
Everything
is a
Transaction

@andy_pavlo

Unifying Logical Concurrency Control and Physical Data Structure
Maintenance in Database Management Systems – CIDR 2021

https://twitter.com/andy_pavlo
https://db.cs.cmu.edu/papers/2020/cidr2021_paper06.pdf

page

Motivation

2

Data Table

A

B

C

RECORD

Version Deltas

A3 A2

B5 B4 B3

C8 C7

Index Arrays

Linked Lists

Hash Tables

Trees

https://noise.page/

page

Motivation

2

Data Table

A

B

C

RECORD

Version Deltas

A3 A2

B5 B4 B3

C8 C7

Index

BEGIN;
DELETE FROM table
WHERE key = a;

COMMIT;

Transaction
BEGIN;
SELECT FROM table
WHERE key = a;

COMMIT;

Transaction

Arrays

Linked Lists

Hash Tables

Trees

https://noise.page/

page

Motivation

2

Data Table

A

B

C

RECORD

Version Deltas

A3 A2

B5 B4 B3

C8 C7

Index

BEGIN;
DELETE FROM table
WHERE key = a;

COMMIT;

Transaction
BEGIN;
SELECT FROM table
WHERE key = a;

COMMIT;

Transaction
Must defer the removal
of physical data until no
active txn able to see it.

Arrays

Linked Lists

Hash Tables

Trees

https://noise.page/

page

Deferred Action Framework (DAF)
Asynchronous execution framework for internal
maintenance actions in a multi-versioned DBMS.

Key Idea: DAF executes actions as transactions
with the same visibility mechanisms.

▶Single API call: DEFER(action)
▶Each action is tagged with txn's commit timestamp.
▶Invoke an action when there are no transactions with
a start timestamp smaller than tagged timestamp.

3

https://noise.page/

page

Action Queue

Deferred Action Framework (DAF)

4

BEGIN;
DELETE FROM table
WHERE key = a;

COMMIT;

Transaction
= t0OLDEST

https://noise.page/

page

Action Queue

Deferred Action Framework (DAF)

4

BEGIN;
DELETE FROM table
WHERE key = a;

COMMIT;

Transaction
= t1 = t0OLDEST

https://noise.page/

page

Action Queue

Deferred Action Framework (DAF)

4

BEGIN;
DELETE FROM table
WHERE key = a;

COMMIT;

Transaction
= t1 OLDEST = t1

https://noise.page/

page

Action Queue

Deferred Action Framework (DAF)

4

BEGIN;
DELETE FROM table
WHERE key = a;

COMMIT;

Transaction
= t1

Generated
Actions

OLDEST

DEFER()Unlink Version Chain

DEFER()Delete Index Key=a

= t1

https://noise.page/

page

Action Queue

Deferred Action Framework (DAF)

4

BEGIN;
DELETE FROM table
WHERE key = a;

COMMIT;

Transaction
= t1

Generated
Actions

OLDESTBEGIN;
SELECT FROM table
WHERE key = a;

COMMIT;

Transaction

DEFER()Unlink Version Chain

DEFER()Delete Index Key=a

= t2 = t2

https://noise.page/

page

Action Queue

Deferred Action Framework (DAF)

4

BEGIN;
DELETE FROM table
WHERE key = a;

COMMIT;

Transaction
= t1

Generated
Actions

OLDESTBEGIN;
SELECT FROM table
WHERE key = a;

COMMIT;

Transaction

DEFER()Unlink Version Chain

DEFER()Delete Index Key=a

= t2 = t2

https://noise.page/

page

Action Queue

Deferred Action Framework (DAF)

4

BEGIN;
DELETE FROM table
WHERE key = a;

COMMIT;

Transaction
= t1

Generated
Actions

OLDESTBEGIN;
SELECT FROM table
WHERE key = a;

COMMIT;

Transaction

DEFER()Unlink Version Chain

DEFER()Delete Index Key=a

= t3

= t2 = t3

https://noise.page/

page

Action Queue

Deferred Action Framework (DAF)

4

BEGIN;
DELETE FROM table
WHERE key = a;

COMMIT;

Transaction
= t1 OLDEST

= t3

= t3

BEGIN;
SELECT FROM table
WHERE key = a;

COMMIT;

Transaction

Unlink Version Chain

Delete Index Key=a
= t3

= t2 = t3

https://noise.page/

page

Action Queue

Deferred Action Framework (DAF)

4

BEGIN;
DELETE FROM table
WHERE key = a;

COMMIT;

Transaction
= t1 OLDEST

= t3

= t3

BEGIN;
SELECT FROM table
WHERE key = a;

COMMIT;

Transaction

Unlink Version Chain

Delete Index Key=a
= t3

= t2

= t4

= t4

https://noise.page/

page

Action Queue

Deferred Action Framework (DAF)

4

BEGIN;
DELETE FROM table
WHERE key = a;

COMMIT;

Transaction
= t1 OLDEST

= t3

= t3

BEGIN;
SELECT FROM table
WHERE key = a;

COMMIT;

Transaction

Unlink Version Chain

Delete Index Key=a
= t3

= t2

= t4

= t4

Data Table

A

B

C

RECORD

Version Deltas

B5 B4 B3

C8 C7

A3 A2

Index

https://noise.page/

page

Action Queue

Deferred Action Framework (DAF)

4

BEGIN;
DELETE FROM table
WHERE key = a;

COMMIT;

Transaction
= t1 OLDEST

= t3

= t3

BEGIN;
SELECT FROM table
WHERE key = a;

COMMIT;

Transaction

Unlink Version Chain

Delete Index Key=a
= t3

= t2

= t4

= t4

Data Table

A

B

C

RECORD

Version Deltas

B5 B4 B3

C8 C7

Index

https://noise.page/

page

Action Queue

Deferred Action Framework (DAF)

4

BEGIN;
DELETE FROM table
WHERE key = a;

COMMIT;

Transaction
= t1 OLDEST

= t3

BEGIN;
SELECT FROM table
WHERE key = a;

COMMIT;

Transaction

Delete Index Key=a
= t3

= t2

= t4

= t4

Data Table

A

B

C

RECORD

Version Deltas

B5 B4 B3

C8 C7

Index

https://noise.page/

page

Multi-Deferrals
Explicit ordering of concurrent actions.

▶Example: action A drops a table; action B deletes a
tuple in the table.

▶Solution: Chained deferral of actions.
DEFER(DEFER(… DEFER(action)…))

Unwrap and reinsert multi-deferred action to
queue with a later timestamp.

▶Separate its execution with other concurrent actions.

5

https://noise.page/

page

Action Queue

Multi-Deferrals

6

BEGIN;
DROP TABLE table;

COMMIT;

Transaction
= t1 OLDEST = t1

https://noise.page/

page

Action Queue

Multi-Deferrals

6

BEGIN;
DROP TABLE table;

COMMIT;

Transaction
= t1 OLDEST = t1

DEFER()DEFER()Delete Table + Index

https://noise.page/

page

Action Queue

Multi-Deferrals

6

BEGIN;
DROP TABLE table;

COMMIT;

Transaction
= t1 OLDESTBEGIN;

DELETE FROM table
WHERE key = a;

COMMIT;

Transaction
= t2 = t2

DEFER()DEFER()Delete Table + Index

https://noise.page/

page

Action Queue

Multi-Deferrals

6

BEGIN;
DROP TABLE table;

COMMIT;

Transaction
= t1 OLDESTBEGIN;

DELETE FROM table
WHERE key = a;

COMMIT;

Transaction

DEFER()Unlink Version Chain

DEFER()Delete Index Key=a

= t2 = t2

DEFER()DEFER()Delete Table + Index

https://noise.page/

page

Action Queue

Multi-Deferrals

6

BEGIN;
DROP TABLE table;

COMMIT;

Transaction
= t1 OLDEST

= t3

BEGIN;
DELETE FROM table
WHERE key = a;

COMMIT;

Transaction

DEFER()Unlink Version Chain

DEFER()Delete Index Key=a

= t3

= t2 = t3

DEFER()Delete Table + Index

https://noise.page/

page

Action Queue

Multi-Deferrals

6

BEGIN;
DROP TABLE table;

COMMIT;

Transaction
= t1 OLDEST

= t3

BEGIN;
DELETE FROM table
WHERE key = a;

COMMIT;

Transaction

Unlink Version Chain

Delete Index Key=a

= t3

= t2

= t4

= t4

DEFER()Delete Table + Index

= t4

= t4

https://noise.page/

page

Action Queue

Multi-Deferrals

6

BEGIN;
DROP TABLE table;

COMMIT;

Transaction
= t1 OLDEST

= t3

BEGIN;
DELETE FROM table
WHERE key = a;

COMMIT;

Transaction

Unlink Version Chain

Delete Index Key=a

= t3

= t2

= t4
DEFER()Delete Table + Index

= t4

= t4

= t5

https://noise.page/

page

Action Queue

Multi-Deferrals

6

BEGIN;
DROP TABLE table;

COMMIT;

Transaction
= t1 OLDESTBEGIN;

DELETE FROM table
WHERE key = a;

COMMIT;

Transaction

Unlink Version Chain

Delete Index Key=a

= t3

= t2

= t4

Delete Table + Index

= t4

= t4

= t5

= t5

https://noise.page/

page

Action Queue

Multi-Deferrals

6

BEGIN;
DROP TABLE table;

COMMIT;

Transaction
= t1 OLDESTBEGIN;

DELETE FROM table
WHERE key = a;

COMMIT;

Transaction

Delete Index Key=a

= t3

= t2

= t4

Delete Table + Index

= t4

= t5

= t5

https://noise.page/

page

Action Queue

Multi-Deferrals

6

BEGIN;
DROP TABLE table;

COMMIT;

Transaction
= t1 OLDESTBEGIN;

DELETE FROM table
WHERE key = a;

COMMIT;

Transaction

= t3

= t2

= t4

Delete Table + Index = t5

= t6

At this time the table is
not visible to any active
txn and is safe to drop.

https://noise.page/

page

Applications

7

Index Cleaning Data Transformation

Applications

29

Cache Invalidation

A1

BEGIN-TS END-TS

1 ∞

KEY

222

A2 10 ∞ 222

∞

A3 333A2 111

10

BEGIN;
UPDATE table SET key=111
WHERE key=222;

COMMIT;

Delete Index Key=222;

PREPARE stmt1 AS
SELECT a,b FROM table;

Cached Plan

BEGIN;
ALTER TABLE table
DROP COLUMN b;

COMMIT;

Remove Column table.b;

Invalidate Plan Cache;

A B C D

Row
Store

Access Monitor

A B C D

Column
Store

Delete Row Store Block;

https://noise.page/

page

Preliminary Results
Integrated DAF with NoisePage DBMS.
Measure MVCC GC scalability using TPC-C:

▶One warehouse per worker thread.
▶Stored Procedure API.
▶Write-Ahead Logging Enabled.

Compare three system configurations:
▶Single GC thread
▶Dedicated DAF threads
▶Cooperative DAF threads

8

https://noise.page/
https://noise.page/

page

MVCC GC Scalability (TPC-C)

9

0

110

220

330

0 4 8 12 16 20 24

T
h

ro
u

gh
p

u
t

(t
xn

/s
ec

)

Threads

Single-GC 2 DAF 4 DAF 8 DAF Coop-DAF

https://noise.page/

10

https://pelotondb.io/

10

???

???

https://pelotondb.io/
https://github.com/cmu-db/peloton/commit/484d76df9344cb5c153a2c361c5d5018912d4cf4

10

https://noise.page/

page

NoisePage Project
In-Memory HTAP DBMS
Postgres compatible (wire, SQL, catalog)
Apache Arrow compatible columnar storage
HyPer-style MVCC (snapshot isolation)
Hybrid Vectorization + Pipeline Query Codegen
JIT Query Compilation (DSL→OpCodes→LLVM)
Integrated self-driving components

11

https://noise.page/
https://db.cs.cmu.edu/papers/2020/p534-li.pdf
https://db.cs.cmu.edu/papers/2017/p1-menon.pdf
https://db.cs.cmu.edu/papers/2020/p101-menon.pdf
https://db.cs.cmu.edu/papers/2017/p781-wu.pdf

page

NoisePage Project
In-Memory HTAP DBMS
Postgres compatible (wire, SQL, catalog)
Apache Arrow compatible columnar storage
HyPer-style MVCC (snapshot isolation)
Hybrid Vectorization + Pipeline Query Codegen
JIT Query Compilation (DSL→OpCodes→LLVM)
Integrated self-driving components

11

https://noise.page/
https://db.cs.cmu.edu/papers/2020/p534-li.pdf
https://db.cs.cmu.edu/papers/2017/p1-menon.pdf
https://db.cs.cmu.edu/papers/2020/p101-menon.pdf
https://db.cs.cmu.edu/papers/2017/p781-wu.pdf
https://noise.page/releases/p1/

page

Summary
DAF shows how to leverage logical data
concurrency protocols for physical data structures.

Unifying the notion of visibility makes it easier to
integrate new data structures and extend
transactions to support maintenance operations.

12

https://noise.page/

page

Acknowledgements

38

https://noise.page/

https://noise.page

https://twitter.com/andy_pavlo

