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Specialized DBMSs for analytics have been 
around since the 1970s.

The OLAP DBMS landscape flourished in the 
2000s because more organizations have large 
data sets than ever before.
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http://cs.brown.edu/~ugur/fits_all.pdf
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SELECTCOUNT(B)

FROMXXX
WHEREA > ?;



Shared Nothing

Network
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Storage

Vectorized
Execution

Vectorized Scan

i = 0
for vt in table :

simdLoad( vt .key , vk)
vm = ( vk lɹow ? 1 : 0) &

( vk hɻigh ? 1 : 0)
simdStore( vt , vm, output[ i ])
i = i + | vmɦ false |

SELECT* FROMtable
WHEREkey >= "G" ANDkey <= "T"
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SELECT* FROMtable
WHEREkey >= "G" ANDkey <= "T"



2010s
JIT Query
Compilation Expression Tree

Attribute( str_col )

=

Constant(" abc")

=

AND

Attribute( int_col ) Constant( 4)

SELECT* FROM foo
WHEREstr_col = ' abc'

ANDint_col = 4;



2010s
JIT Query
Compilation

bool sel_eq_row( string str_col , string val0,
int int_col , int val1) {

return ( str_col == val0 && int_col == val1);
}

Code Generated Plan

SELECT* FROM foo
WHEREstr_col = ' abc'

ANDint_col = 4;



2010s
JIT Query
Compilation

UDF Inlining

Source: Karthik Ramachandra

https://www.microsoft.com/en-us/research/people/karam/
https://sqlblogcasts.com/blogs/simons/archive/2008/11/03/TSQL-Scalar-functions-are-evil-.aspx


2010s
JIT Query
Compilation

UDF Inlining

CREATEFUNCTIONgetVal (@x int) 
RETURNSchar(10) AS
BEGIN
DECLARE@val char(10);
IF (@x > 1000)
SET@val = ' high ';

ELSE
SET@val = ' low';

RETURN@val + ' value';
END

SELECTgetVal ( 5000);

Source: Karthik Ramachandra

https://www.microsoft.com/en-us/research/people/karam/
https://www.microsoft.com/en-us/research/publication/froid-optimization-of-imperative-programs-in-a-relational-database/


2010s
JIT Query
Compilation

UDF Inlining

CREATEFUNCTIONgetVal (@x int) 
RETURNSchar( 10) AS
BEGIN
DECLARE@val char( 10);
IF (@x > 1000)
SET@val = ' high ';

ELSE
SET@val = ' low';

RETURN@val + ' value';
END

Dynamic Slicing

Const Propagation
& Folding

Dead Code
Elimination

SELECTreturnVal FROM
( SELECTCASEWHEN@x > 1000 

THEN' high ' 
ELSE' low' ENDAS val )

AS DT1
OUTER APPLY
( SELECTDT1.val + ' value' 

AS returnVal ) DT2

SELECTreturnVal FROM
( SELECT' high ' AS val )
AS DT1
OUTER APPLY
( SELECTDT1.val +

' value ' 
AS returnVal )

AS DT2

SELECTreturnVal FROM
( SELECT' high value '

AS returnVal )
AS DT1

SELECT' high value ';

SELECTgetVal ( 5000);

FroidInlining

Source: Karthik Ramachandra

https://www.microsoft.com/en-us/research/people/karam/
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FroidInlining

SELECT' high value ';

Source: Karthik Ramachandra

https://www.microsoft.com/en-us/research/people/karam/
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/scalar-udf-inlining


A learned component is an 
implemented portion of a DBMS that 
uses ML on previous observations to 
determine its future behavior as 
opposed a human -devised strategy.

2020s
Learned
Components



Learned IndexTraditional Index2020s
Learned
Components

Sorted Data Sorted Data



Query Planning
ïCardinality Estimation
ïCost Models
ïJoin Ordering Search
ïSQL Rewriting
ïPredicate Inference

Configuration
ïKnob Tuning
ïPartitioning
ïPhysical Design

Execution
ï Indexes
ïSorting Algorithms
ïHashing Algorithms
ïScheduling



SELECT*
FROMX JOIN Y

ONX.id = Y.id;

Source: Ryan Marcus

https://rmarcus.info/blog/2021/06/17/bao-distributed.html



