MapReduce and Parallel DBMSs:

A Comparison of Approaches to Large-Scale Data Analysis

Andrew Paylo

University of Maryland – College Park September 3, 2009

Co-Authors

- Daniel Abadi (Yale)
- David DeWitt (Microsoft)
- Samuel Madden (MIT)
- Erik Paulson (Wisconsin)
- Alexander Rasin (Brown)
- Michael Stonebraker (MIT)

Today's Talk

- SIGMOD '09
 - A Comparison of Approaches to Large-Scale Data Analysis
- CACM '09 (submitted)
 - MapReduce and Parallel DBMSs: Friends or Foes?
 - Compare/Contrast with Jeff Dean (Google)

A Comparison of Approaches to Large-Scale Data Analysis

In the beginning...

- DeWitt + Stonebraker Article
 - MapReduce: A Major Step Backwards [1]

[1] MapReduce: A Major Step Backwards – January 8th, 2008

http://databasecolumn.vertica.com/2008/01/mapreduce-a-major-step-back.html

MapReduce and Databases

- Understand loading and execution behaviors for common processing tasks.
- Large-scale data access (>1TB):
 - Analytical query workloads
 - Bulk loads
 - Non-transactional

Outline

- MapReduce/DBMS Overview
- Benchmark Study
- Results Analysis & Discussion
- Google's Response
- Sweet Spots
- Concluding Remarks

MapReduce Overview

- Massively parallel data processing
 - Programming Model vs. Execution Platform
- Programs consist of only two functions:
 - $Map(k1, v1) \rightarrow (k2, list(v2))$
 - Reduce(k2, list(v2)) \rightarrow (key3, list(v3))

MapReduce Example

Calculate total order amount per day.

Shared-Nothing Parallel Databases

- Common characteristics:
 - Data partitioning.
 - Inter- and intra-query parallelism.
- Modern systems are based on pioneering work from 1980s:
 - TeraData ('86)
 - Gamma (DeWitt '86)
 - Grace (Fushimi '86)

Benchmark Environment

- Tested Systems:
 - Hadoop (MapReduce)
 - Vertica (Column-store DBMS)
 - DBMS-X (Row-store DBMS)
- 100-node cluster at Wisconsin

Methodology

- Report load & execution times.
 - All results are an average of three trials.
 - Flush caches to ensure cold start.
- Hadoop results include separate combine task to consolidate results on a single-node.
 - Numbers are reported separately.

Grep Task

- Find 3-byte pattern in 100-byte record
 - 1 match per 10,000 records
- Data set:
 - 10-byte unique key, 90-byte value
 - 1TB spread across 25, 50, or 100 nodes
 - 10 billion records
- Original MR Paper (Dean et al. 2004)

Grep Task Loading Results

Grep Task Execution Results

Analytical Tasks

- Simple web processing schema
- Data set:
 - 600k HTML Documents (6GB/node)
 - 155 million UserVisit records (20GB/node)
 - 18 million Rankings records (1GB/node)

Aggregate Task

Simple query to find adRevenue by IP prefix

```
SELECT SUBSTR(sourceIP, 1, 7),
        SUM(adRevenue)
FROM userVistits
GROUP BY SUBSTR(sourceIP, 1, 7)
```


Aggregate Task Results

Join Task

- Find the sourceIP that generated the most adRevenue along with its average pageRank.
- Implementations:
 - DBMSs Complex SQL using temporary table.
 - MapReduce Three separate MR programs.

Join Task Results

UDF Task

- First phase of PageRank Algorithm
 - Count number of links for each URL.
- DBMS Troubles:
 - Vertica did not support UDFs.
 - DBMS-X had buggy BLOBs.
- Hadoop implementation is straightforward.

UDF Task Results

Outline

- MapReduce/DBMS Overview
- Benchmark Study
- Results Analysis & Discussion
- Google's Response
- Sweet Spots
- Concluding Remarks

Implementation Refinement

Task Start-up

- Hadoop is slow to start executing programs:
 - 10 seconds until first Map starts.
 - 25 seconds until all 100 nodes are executing.
 - 7 buffer copies per record before reaching Map function [1].
- Parallel DBMSs are always "warm"

[1] The Anatomy of Hadoop I/O Pipeline - August 27th, 2009 http://developer.yahoo.net/blogs/hadoop/2009/08/the_anatomy_of_hadoop_io_pipel.html

Repetitive Data Parsing

- Hadoop has to parse/cast values every time:
 - SequenceFiles provide serialized key/value.
 - Multi-attribute values must still handled by user code.
- DBMSs parse records at load time:
 - Allows for efficient storage and retrieval.

Outline

- MapReduce/DBMS Overview
- Benchmark Study
- Results Analysis & Discussion
- Google's Response
- Sweet Spots
- Concluding Remarks

Google's Response

- Jeffrey Dean and Sanjay Ghemawat
 - MapReduce: A Flexible Data Processing Tool CACM'09
- Key points:
 - Flaws in benchmark.
 - Fault-tolerance in large clusters.
 - MapReduce ≠ DBMS

Google's Response: Flaws

- MR can load and execute queries in the same time that it takes DBMS-X just to load.
- Alternatives to reading all of the input data:
 - Select files based on naming convention.
 - Use alternative storage (BigTable).
- Combining final reduce output.

Google's Response: Cluster Size

- Largest known database installations:
 - Greenplum 96 nodes 4.5 PB (eBay) [1]
 - Teradata 72 nodes 2+ PB (eBay) [1]
- Largest known MR installations:
 - Hadoop 3658 nodes 1 PB (Yahoo) [2]
 - Hive 600+ nodes 2.5 PB (Facebook) [3]
- [1] eBay's two enormous data warehouses April 30th, 2009 http://www.dbms2.com/2009/04/30/ebays-two-enormous-data-warehouses/
- [2] Hadoop Sorts a Petabyte in 16.25 Hours and a Terabyte in 62 Seconds May 11th, 2009 http://developer.yahoo.net/blogs/hadoop/2009/05/hadoop_sorts_a_petabyte_in_162.html
- [3] Hive A Petabyte Scale Data Warehouse using Hadoop June 10th, 2009 http://www.facebook.com/note.php?note_id=89508453919

Google's Response: Functionality

- MapReduce enables parallel computations not easily performed in a DBMS:
 - Stitching satellite images for Google Earth.
 - Generating inverted index for Google Search.
 - Processing road segments for Google Maps.
- Programming Model vs. Execution Platform

Outline

- MapReduce/DBMS Overview
- Benchmark Study
- Results Analysis & Discussion
- Google's Response
- Sweet Spots
- Concluding Remarks

Extract-Transform-Load

- "Read Once" data sets:
 - Read data from several different sources.
 - Parse and clean.
 - Perform complex transformations.
 - Decide what attribute data to store.
 - Load the information into a DBMS.
- Allows for quick-and-dirty data analysis.

Semi-Structured Data

- MapReduce systems can easily stored semistructured data since no schema is needed:
 - Typically key/value records with a varying number of attributes.
- Awkward to stored in relational DBMS:
 - Wide-tables with many nullable attributes.
 - Column store fairs better.

Limited Budget Operations

- MapReduce frameworks:
 - Community supported and driven.
 - Attractive for projects with modest budgets and requirements.
- Parallel DBMSs are expensive:
 - No open-source option.

Concluding Remarks

- What can MapReduce learn from Databases?
 - Declarative languages are a good thing.
 - Schemas are important.
- What can Databases learn from MapReduce?
 - Query fault-tolerance.
 - Support for in situ data.
 - Embrace open-source.

Other Benchmarked Systems

- HadoopDB (Abadi '09 Yale)
 - Replaced Hadoop filesystem with Postgres.
 - Makes JDBC calls inside of MR functions.
- Hive (Thusoo '09 Facebook)
 - Data warehouse interface on top of Hadoop.
 - Converts SQL-like language to MR programs.

Conclusion

- MapReduce goodness:
 - Ease of use, "out of box" experience..
 - Attractive fault tolerance properties.
 - Fast load times.
- Database goodness:
 - Fast query times.
 - Schemas.
 - Supporting tools.

More Information

- Complete benchmark information and source code is available at our website:
 - http://database.cs.brown.edu/sigmod09/
- Questions/Comments?

