
@andy_pavlo

https://twitter.com/andy_pavlo
https://db.cs.cmu.edu/
https://ottertune.com/

#1
#2
#3

– Last 20 Years
– Current ML Seduction
– Next 20 Years

Specialized DBMSs for analytics have been
around since the 1970s.

The OLAP DBMS landscape flourished in the
2000s because more organizations have large
data sets than ever before.

Specialized DBMSs for analytics have been
around since the 1970s.

The OLAP DBMS landscape flourished in the
2000s because more organizations have large
data sets than ever before.

http://cs.brown.edu/~ugur/fits_all.pdf

Column Store

Row Store

2000s
Columnar
Storage

0
1
2
3

A B C D

A0
A1
A2
A3

B0
B1
B2
B3

C0
C1
C2
C3

D0
D1
D2
D3

0
1
2
3

Header A0
A1
A2
A3

B0
B1
B2
B3

C0
C1
C2
C3

D0
D1
D2
D3

Header

Header

Header
SELECT COUNT(B)
FROM XXX
WHERE A > ?;

Shared Nothing

Network

Shared Disk

Network

2000s
Columnar
Storage

Disaggregated
Storage

2000s
Columnar
Storage

Disaggregated
Storage

Vectorized
Execution

Vectorized Scan

i = 0
for vt in table:
simdLoad(vt.key, vk)
vm = (vk≥low ? 1 : 0) &

⮱(vk≤high ? 1 : 0)
simdStore(vt, vm, output[i])
i = i + |vm≠false|

SELECT * FROM table
WHERE key >= "G" AND key <= "T"

2000s
Columnar
Storage

Disaggregated
Storage

Vectorized
Execution

W U T A N GKey Vector
ID
1

KEY
W

2 U
3 T
4 A
5 N
6 G

Mask 0 0 1 0 1 1

SIMD Compare

0 1 2 3 4 5All Offsets

SIMD Store

2 4 5Matched Offsets

SELECT * FROM table
WHERE key >= "G" AND key <= "T"

2010s
JIT Query
Compilation Expression Tree

Attribute(str_col)

=

Constant("abc")

=

AND

Attribute(int_col) Constant(4)

SELECT * FROM foo
WHERE str_col = 'abc'
AND int_col = 4;

2010s
JIT Query
Compilation

bool sel_eq_row(string str_col, string val0,
int int_col, int val1) {

return (str_col == val0 && int_col == val1);
}

Code Generated Plan

SELECT * FROM foo
WHERE str_col = 'abc'
AND int_col = 4;

2010s
JIT Query
Compilation

UDF Inlining

Source: Karthik Ramachandra

https://www.microsoft.com/en-us/research/people/karam/
https://sqlblogcasts.com/blogs/simons/archive/2008/11/03/TSQL-Scalar-functions-are-evil-.aspx

2010s
JIT Query
Compilation

UDF Inlining

CREATE FUNCTION getVal(@x int)
RETURNS char(10) AS
BEGIN
DECLARE @val char(10);
IF (@x > 1000)
SET @val = 'high';

ELSE
SET @val = 'low';

RETURN @val + ' value';
END

SELECT getVal(5000);

Source: Karthik Ramachandra

https://www.microsoft.com/en-us/research/people/karam/
https://www.microsoft.com/en-us/research/publication/froid-optimization-of-imperative-programs-in-a-relational-database/

2010s
JIT Query
Compilation

UDF Inlining

CREATE FUNCTION getVal(@x int)
RETURNS char(10) AS
BEGIN
DECLARE @val char(10);
IF (@x > 1000)
SET @val = 'high';

ELSE
SET @val = 'low';

RETURN @val + ' value';
END

Dynamic Slicing

Const Propagation
& Folding

Dead Code
Elimination

SELECT returnVal FROM
(SELECT CASE WHEN @x > 1000

THEN 'high'
ELSE 'low' END AS val)

AS DT1
OUTER APPLY
(SELECT DT1.val + ' value'

AS returnVal) DT2

SELECT returnVal FROM
(SELECT 'high' AS val)
AS DT1
OUTER APPLY
(SELECT DT1.val +

' value'
AS returnVal)

AS DT2

SELECT returnVal FROM
(SELECT 'high value'

AS returnVal)
AS DT1

SELECT 'high value';

SELECT getVal(5000);

Froid Inlining

Source: Karthik Ramachandra

https://www.microsoft.com/en-us/research/people/karam/

2010s
JIT Query
Compilation

UDF Inlining

CREATE FUNCTION getVal(@x int)
RETURNS char(10) AS
BEGIN
DECLARE @val char(10);
IF (@x > 1000)
SET @val = 'high';

ELSE
SET @val = 'low';

RETURN @val + ' value';
END

Dynamic Slicing

Const Propagation
& Folding

Dead Code
Elimination

SELECT returnVal FROM
(SELECT CASE WHEN @x > 1000

THEN 'high'
ELSE 'low' END AS val)

AS DT1
OUTER APPLY
(SELECT DT1.val + ' value'

AS returnVal) DT2

SELECT returnVal FROM
(SELECT 'high' AS val)
AS DT1
OUTER APPLY
(SELECT DT1.val +

' value'
AS returnVal)

AS DT2

SELECT returnVal FROM
(SELECT 'high value'

AS returnVal)
AS DT1

SELECT getVal(5000);

Froid Inlining

SELECT 'high value';

Source: Karthik Ramachandra

https://www.microsoft.com/en-us/research/people/karam/

2010s
JIT Query
Compilation

UDF Inlining

CREATE FUNCTION getVal(@x int)
RETURNS char(10) AS
BEGIN
DECLARE @val char(10);
IF (@x > 1000)
SET @val = 'high';

ELSE
SET @val = 'low';

RETURN @val + ' value';
END

Dynamic Slicing

Const Propagation
& Folding

Dead Code
Elimination

SELECT returnVal FROM
(SELECT CASE WHEN @x > 1000

THEN 'high'
ELSE 'low' END AS val)

AS DT1
OUTER APPLY
(SELECT DT1.val + ' value'

AS returnVal) DT2

SELECT returnVal FROM
(SELECT 'high' AS val)
AS DT1
OUTER APPLY
(SELECT DT1.val +

' value'
AS returnVal)

AS DT2

SELECT returnVal FROM
(SELECT 'high value'

AS returnVal)
AS DT1

SELECT getVal(5000);

Froid Inlining

SELECT 'high value';

Source: Karthik Ramachandra

https://www.microsoft.com/en-us/research/people/karam/
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/scalar-udf-inlining

A learned component is an
implemented portion of a DBMS that
uses ML on previous observations to
determine its future behavior as
opposed a human-devised strategy.

2020s
Learned
Components

Learned IndexTraditional Index2020s
Learned
Components

Sorted Data Sorted Data

Query Planning
– Cardinality Estimation
– Cost Models
– Join Ordering Search
– SQL Rewriting
– Predicate Inference

Configuration
– Knob Tuning
– Partitioning
– Physical Design

Execution
– Indexes
– Sorting Algorithms
– Hashing Algorithms
– Scheduling

SELECT *
FROM X JOIN Y
ON X.id = Y.id;

Source: Ryan Marcus

https://rmarcus.info/blog/2021/06/17/bao-distributed.html

Traditional Optimizer

Nested Loop Join

Hash Join

Sort-Merge Join

Cost = 20

Cost = 25

Cost = 18

Model Training

Execution Engine

Alternative
Query Plans

Predicted Cost
(Learned)

(Sort-Merge Join), Cost = 38

Actual Cost

Source: Ryan Marcus

https://rmarcus.info/blog/2021/06/17/bao-distributed.html

Traditional Optimizer

Nested Loop Join

Hash Join

Sort-Merge Join

Cost = 20

Cost = 25

Cost = 18

Model Training

Execution Engine

Alternative
Query Plans

Predicted Cost
(Learned)

(Sort-Merge Join), Cost = 38

Actual Cost

Source: Ryan Marcus

https://rmarcus.info/blog/2021/06/17/bao-distributed.html
https://dl.acm.org/doi/10.1145/3448016.3452838
https://ieeexplore.ieee.org/document/5386840?arnumber=5386840

Target
Database

Tuning ManagerAgent

Collector
Internal

Repository

Installer

ML Pipeline

Source: Bohan Zhang

Knobs

Metrics

Hardware

Expected
Performance

Statistical
Models

Configuration
Recommender

https://ottertune.com/blog/rds-postgres-tuning-benchmark

Target
Database

Tuning ManagerAgent

Collector
Internal

Repository

Installer

ML Pipeline

Source: Bohan Zhang

Knobs

Metrics

Hardware

Expected
Performance

Statistical
Models

Configuration
Recommender

https://ottertune.com/blog/rds-postgres-tuning-benchmark
https://ottertune.com/blog/rds-postgres-tuning-benchmark

Failsafe Mechanisms?

Explainability?

Human Feedback / Overrides?

Transferability?

Does ML obviate the need for humans to build
new database systems?
No.

After we replace or supplement existing
components with learned ones, what's next?

Challenge #1:
– Remove the need for humans to perform any

administrative task that does not require a human
value judgement on externalities.

Existing automation methods are reactive.
Humans are also proactive.

PERCEPTION ACTION MODEL PLANNING

Source: Lin Ma

http://www.cs.cmu.edu/~malin199/

PERCEPTION ACTION MODEL PLANNING

SQL

Workload
Forecasting

Behavior
Modeling

Action
Planning

Tuning Actions

᠁

Behavior Models

᠁

Source: Lin Ma

http://www.cs.cmu.edu/~malin199/

PERCEPTION ACTION MODEL PLANNING

SQL

Workload
Forecasting

Behavior
Modeling

Action
Planning

Tuning Actions

᠁

Behavior Models

᠁

Source: Lin Ma

http://www.cs.cmu.edu/~malin199/
https://db.cs.cmu.edu/papers/2021/p3211-pavlo.pdf

Challenge #2:
– Discover new optimizations and techniques that are

currently unknown to humans.

https://www.scientificamerican.com/article/ai-generates-hypotheses-human-scientists-have-not-thought-of/

Challenge #2:
– Discover new optimizations and techniques that are

currently unknown to humans.

This requires a DBMS to have good introspection
and instrumentation hooks/APIs.

There are less things to automatically optimize in
an OLTP DBMS than in an OLAP DBMS.
– There are fundamental limitations that prevent

achieving even higher OLTP performance.

Further methods will require automatically
inferring higher-level semantics.
– Example: Does an application really need all columns if

it executes "SELECT *"?

Current ML methods are trying to create better
versions of existing DBMS components.

The next challenge is how to use ML to develop
optimizations that humans would not think of on
their own.

