Everything
IS a
Transaction

Unifying Logical Concurrency Control and Physical Data Structure
Maintenance in Database Management Systems — CIDR 2021

andy_pavlo


https://twitter.com/andy_pavlo
https://db.cs.cmu.edu/papers/2020/cidr2021_paper06.pdf

page

Motivation

RECORD

Arrays
Linked Lists
Hash Tables

Trees


https://noise.page/

Motivation

Transaction

BEGIN;

DELETE FROM table
WHERE key = a;

COMMIT;

page 2

Transaction
BEGIN:

SELECT FROM table
WHERE key = a;

COMMIT,;

RECORD

Arrays
Linked Lists
Hash Tables

Trees


https://noise.page/

Motivation

Transaction Transaction

BEGIN: BEGIN: Must the removal

WHERE key = a; WHERE key = a;

COMMIT; COMMIT; active txn able to see it.
Arrays
Linked Lists

Hash Tables

Trees

page 2


https://noise.page/

page

Deferred Action Framework (DAF)

Asynchronous execution framework for internal
maintenance in a multi-versioned DBMS.

Key Idea: DAF executes as
with the same visibility mechanisms.
»Single API call:
»Each action is tagged with txn's commit

»Invoke an action when there are no transactions with
a start timestamp smaller than tagged timestamp.


https://noise.page/

Deferred Action Framework (DAF)

Transaction Action Queue

BEGIN;
DELETE FROM table

OLDEST (D) = to

WHERE key = a;
COMMIT;



https://noise.page/

Deferred Action Framework (DAF)

Transaction Action Queue

DELETE FROM table

WHERE key = a;
COMMIT;



https://noise.page/

Deferred Action Framework (DAF)

Transaction Action Queue

OLDEST D) = t1

DELETE FROM table

WHERE key = a;
COMMIT;



https://noise.page/

Deferred Action Framework (DAF)

Transaction Action Queue
BEGIN; (O = t1
DELETE FROM table

OLDEST D) = t1

WHERE key = a;
COMMIT,

Actions

Unlink Version Chain Generated
Delete Index Key=a

page 4


https://noise.page/

Deferred Action Framework (DAF)

Transaction Transaction Action Queue
BEGIN; (O = t1 BEGIN; &)= t2
DELETE FROM table SELECT FROM table

OLDESTD) = t2

WHERE key = a; WHERE key = a;
COMMIT; COMMIT,;

Unlink Version Chain ]' Generated

Actions
Delete Index Key=a

page 4


https://noise.page/

Deferred Action Framework (DAF)

Transaction Transaction Action Queue
BEGIN; (O = t1 BEGIN; &)= t2
DELETE FROM table SELECT FROM table

OLDESTD) = t2

WHERE key = a; WHERE key = a;
COMMIT; COMMIT,;

Unlink Version Chain ]' Generated

Actions
Delete Index Key=a

page 4


https://noise.page/

Deferred Action Framework (DAF)

Transaction Transaction Action Queue
BEGIN; (O = t1 BEGIN; &)= t2
DELETE FROM table SELECT FROM table

OLDEST D) = t3

WHERE key = a; WHERE key = a;
COMMIT; (O = t3 COMMIT;

Unlink Version Chain ]' Generated

Actions
Delete Index Key=a

page 4


https://noise.page/

Deferred Action Framework (DAF)

Transaction Transaction Action Queue

BEGIN; (O = t1 BEGIN; (= t2

DELETE FROM table SELECT FROM table

WHERE key = WHERE key = a;

COMMIT; (O = t3 COMMIT;

page 4


https://noise.page/

Deferred Action Framework (DAF)

Transaction Transaction Action Queue
BEGIN; (O = t1 BEGIN; &)= t2
DELETE FROM table SELECT FROM table

OLDEST(D) = t4

Unlink Version Chain @ = t3
Delete Index Key=a @ = t3

WHERE key = a; WHERE key = a;
COMMIT; (= t3 COMMIT; (O = t4

page 4


https://noise.page/

Deferred Action Framework (DAF)

Transaction Transaction Action Queue
BEGIN; (O = t1 BEGIN; &)= t2

DELETE FROM table SELECT FROM table
WHERE key = a; WHERE key = a;

COMMIT; = t3

OLDEST O = t4

Unlink Version Chain @ = t3
Delete Index Key=a @ = t3

RECORD

page 4


https://noise.page/

Deferred Action Framework (DAF)

Transaction Transaction Action Queue
BEGIN; (O = t1 BEGIN; &)= t2

DELETE FROM table SELECT FROM table
WHERE key = a; WHERE key = a;

COMMIT; (O = t3 COMMIT; O = t4

OLDEST O = t4

Unlink Version Chain @ = t3
Delete Index Key=a @ = t3

RECORD

page 4


https://noise.page/

Deferred Action Framework (DAF)

Transaction Transaction Action Queue
BEGIN; (O = t1 BEGIN; &)= t2

DELETE FROM table SELECT FROM table
WHERE key = a; WHERE key = a;

COMMIT; (O = t3 COMMIT; O = t4

OLDEST O = t4

Delete Index Key=a @ = t3

RECORD

page 4


https://noise.page/

page

Multi-Deferrals

Explicit ordering of concurrent actions.

»Example: action A drops a table; action B deletes a
tuple in the table.

»Solution: Chained deferral of actions.

( (... (action)..))

Unwrap and reinsert multi-deferred action to
queue with a later timestamp.
»Separate its execution with other concurrent actions.


https://noise.page/

Multi-Deferrals

Transaction Action Queue
= t1

OLDEST D) = t1
DROP TABLE table;

COMMIT;

page 6


https://noise.page/

Multi-Deferrals

Transaction Action Queue

BEGIN; (O = t1 OLDEST D) = t1

DROP TABLE table:;
COMMIT;

DEFER( Delete Table + Index )

page 6


https://noise.page/

Multi-Deferrals

Transaction Transaction
BEGIN; (O = t1 BEGIN; &)= t2
DROP TABLE table: DELETE FROM table

COMMIT; WHERE key = a;
COMMIT,;

DEFER( Delete Table + Index )

page 6

Action Queue

OLDESTD) = t2



https://noise.page/

Multi-Deferrals

Transaction Transaction
BEGIN; (O = t1 BEGIN; &)= t2
DROP TABLE table: DELETE FROM table

COMMIT; WHERE key = a;
COMMIT,;

DEFER( Delete Table + Index )

Unlink Version Chain

Delete Index Key=a

page 6

Action Queue

OLDESTD) = t2



https://noise.page/

Multi-Deferrals

Transaction Transaction Action Queue
BEGIN; (O = t1 BEGIN; &)= t2
DROP TABLE table; DELETE FROM table

OLDEST D) = t3

DEFER( Delete Table + Index )

O-=t3

OMMIT; = t3 WHERE key = a;
COMMIT;

Unlink Version Chain

Delete Index Key=a

page 6


https://noise.page/

Multi-Deferrals

Transaction Transaction Action Queue
BEGIN; (O = t1 BEGIN; &)= t2
DROP TABLE table; DELETE FROM table

OLDEST(D) = t4

DEFER( Delete Table + Index )

O-=t3
Unlink Version Chain @ = t4

COMMIT; © = t3 WHERE key = a;
COMMIT; (O = t4

©-

page 6


https://noise.page/

Multi-Deferrals

Transaction Transaction Action Queue
BEGIN; (O = t1 BEGIN; &)= t2
DROP TABLE table; DELETE FROM table

OLDEST D) = t5

DEFER( Delete Table + Index )

O-=t3
Unlink Version Chain @ = t4

COMMIT; © = t3 WHERE key = a;
COMMIT; (O = t4

©-

page 6


https://noise.page/

Multi-Deferrals

Transaction Transaction Action Queue
BEGIN; (O = t1 BEGIN; &)= t2
DROP TABLE table; DELETE FROM table

OLDEST D) = t5

COMMIT: &= t3 WHERE key = a;
COMMIT; (O = t4

Unlink Version Chain @ = t4

©-
Delete Table + Index @ = t5

page 6


https://noise.page/

Multi-Deferrals

Transaction Transaction Action Queue
BEGIN; (O = t1 BEGIN; &)= t2
DROP TABLE table; DELETE FROM table

OLDEST D) = t5

COMMIT; © = t3 WHERE key = a;
COMMIT; (O = t4

©-
Delete Table + Index @ = t5

page 6


https://noise.page/

Multi-Deferrals

Transaction Transaction Action Queue
BEGIN; (O = t1 BEGIN; &)= t2
DROP TABLE table; DELETE FROM table

OLDEST (D) = t6

COMMIT; (O = t3 WHERE key = a;
COMMIT; = t4

At this time the table is
not to any active O=1ts

txn and is to drop.

page 6


https://noise.page/

Applications

Index Cleaning

Cache Invalidation

Data Transformation

BEGIN;
UPDATE table SET key=111

WHERE key=222;
COMMIT;

Delete Index Key=222;

BEGIN-TS  END-TS

PREPARE stmt1 AS
SELECT a,b FROM table;
Cache rlan

BEGIN;
ALTER TABLE table

DROP COLUMN b;
COMMIT;

Remove Column table.b;

Invalidate Plan Cache;

Delete Row Store Block;

page29



https://noise.page/

page

Preliminary Results

Integrated DAF with DBMS.

Measure MVCC GC scalability using TPC-C:
»One warehouse per worker thread.
»Stored Procedure API.
»Write-Ahead Logging Enabled.

Compare three system configurations:
»Single GC thread
»Dedicated DAF threads
»Cooperative DAF threads


https://noise.page/
https://noise.page/

page

MVCC GC Scalability (TPC-C)

+Single-GC «2 DAF =«4 DAF «8 DAF -+Coop-DAF

~ 330

3

0

2 -

>C< 220

E

+ —h—

s 110 —
/ —* M == —

£

0f :

o {

E O [ [ [ [ [ |

< 4 8 12 16 20 24

|—

# Threads


https://noise.page/

5o Peloton


https://pelotondb.io/

& cmu-db/ peloton @ Unwatch ~ 192 W Unstar 1.8k % Fork 591

<> Code Issues 159 Pull requests 31 Actions Projects Wiki Security Insights Settings

“ Added notice that the project is dead. Browse files

F master

@ apavlo committed on Mar 17, 2019

Showing 1 changed file with 8 additions and 0 deletions. Unified

oD

['[Jenk t (http://jenkins.db‘cs.cmu.eduzaeaﬂ ) ’job/master!badge/icon)](http:ffjenkins.db.cs.cmu.edu:ﬁﬁ
Hjnbﬂpelotom_

[rr e Statu ](httpz:f/caveralls.iofrepog/githubfcmu—dbfpeloton/bad svg?hranch:magter)](https:M!coveralls.1ofglthuhfcmu»
db/peloton branch=master)

+ ## UPDATE 2019-03-17

+

+ The Peloton project is **dead**. e have abandoned this repository and moved on to build a new DBMS. There are a several engineering
techniques and designs that we learned from this first s stem on how to Support autonomous operations that we are doing a much better

job at 1mp1ementing in the second system.

+

+ We will not ac ept pull requests for this repository. we will also not respond to questions or problems that You may have with
running with this software.



https://pelotondb.io/
https://github.com/cmu-db/peloton/commit/484d76df9344cb5c153a2c361c5d5018912d4cf4



https://noise.page/

NoisePage Project

In-Memory HTAP DBMS

Postgres compatible (wire, SQL, catalog)
Apache Arrow compatible columnar storage
HyPer-style MVCC (snapshot isolation)

Hybrid Vectorization + Pipeline Query Codegen
JIT Query Compilation (DSL->OpCodes~»>LLVM)
Integrated self-driving components

page 1


https://noise.page/
https://db.cs.cmu.edu/papers/2020/p534-li.pdf
https://db.cs.cmu.edu/papers/2017/p1-menon.pdf
https://db.cs.cmu.edu/papers/2020/p101-menon.pdf
https://db.cs.cmu.edu/papers/2017/p781-wu.pdf

In-Memory HTAP DBMS §
Postgres compatible (wirf |
Apache Arrow compatibl &
HyPer-style MVCC (snap.f
Hybrid Vectorization + P|
JIT Query Compilation (-
Integrated self-driving q

-318S - gp

BIIM ~ 90 -
SUIBUI WATY - g

POW Suiauq

807 péaqv,.

Suijs

page 1


https://noise.page/
https://db.cs.cmu.edu/papers/2020/p534-li.pdf
https://db.cs.cmu.edu/papers/2017/p1-menon.pdf
https://db.cs.cmu.edu/papers/2020/p101-menon.pdf
https://db.cs.cmu.edu/papers/2017/p781-wu.pdf
https://noise.page/releases/p1/

Summary

DAF shows how to leverage logical data
concurrency protocols for physical data structures.

Unifying the notion of visibility makes it easier to

integrate new data structures and extend
transactions to support maintenance operations.

page 12


https://noise.page/

Acknowledgements

Matt Butrovich Tianyu Li

nuel
Eppinger
| ]

Amadou Ngom Jeff Niu " Deepayan Patra Po0ji Wuwe a0 Y William Zhang

page 38


https://noise.page/

https://noise.page



https://twitter.com/andy_pavlo

