
@andy_pavlo

https://twitter.com/andy_pavlo
https://db.cs.cmu.edu/
https://ottertune.com/

#1
#2
#3

►Last 20 Years
►Current ML Seduction
►Next 20 Years

Specialized DBMSs for analytics have been
around since the 1970s.

The OLAP DBMS landscape flourished in the
2000s because more organizations have large
data sets than ever before.

Specialized DBMSs for analytics have been
around since the 1970s.

The OLAP DBMS landscape flourished in the
2000s because more organizations have large
data sets than ever before.

http://cs.brown.edu/~ugur/fits_all.pdf

Column Store

Row Store

2000s
Columnar
Storage

0
1
2
3

A B C D

A0

A1

A2

A3

B0

B1

B2

B3

C0

C1

C2

C3

D0

D1

D2

D3

0
1
2
3

Header A0

A1

A2

A3

B0

B1

B2

B3

C0

C1

C2

C3

D0

D1

D2

D3

Header

Header

Header
SELECTCOUNT(B)

FROMXXX
WHEREA > ?;

Shared Nothing

Network

Shared Disk

Network

2000s
Columnar
Storage

Disaggregated
Storage

2000s
Columnar
Storage

Disaggregated
Storage

Vectorized
Execution

Vectorized Scan

i = 0
for vt in table :

simdLoad(vt .key , vk)
vm = (vk lɹow ? 1 : 0) &

(vk hɻigh ? 1 : 0)
simdStore(vt , vm, output[i])
i = i + | vmɦ false |

SELECT* FROMtable
WHEREkey >= "G" ANDkey <= "T"

2000s
Columnar
Storage

Disaggregated
Storage

Vectorized
Execution

W U T A N GKey Vector
ID
1

KEY
W

2 U
3 T
4 A
5 N
6 G

Mask 0 0 1 0 1 1

SIMDCompare

0 1 2 3 4 5All Offsets

SIMDStore

2 4 5Matched Offsets

SELECT* FROMtable
WHEREkey >= "G" ANDkey <= "T"

2010s
JIT Query
Compilation Expression Tree

Attribute(str_col)

=

Constant(" abc")

=

AND

Attribute(int_col) Constant(4)

SELECT* FROM foo
WHEREstr_col = ' abc'

ANDint_col = 4;

2010s
JIT Query
Compilation

bool sel_eq_row(string str_col , string val0,
int int_col , int val1) {

return (str_col == val0 && int_col == val1);
}

Code Generated Plan

SELECT* FROM foo
WHEREstr_col = ' abc'

ANDint_col = 4;

2010s
JIT Query
Compilation

UDF Inlining

Source: Karthik Ramachandra

https://www.microsoft.com/en-us/research/people/karam/
https://sqlblogcasts.com/blogs/simons/archive/2008/11/03/TSQL-Scalar-functions-are-evil-.aspx

2010s
JIT Query
Compilation

UDF Inlining

CREATEFUNCTIONgetVal (@x int)
RETURNSchar(10) AS
BEGIN
DECLARE@val char(10);
IF (@x > 1000)
SET@val = ' high ';

ELSE
SET@val = ' low';

RETURN@val + ' value';
END

SELECTgetVal (5000);

Source: Karthik Ramachandra

https://www.microsoft.com/en-us/research/people/karam/
https://www.microsoft.com/en-us/research/publication/froid-optimization-of-imperative-programs-in-a-relational-database/

2010s
JIT Query
Compilation

UDF Inlining

CREATEFUNCTIONgetVal (@x int)
RETURNSchar(10) AS
BEGIN
DECLARE@val char(10);
IF (@x > 1000)
SET@val = ' high ';

ELSE
SET@val = ' low';

RETURN@val + ' value';
END

Dynamic Slicing

Const Propagation
& Folding

Dead Code
Elimination

SELECTreturnVal FROM
(SELECTCASEWHEN@x > 1000

THEN' high '
ELSE' low' ENDAS val)

AS DT1
OUTER APPLY
(SELECTDT1.val + ' value'

AS returnVal) DT2

SELECTreturnVal FROM
(SELECT' high ' AS val)
AS DT1
OUTER APPLY
(SELECTDT1.val +

' value '
AS returnVal)

AS DT2

SELECTreturnVal FROM
(SELECT' high value '

AS returnVal)
AS DT1

SELECT' high value ';

SELECTgetVal (5000);

FroidInlining

Source: Karthik Ramachandra

https://www.microsoft.com/en-us/research/people/karam/

2010s
JIT Query
Compilation

UDF Inlining

CREATEFUNCTIONgetVal (@x int)
RETURNSchar(10) AS
BEGIN
DECLARE@val char(10);
IF (@x > 1000)
SET@val = ' high ';

ELSE
SET@val = ' low';

RETURN@val + ' value';
END

Dynamic Slicing

Const Propagation
& Folding

Dead Code
Elimination

SELECTreturnVal FROM
(SELECTCASEWHEN@x > 1000

THEN' high '
ELSE' low' ENDAS val)

AS DT1
OUTER APPLY
(SELECTDT1.val + ' value'

AS returnVal) DT2

SELECTreturnVal FROM
(SELECT' high ' AS val)
AS DT1
OUTER APPLY
(SELECTDT1.val +

' value '
AS returnVal)

AS DT2

SELECTreturnVal FROM
(SELECT' high value '

AS returnVal)
AS DT1

SELECTgetVal (5000);

FroidInlining

SELECT' high value ';

Source: Karthik Ramachandra

https://www.microsoft.com/en-us/research/people/karam/

2010s
JIT Query
Compilation

UDF Inlining

CREATEFUNCTIONgetVal (@x int)
RETURNSchar(10) AS
BEGIN
DECLARE@val char(10);
IF (@x > 1000)
SET@val = ' high ';

ELSE
SET@val = ' low';

RETURN@val + ' value';
END

Dynamic Slicing

Const Propagation
& Folding

Dead Code
Elimination

SELECTreturnVal FROM
(SELECTCASEWHEN@x > 1000

THEN' high '
ELSE' low' ENDAS val)

AS DT1
OUTER APPLY
(SELECTDT1.val + ' value'

AS returnVal) DT2

SELECTreturnVal FROM
(SELECT' high ' AS val)
AS DT1
OUTER APPLY
(SELECTDT1.val +

' value '
AS returnVal)

AS DT2

SELECTreturnVal FROM
(SELECT' high value '

AS returnVal)
AS DT1

SELECTgetVal (5000);

FroidInlining

SELECT' high value ';

Source: Karthik Ramachandra

https://www.microsoft.com/en-us/research/people/karam/
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/scalar-udf-inlining

A learned component is an
implemented portion of a DBMS that
uses ML on previous observations to
determine its future behavior as
opposed a human -devised strategy.

2020s
Learned
Components

Learned IndexTraditional Index2020s
Learned
Components

Sorted Data Sorted Data

Query Planning
ïCardinality Estimation
ïCost Models
ïJoin Ordering Search
ïSQL Rewriting
ïPredicate Inference

Configuration
ïKnob Tuning
ïPartitioning
ïPhysical Design

Execution
ï Indexes
ïSorting Algorithms
ïHashing Algorithms
ïScheduling

SELECT*
FROMX JOIN Y

ONX.id = Y.id;

Source: Ryan Marcus

https://rmarcus.info/blog/2021/06/17/bao-distributed.html

