which subset(s)
multi-dimensional histograms.

permission of

e o 0 republish, sequises o fec o special permission frm
the Endavement

Procecdings of the 27th VLDE Conference,

Roma, ltaly, 2001

Researc
rch Data Management Track Paper

SIGMOD 21, June 20-25, 2021, Virtual Event, Chi
. Chira

Bao: Maki
: Making Le
ar .
. & ned Query Optimization Practical
yan Mareus
’ MIT & Intel Labs Parimarjan Negi
ryanmarcus@csail.mit.edn - (MIT Hongzi Mao
egi@csail mitedu MIT

hongzig@ csail.mit.edu

N‘ esime Tatbul Mohammad Alizadeh
tatbul @csail mit.ed alizadeh@csail mit.ed
(@
Recent efforls applying machine lean hniques to query opt U requre an tmpractical amouat ol N <
e learning tec 2 amol
, N g M ne g
f
aining data before they

ing overhead, inabilit
r

have a positive impact on query perfiormance, For example, M
a positive impact on
¥ perfe
M

v o adapt Lo ch
o nabily 6 adoy changes, and p. 13
T [AblC i e ::oml“,mm, powered cardinality estimators based d
oplimizer) Bao takes advantag it : o} = :
query optimizers by pr e of the wisdom buill into e P ——— i
S T Exa B ities from the underlying dat
’ ke ,u,“_ prolibitivy ive operation in practice (this is wl i
siy ice (this is why we wish

icombines modern
lern tree convelutional
- " nal neural networks wi
i pﬂ.f;:[:n Jli:m:[mf reinforcement xc.mmglﬁlam?
ol i y learns from ts mis .
k- f[m:d:tuizylwarkio-dx data, and sl m.,‘f‘éf“ e 5 bty o
Ind-to-end at Bao can quickly learn stratey PﬂT”mm e oo ettt : i
L ral workloads contain + including tail laten in o mqery workion, i e
Wironmer taining long-rurmin ol e wone ot s hent e
et performancy " e X - = ‘ : = i
fued & when data 1 ke
1 techni ques assume that

in the first
techniques must st place)
nust process thousands of. learmin
Faditional o s € querie before atpeforming
plimizers, which {when accounting o utpe nﬁ»mm,g
a collection

both the workl
worklaad and the sch
complete re chema remain consta
omplc trabingwhen s s ol e v resiy S
phe. Recent work hn d 59
niques can outp ks shown that ke
- mf::: tperform traditional opnmm?ﬁ, tlearning Lech
L ey astrophedly e 100 e o e bt of
cam ice) in the tai . 100X regression in quer
" s dte 5 wal (27,5, 56, 60] This s especialy ow b
e of the is sparse. Whilesome approaches !’;“‘“V true when
o m:u dominance in the average m: [;‘:l‘hlﬁnm guar
) Black-box d"“‘f“_fptdmrm ity sl world apph h failures,
0 Blaclbo decisons. Wi raditonsl coct e aptis
Horder b[npbl_n_ wderstanding query optim sed aptimies
e da mot provide raditional optimizcxs, cursent lean sed More
e pravide a way for database iminitraioe v
o undeniand the learned component’s query pl jors to influence
) e cont. o e et of \aowtedge, ol
ersare il esearch prototypes,offeing il 1 wo
Ny little 10 no

machine leaming;

Reference Farmat:

e e me Tathul, Mohamm
Joi o Tim ZtﬂmMakmgL‘Invchu(n(‘m o
) !(;D?wafmzmmmm.mm;m i

INTRODUCTION

optimization is an i
an important task f
Despile decadesof sk for database manage
o iasion eyt mportant clements
nality estimat o
roven diffclt to ion and cost model
crack [45]. Sever feling
i et [45] Several :ortlf e mppli | egration with sl DENS. on
, : hese stubbor problers andar e even supp
72 7376) Whiall of these e e o SQL ol o mention vendor specihe o ote al featunes of
e argue that none of the techaiics ape vet o
 as they sul € technique:
 they suer fom several fundarmertal oo
roblems:

inlegrating any. ure i
ratinganyleamed optmier s comméres o s o
reial or apen-source

datal
tabase system is ot a triviel undertaking
To the best of our e
ke s hchoneriones et s
e " ich overcomes the afc 13 e
<l ntegrat i PotgreSOL 2 amexemmm ot
s an extension, and can

be easily

T—— asily installed witho

PP ——— database ads ut the need 10 recompile

et A0 inistraton (OBA) 1t e 1o ot o o
cur open

. e 2025, 021, V
Vetual v
s (Erm anu: wodule,! and even has th
Ty souree o en has the option to i
= b aod 0 1o select
e pimizer on o off for specific queries el e he
L ———

1275

https://rmarcus.info/blog/2021/06/17/bao-distributed.html
https://dl.acm.org/doi/10.1145/3448016.3452838
https://ieeexplore.ieee.org/document/5386840?arnumber=5386840

g LEARNED DATABASE COMPONENTS
AUTOMATIC CONFIGURATION TUNING

Agent Tuning Manager
Collector
1 1 Internal
‘ u@ » ML Pipeline S
Configuration Statistical
Recommender Models

Installer ~
purget ﬁ b u « @"ﬂ - 7\ N

Database f/\

Knobs mp - ‘O O\
: -~ Expected
Metrics mp - :}”O‘;rf:z.o/'- »Performance
Hardware mp -O

Source: Bohan Zhang

https://ottertune.com/blog/rds-postgres-tuning-benchmark

g LEARNED DATABASE COMPONENTS
AUTOMATIC CONFIGURATION TUNING

@ RDS Default

N
o
o
o

—
[S)
Q
["2)
—
[=
3
e
=]
Q.
-
on
-
(=]
L.
N o
[

Target ﬁ b 0 ‘
| PostgreSQL “\.MysqL

db.m5.4xlarge db.m5.4xlarge
4000 Provisioned IOPS 2000 Provisioned I0OPS

v N =2y Y %
Ky -7 S
S, ot R
Y

Hardware mp em’ % OO/

Performance

Source: Bohan Zhang

https://ottertune.com/blog/rds-postgres-tuning-benchmark
https://ottertune.com/blog/rds-postgres-tuning-benchmark

LEARNED DATABASE COMPONENTS
CHALLENGES

Failsafe Mechanisms?
Explainability?

Human Feedback / Overrides?
Transferability?

n ANALYTICAL DATABASE SYSTEMS
NEXT 20 YEARS

Does ML obviate the need for humans to build
new database systems?

No.

After we replace or supplement existing
components with learned ones, what's next?

" ANALYTICAL DATABASE SYSTEMS
NEXT 20 YEARS

Challenge #1:

— Remove the need for humans to perform any
administrative task that does not require a human
value judgement on externalities.

Existing automation methods are reactive.
Humans are also proactive.

“ ANALYTICAL DATABASE SYSTEMS
NEXT 20 YEARS

PERCEPTION ACTION MODEL PLANNING

http://www.cs.cmu.edu/~malin199/

‘ ::)I(_:_-\;'I("IC\:(AE; :;\TABASE SYSTEMS
PERCEPTION ACTION MODEL PLANNING
ﬁ Tavav: @ S @ 3"«'55335

‘
SQL §§E _l_‘,_r §§E A dn A

A AT

U7 VAN
Workload Behavior Action
Forecasting Modeling Planning

Source: Lin Ma

http://www.cs.cmu.edu/~malin199/

SQL

ANALYTICAL DATABASE SYSTEMS
NEXT 20 YEARS

PERCEPTION

Workload
Forecasting

Source: Lin Ma

Towards Self-p

Make Your Database System Dream of Electric Sheep:

riving Operation

Andrew Pavlo, Matthew Butrovich, Lin Ma
Prashanth Menon, Wan Shen Lim, Dana Van Aken, William Zhang
Camnegie Mellon University
Pavlo@es.crmu edy

ABSTRACT

fDBMS auto-tuning rescarch, 3 truly autonomous, self-driving
DBALS is yet to come. But recent advancements in artificial intell;.
genee and machine learning (ML) have move this oal closer.

Siven this, we present a system implementation treatise towards
achieving a self-driving DBAS. We fra Provide an overview of the
NoisePage self-driving DBMS that uses M, o predict the DBAIS’s
behavior and optimize itself withoyt human support or guidance,
The system’s architecture has three mag ML-based components;
(1) workload forecasting, (2) behavioy modeling, and (3) action plan-
vstem design principles to facilitate
holistic autonomous operations, Such prescripts reduce the com-
plexity of the problem, therehy enabling a DBMS to converge to
better and mote stable configuration s, quickly.

PVLDB Reference Format:
Andrew Pavlo, Matthew Butrovich, Lin Ma ang Prashanth Menan, Wan
Shen Lim. Dana Van Aken, Willian, Zhang . Make Your Database System
Dream of Electric Sheep: Towards Self-Driving Operation. PVLDB, 1412
3211 - 3221, 2021

o 10.14778/3476311 347641

1 lNTRODUCTION

Much of the Previous work on Automated DBMSs has focused on
Sandalone tuning tools tha target a single Problem. For example,

&6 791, data organization (7], o materialized vieny, [4]. Other tools
select the tuning barameters for an application [6, 12, 26, 38,70, 77].
Most of these tools operate in the sa e way: the DBA provides a
sample database and workload trace ther i

e
L ki i nsed under the Creive Commons By
i ense. Vit it/ creativecommons g eemees by
this hecnse. For any use beyord these o

gmailing info@vidharg. Copyright s by
licensed to the VLDB Endowment
Proceedings of the VL)
doE10.1477873763 1 34

Endowsnent. Vol. 14, No. 12 158N 215097
a

esouree management tools at the service-level (23] or provide
T nged versions of their previous recommendativ tools [2, 22],

Although these previous efforts areinfluential, they are insuff.
cient fora completely autonomous DEAS because they only solye
part the problem. That i, they are only able identify potential
ons that may improve the DBMS's perfommancs (eg. which
index: to add). They are unable, howevey tg infer which ones to
“PPly and when 1o apply them becayge. they do not predict work-
Joad trends or account for deployment cont, (8], Thus, they rely
on 2 knowledgeable human DBA to update the DBMS during a
time window when it will have the eqeg impact on applications
They are also unable to learn which actions under what conditions
provide the most benefit and then apply that knowledge to new

supporting complex applications,

What s needed is a self-driving DEMS that predicts an applica
ton's needs and then automaticall chooses seps that modify all
e aspects holistically (56]. The DBMS leans oy, it responds
o cach action it applies and reuses such knowledge in different
ity oS- With this knowledge, a self diving DRSS can poten-
Vially support most management tasks withyps. requiring a human
to determine the proper way and time 1o deploy them,

The goal of a self-driving DBAS js 1 configure, manage, and
optimize lself automatically a the database an o workload evolve
ovet time. The core idea that guides the DBAS s decision-making is
ahuman-selected objective funcrion, Ay objective function could he
cither performance metrics (e, throughput, latency, availabilty)
o deployment costs (e.g, hardware, cloyy; resources). This is akin

1 this paper, we provide an overview of o ongoing research
lowards achievinga true self-driving DRy, we begin with a discus-
sion of the different levels of automation that DBMS can support.

o0 o

http://www.cs.cmu.edu/~malin199/
https://db.cs.cmu.edu/papers/2021/p3211-pavlo.pdf

" ANALYTICAL DATABASE SYSTEMS
NEXT 20 YEARS

Challenge #2:

— Discover new optimizations
currently unknown to humal

SCIENTIFIC
AMERICAN.

Al Generates Hypotheses Human
Scientists Have Not Thought Of

Machine-learning algorithms can guide humans toward new experiments and theories

Electric vehicles have the potential to substantially reduce carbon emissions, but car

companies are running out of materials to make batteries. One crucial component,
nickel, is projected to cause supply shortages as early as the end of this year. Scientists

recently discovered four new materials that could potentially help—and what may be

https://www.scientificamerican.com/article/ai-generates-hypotheses-human-scientists-have-not-thought-of/

n ANALYTICAL DATABASE SYSTEMS
NEXT 20 YEARS

Challenge #2:

— Discover new optimizations and techniques that are
currently unknown to humans.

This requires a DBMS to have good introspection
and instrumentation hooks/APIs.

TRANSACTIONAL DATABASE SYSTEMS
CONJECTURE

There are less things to automatically optimize in
an OLTP DBMS than in an OLAP DBMS.

— There are fundamental limitations that prevent
achieving even higher OLTP performance.

Further methods will require automatically
Inferring higher-level semantics.

— Example: Does an application really need all columns if
it executes "SELECT *"?

‘ ANALYTICAL DATABASE SYSTEMS
CONCLUSION

Current ML methods are trying to create better
versions of existing DBMS components.

The next challenge is how to use ML to develop
optimizations that humans would not think of on

their own.

andy_ pavlo

