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Deferred Action Framework (DAF)
Asynchronous execution framework for internal 
maintenance actions in a multi-versioned DBMS.

Key Idea: DAF executes actions as transactions
with the same visibility mechanisms.

▶Single API call: DEFER(action)
▶Each action is tagged with txn's commit timestamp.
▶Invoke an action when there are no transactions with 
a start timestamp smaller than tagged timestamp.
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Multi-Deferrals
Explicit ordering of concurrent actions.

▶Example: action A drops a table; action B deletes a 
tuple in the table.

▶Solution: Chained deferral of actions.
DEFER(DEFER(… DEFER(action)…))

Unwrap and reinsert multi-deferred action to 
queue with a later timestamp.

▶Separate its execution with other concurrent actions.
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Applications
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Preliminary Results
Integrated DAF with NoisePage DBMS.
Measure MVCC GC scalability using TPC-C:

▶One warehouse per worker thread.
▶Stored Procedure API.
▶Write-Ahead Logging Enabled.

Compare three system configurations:
▶Single GC thread
▶Dedicated DAF threads
▶Cooperative DAF threads
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MVCC GC Scalability (TPC-C)
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https://github.com/cmu-db/peloton/commit/484d76df9344cb5c153a2c361c5d5018912d4cf4
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NoisePage Project
In-Memory HTAP DBMS
Postgres compatible (wire, SQL, catalog)
Apache Arrow compatible columnar storage 
HyPer-style MVCC (snapshot isolation)
Hybrid Vectorization + Pipeline Query Codegen
JIT Query Compilation (DSL→OpCodes→LLVM)
Integrated self-driving components
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Summary
DAF shows how to leverage logical data 
concurrency protocols for physical data structures.

Unifying the notion of visibility makes it easier to 
integrate new data structures and extend 
transactions to support maintenance operations.
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