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ANALYTICAL DATABASE SYSTEMS
BACKGROUND

Specialized DBMSs for analytics have been
around since the 1970s.

The OLAP DBMS landscape flourished in the
2000s because more organizations have large
data sets than ever before.
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Abstract

The dast 25 years of commercial DBMS developm
can be summed up in a single phrase: “One size fits all
This phrase refers to the fact that the traditional DBMS
architecture (originally designed and optimized for
business data processing) has been wsed to support many
data-centric  applications  with  widely varving
characteristics and requirements,

In this paper, we argue that this concept is no longer
applicable o the dotabase market, and that the

commercial world will fracture into a collection of

independeit database engines, some of which may be
unified by a common front-end parser. We use examples
from the  stream-processing market and the data-
warehouse market to bolster our claims. We also briefiy
discuss other markets for which the traditional
architecture s a poor fit and argue for a eritical
rethinking of the current factoring of systems services
inta products.

L. Introduction

Relational DBMSs amived on the scenc as research
prototypes in the 1970's, in the form of System R [10]
and INGRES [27]. The main thrust of both prototypes
was 0 surpass IMS in value 10 customers on the
applications that JMS was used for, namely “business
data proc Hence, both systems were architected
e transaction processing (OLTP) applications,
and their commercial countemparts (ic. DB2 and
INGRES, respectively) found acceptance in this arena in
the 1980°s. Other vendors (e.g.. Sybase, Oracle, and
Informix) followed the same basic DBMS madel, which
stores relational tables row-by-row, uses B-trees for
indexing, uses a cost-based optimizer, and provides
ACID transaction properties,

Since the early 1980°, the major DBMS vendors have
steadfastly stuck to o “one size fits all” strategy, whereby
they maintain a single code line with all DBMS services
The reasons for this choice are straightforward — the use
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e code lines causes various practical prol

*  a cost problem, because maintenance costs incrense
at least linearly with the mumber of code lines;

* a compatibility problem, because all applications

have to run against every code line;

a sales problem, because salespeople get confused

about which produet 10 iry 10 sell to a customer; and

*  a marketing problem, because multiple code
need to be positioned correctly in the marketplace.

nes

To avoid these problems, all the major DBMS vendors
have followed the adage “put all wood behind one
arrowhead™. In this paper we argue that this strategy has
failed already, and will fail more dramatically off into the
future.

The rest of the paper is structured as fallows. In
Section 2, we briefly indicate why the single code-line
strategy has failed already by citing some of the key
characteristics of the data warehouse matket. In Section
3, we discuss stream processing applications and indicate
@ paticular example where a specialized  stream
processing engine outperforms an RDBMS by two orders
of magnitude. Section 4 then tums to the reasons for the
performance  difference, and indicates that DBMS
technology is not likely to be able to adapt to be
competitive in this market. Hence, we expect stream
processing engines to thrive in the markeiplace. In
Section 5, we discuss a collection of other markets where
one size is not likely to fit all, and ather specialized
database  systems may be feasible. Hence, the
fragmentation of the DBM:
extensive. In Seetion 6, we offer some conments about
the factoring of system software into products. Finally,
we close the paper with some concluding remarks in
Section 7.

2. Data warchousing

In the carly 1990°, a new trend appeared: Enterprises
wanted to gather together data from multiple operational
databases into a data warchouse for business intelligence
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SELECT * FROM foo

201os WHERE str_col = 'abc'

AND int_col = 4;

JIT Query
Compilation

Expression Tree
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Attribute(str_col) Constant("abc") Attribute(int_col) Constant(4)
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SELECT * FROM foo

201os WHERE str_col = 'abc'

AND int_col = 4;

Code Generated Plan

bool sel_eq_row(string str_col, string valo,
int int_col, int vall) {
return (str_col == val@ && int_col == vall);

3

JIT Query
Compilation
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create function PadLeft (@val varchar(lae), @len int, @char char(1))

returns varchar(109)

JIT Query o

return right(replicate(@char,@len) + @val, @len)

Compilation o

Interpreted

° °
U D F I n l I n I n g Scalar functions are interpreted code that means EVERY call to the function results in your code being interpreted. That means overhead for

processing your function is proportional to the number of rows.

Running this code You will see that the native system calls take considerable less time than the UDF calls. on my machine it takes 2614 ms for the
system calls and 38758ms for the UDF. Thats a 19x increase.

Set statistics time on

go

select max(right(replicate( ‘@', 100) + O.name + C.name, 100))
from msdb.sys.columns 0

Cross join msdb. sys.columns c

select max(dbo.PadLeft(o.name + C.name, 160, 'e'))
from msdb.sys.columns [¢]
Cross join msdb. sys. columns c

Source: Karthik Ramachandra
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JIT Query
Compilation

UDF Inlining

Source: Karthik Ramachandra

CREATE FUNCTION getVal(@x int)
RETURNS char(10) AS
BEGIN

DECLARE @val char(10);

IF (@x > 1000)

SET @val 'high';

ELSE

SET @val "Tow';

RETURN @val + ' value';
END

SELECT getVal(5000);

Froid: Optimization of Imperative Programs in a Relational
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ABSTRACT

For decades, RDBMSs have supported declarative SQL as
well as imperative functions and procedures as ways for users
to express data processing tasks. While the evaluation of
declarative SQL kas roceived a lot of attention resulting in
highly sophisticated techniques, the evaluation of imperative
progeams has remained naive and highly inefficient. Inpera-
tive programs offer several benefits over SQL and hence are
often preferred and widely used. But unfortunately, their
abysmal performance discourages, and even prohibits their
use in many situations. We address this important problem
that has hitherto reccived little attention

We present Froid, an extensible framework for optimi
ing imperative programs i relational databases. Froid
novel approach mutomatically transforms entire User De-
fined Functions (UDFs) into relational algebraic expressions,
and embeds them into the ealling SQL query. This form is
uow amenble to cost-basad optimization and results in ef-
ficient, set-oriented, parallel plans as opposed to incficient
iterative, serial excention of UDFs. Froid's approach addi.
tionally brings the beuefits of many compiler optimizations
to UDFs with no additional implementation effort. We de-
seribe the design of Froid and present our experimental eval.
uation that demonstrates performance improvements of up
to multiple orders of magnitude on real workloads.
PVLDB Reference Format:
Karthik Ramachandra, Kyanghyun Park, K. Verkatesh Erni
Alan Halverson, César Galindo-Legaria and Conor Cunningham,
Froid: Optinm cuative Programs in s Relational Dot
D, 1{4): 432 444, 2017,

»

1. INTRODUCTION
SQL is arguably one of the key reasons for the popular-
ity of relational databases today SQL's declarative way of
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exprossing intent s on one hand provided high-level ab-
stractions for data processing, while on the other hand, has
enabled the growth of sophisticated query evaluation teck.
nigues and highly cfficient ways to proces data.

Despite the expressive power of declarative SQL, almast
all RDEMSs support procodural extensions that allow users
to write programs in various languages (such as Transact.
SQL, C# a and R) using imperative constructs such
as variable assignments, conditional branching, and loops.
These extensions are quite widely used. For instance, we
note that there are of the order of tens of millions of Tr ansact-
SQL (T-SQL) UDFs in use today in the Micrasoft Azure
SQL Database serviee, with billions of daily invocations

UDFs and procedures offer many advantages over stan-
dard SQL. (a) They are an elogant way to achieve modular-
ity and code reuse across SQL queries. (b) some computa-
tions (such as comy
ar

(c) they allow users
to express intent using a mix of simple SQL and imprras
carde. s apposed to complex SQL gueties, therely improy-
ing readability and maintainability. These benefits are not
linited to RDBMSs. as cvidenced by the fact that many
popular BigData systems also support UDFs.
Unfortunately, the above bencfits come at a huge perfor-
mance penalty, due to the fact that UDFs are cvaluated
in a highly inefficicnt manner. It is a known fact amongst
practitionees that UDFs are “evil” when it coumes to perfor-
mance considerations (35, 28], In fact, users are advised by
experts to avoid UDFs for performance reasons. The inter-
net is replete with articles and discussions that call out the
performance overheads of UDFs (34, 36, 37, 24, 25]. This is
true for all popular RDBMSs, commercial and open source
UDFs encourage good programming practices and pro-
vide a powerful abstraction, and hence are very attractive
to users. But the poor performance of UDFs due to naive
execution strategies disconrages their use. The raot cause
of poor performance of UDFs can be attributed to what i
known as the ‘inpedance mismatch® between two distinet
programming paradigms at play - the declrative paradigm
of SQL, and the imperative paradign of procedural code
@ ing this mistateh is ceucial in order to address this

ive

< or st requires p
permission andlar a fee. Attcles from this volume were invited to present
theit resultsat The-44th Intemational Conference on Very Large Dats Bases,
August 2018, Rin de Janeiro, Brazil,

Proccedings of the VLDB Endovent, Vol 11, No,

Capyright 2017 VLDB Endowment 2150-8097/7/12... $ 1000

DOL 10.11453164135.3164140

432

problem, and farms the crux of our paper.

We present Froid, an cxtensible optimization framework
for imperative code in relational databases. The goal of
Froid is to enable developers to use the abstractions of UDFs
and d without on roid
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CREATE FUNCTION getVal(@x int)
RETURNS char(10) AS
BEGIN
DECLARE @val char(10);
IF (@x > 1000)
SET @val = 'high';
ELSE
SET @val = 'low';
RETURN @val + ' value';
END

As DI

OUTER APPLY
(SELECT DT1.val + ' value'

SELECT getVal(5000);

(SELECT 'high' AS val)

SELECT returnVal FROM »SELECT returnVal FROM
(SELECT CASE WHEN @x > 1000
THEN 'high' AS
ELSE 'low' END AS val) OUTER APPLY
(SELECT DT1.val +

' value'
AS returnvVal)

AS returnval) AS
Froid Inlining Dynamic Slicing

» SELECT returnVal FROM
(SELECT 'high value'
AS returnval)

As 0]

Const Propagation
& Folding

»SELECT 'high value';

Dead Code
Elimination
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CREATE FUNCTION getVal(@x int)
RETURNS char(10) AS
BEGIN
DECLARE @val char(10);
IF (@x > 1000)
SET @val = 'high';
ELSE
SET @val = 'low';
RETURN @val + ' value';
END

SELECT getVal(5000);

SELECT 'high value';

SELECT returnVal FROM »SELECT returnval FROM »SELECT returnval FROM »
(SELECT CASE WHEN @x > 1000 (SEﬁT 'high' AS val) (SELECT 'high value'
THEN 'high' AS [Nl AS returnval)
ELSE 'low' END AS val) OUTER APPLY AS D e.ad_COd.e
AS (SELECT DT1.val + Elimination
OUTER APPLY ' value' Const Propagatton
(SELECT DT1.val + ' value' AS returnvVal) .
AS returnval) AS & Folding
Froid Inlining Dynamic Slicing
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This article introduces Scalar UDF inlining, a feature under the intelligent query processing
suite of features. This feature improves the performance of queries that invoke scalar UDFs
in SQL Server (starting with SQL Server 2019 preview) and SQL Database.

T-SQL Scalar User-Defined Functions

User-Defined Functions that are implemented in Transact-5QL and return a single data
value are referred to as T-SQL Scalar User-Defined Functions. T-SQL UDFs are an elegant
way to achieve code reuse and modularity across SQL queries. Some computations (such as
complex business rules) are easier to express in imperative UDF form. UDFs help in building
up complex logic without requiring expertise in writing complex SQL queries.

Performance of Scalar UDFs

Scalar UDFs tvpically end up performing poorlv due to the followina reasons

Al Microsoft ~ 0

2 Dark assface

In this article

T-SQL Scalar User-
Defined Functions

performance of
Scalar UDFs

Automatic Inlining
of Scalar UDFs

Inlineable Scalar
UDFs requirements

Enabling scalar
UDF inlining
Disabling Scalar
UDF inlining
without changing
the compatibility
level

Important Notes

See Also

Code
pation

Source: Karthik Ramachandra
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A learned component is an

iImplemented portion of a DBMS that
uses ML on previous observations to
determine its future behavior as

opposed a human-devised strategy.
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RESEARCH EXAMPLES

Execution Query Planning Configuration
— Indexes — Cardinality Estimation [= Knob Tuning

— Sorting Algorithms | — Cost Models — Partitioning

— Hashing Algorithms  — Join Ordering Search — Physical Design
— Scheduling — SQL Rewriting

— Predicate Inference
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SELECT *
FROM X JOIN Y
ON X.id = Y.id;

Source: Ryan Marcus
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LEARNED DATABASE COMPONENTS
QUERY OPTIMIZATION

Traditional Optimizer
Nested Loop Join Cost = 20 — a Execution Engine
Hash Join Cost = 25 l
( Sort-Merge Join )
Sort-M ] = ’
Actual Cost

Alternative Predicted Cost
Query Plans (Learned)

1 m Model Training

Source: Ryan Marcus
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LEARNED DATABASE COMPONENTS
CHALLENGES

Failsafe Mechanisms?
Explainability?

Human Feedback / Overrides?
Transferability?
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Does ML obviate the need for humans to build
new database systems?

No.

After we replace or supplement existing
components with learned ones, what's next?
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Challenge #1:

— Remove the need for humans to perform any
administrative task that does not require a human
value judgement on externalities.

Existing automation methods are reactive.
Humans are also proactive.
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PERCEPTION ACTION MODEL PLANNING
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Towards Self-p
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ABSTRACT

fDBMS auto-tuning rescarch, 3 truly autonomous, self-driving
DBALS is yet to come. But recent advancements in artificial intell;.
genee and machine learning (ML) have move this oal closer.

Siven this, we present a system implementation treatise towards
achieving a self-driving DBAS. We fra Provide an overview of the
NoisePage self-driving DBMS that uses M, o predict the DBAIS’s
behavior and optimize itself withoyt human support or guidance,
The system’s architecture has three mag ML-based components;
(1) workload forecasting, (2) behavioy modeling, and (3) action plan-
vstem design principles to facilitate
holistic autonomous operations, Such prescripts reduce the com-
plexity of the problem, therehy enabling a DBMS to converge to
better and mote stable configuration s, quickly.

PVLDB Reference Format:
Andrew Pavlo, Matthew Butrovich, Lin Ma ang Prashanth Menan, Wan
Shen Lim. Dana Van Aken, Willian, Zhang . Make Your Database System
Dream of Electric Sheep: Towards Self-Driving Operation. PVLDB, 1412
3211 - 3221, 2021

o 10.14778/3476311 347641

1 lNTRODUCTION

Much of the Previous work on Automated DBMSs has focused on
Sandalone tuning tools tha target a single Problem. For example,

&6 791, data organization (7], o materialized vieny, [4]. Other tools
select the tuning barameters for an application [6, 12, 26, 38,70, 77].
Most of these tools operate in the sa e way: the DBA provides a
sample database and workload trace ther i

e
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this hecnse. For any use beyord these o

gmailing info@vidharg. Copyright s by
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a

esouree management tools at the service-level (23] or provide
T nged versions of their previous recommendativ tools [2, 22],

Although these previous efforts areinfluential, they are insuff.
cient fora completely autonomous DEAS because they only solye
part the problem. That i, they are only able identify potential
ons that may improve the DBMS's perfommancs (eg. which
index: to add). They are unable, howevey tg infer which ones to
“PPly and when 1o apply them becayge. they do not predict work-
Joad trends or account for deployment cont, (8], Thus, they rely
on 2 knowledgeable human DBA to update the DBMS during a
time window when it will have the eqeg impact on applications
They are also unable to learn which actions under what conditions
provide the most benefit and then apply that knowledge to new

supporting complex applications,

What s needed is a self-driving DEMS that predicts an applica
ton's needs and then automaticall chooses seps that modify all
e aspects holistically (56]. The DBMS leans oy, it responds
o cach action it applies and reuses such knowledge in different
ity oS- With this knowledge, a self diving DRSS can poten-
Vially support most management tasks withyps. requiring a human
to determine the proper way and time 1o deploy them,

The goal of a self-driving DBAS js 1 configure, manage, and
optimize lself automatically a the database an o workload evolve
ovet time. The core idea that guides the DBAS s decision-making is
ahuman-selected objective funcrion, Ay objective function could he
cither performance metrics (e, throughput, latency, availabilty)
o deployment costs (e.g, hardware, cloyy; resources). This is akin

1 this paper, we provide an overview of o ongoing research
lowards achievinga true self-driving DRy, we begin with a discus-
sion of the different levels of automation that DBMS can support.

o0 o
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Challenge #2:

— Discover new optimizations
currently unknown to humal

SCIENTIFIC
AMERICAN.

Al Generates Hypotheses Human
Scientists Have Not Thought Of

Machine-learning algorithms can guide humans toward new experiments and theories

Electric vehicles have the potential to substantially reduce carbon emissions, but car

companies are running out of materials to make batteries. One crucial component,
nickel, is projected to cause supply shortages as early as the end of this year. Scientists

recently discovered four new materials that could potentially help—and what may be
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n ANALYTICAL DATABASE SYSTEMS
NEXT 20 YEARS

Challenge #2:

— Discover new optimizations and techniques that are
currently unknown to humans.

This requires a DBMS to have good introspection
and instrumentation hooks/APIs.



TRANSACTIONAL DATABASE SYSTEMS
CONJECTURE

There are less things to automatically optimize in
an OLTP DBMS than in an OLAP DBMS.

— There are fundamental limitations that prevent
achieving even higher OLTP performance.

Further methods will require automatically
Inferring higher-level semantics.

— Example: Does an application really need all columns if
it executes "SELECT *"?



‘ ANALYTICAL DATABASE SYSTEMS
CONCLUSION

Current ML methods are trying to create better
versions of existing DBMS components.

The next challenge is how to use ML to develop
optimizations that humans would not think of on

their own.
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