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Today’s Talk

= A Comparison of Approaches to
Large-Scale Data Analysis .- - § :.;;;fj,
= CACM '09 (submitted)

= MapReduce and Parallel DBMSs:
Friends or Foes?

= Compare/Contrast with Jeff Dean (Google)
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In the beginning...

= DeWitt + Stonebraker Article
= MapReduce: A Major Step Backwards [1]
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[1] MapReduce: A Major Step Backwards — January 8th, 2008

http://databasecolumn.vertica.com/2008/01/mapreduce-a-major-step-back.html




MapReduce and Databases

= Understand loading and execution behaviors
for common processing tasks.

= Large-scale data access (>1TB):

= Analytical query workloads
= Bulk loads
= Non-transactional
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Outline

= MapReduce/DBMS Overview
= Benchmark Study

= Results Analysis & Discussion
= Google’s Response

= Sweet Spots

= Concluding Remarks
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MapReduce Overview

= Massively parallel data processing

= Programming Model vs. Execution Platform

* Programs consist of only two functions:
» Map(kl, vl) - (k2, list(v2))
= Reduce(k2, list(v2)) = (key3, list(v3))
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MapReduce Example

= Calculate total order amount per day.
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Shared-Nothing Parallel Databases

= Common characteristics:
= Data partitioning.
= Inter- and intra-query parallelism.

= Modern systems are based on pioneering
work from 1980s:

= TeraData (‘86)
= Gamma (DeWitt ‘86)
= Grace (Fushimi ‘86)
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Benchmark Environment

= Tested Systems: a [o]0)

= Hadoop (MapReduce)

= Vertica (Column-store DBMS) VERT'O\I
= DBMS-X (Row-store DBMS)

= 100-node cluster at Wisconsin xxx

= Additional configuration information is
available on our website.
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Methodology

= Report load & execution times.
= All results are an average of three trials.
" Flush caches to ensure cold start.

= Hadoop results include separate combine
task to consolidate results on a single-node.

= Numbers are reported separately.
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Grep Task

* Find 3-byte pattern in 100-byte record
= 1 match per 10,000 records

= Data set:
= 10-byte unique key, 90-byte value
= 1TB spread across 25, 50, or 100 nodes
= 10 billion records

= Original MR Paper (Dean et al. 2004)
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Grep Task Loading Results
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Analytical Tasks

= Simple web processing schema

= Data set:
®" 600k HTML Documents (6GB/node)
= 155 million UserVisit records (20GB/node)
= 18 million Rankings records (1GB/node)
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Aggregate Task

= Simple query to find adRevenue by IP prefix

SELECT SUBSTR (sourceIP, 1, 7),
SUM (adRevenue)
FROM userVistits
GROUP BY SUBSTR (sourcelIP, 1, 7)




Aggregate Task Results
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Join Task

* Find the sourcelP that generated the most
adRevenue along with its average pageRank.

= Implementations:
= DBMSs — Complex SQL using temporary table.
" MapReduce — Three separate MR programs.
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Join Task Results
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UDF Task

= First phase of PageRank Algorithm

= Count number of links for each URL.

= DBMS Troubles:
= Vertica did not support UDFs.

= DBMS-X had buggy BLOB:s.

= Hadoop implementation is straightforward.
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UDF Task Results
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Outline

= Results Analysis & Discussion
= Google’s Response

= Sweet Spots

= Concluding Remarks
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Implementation Refinement
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Task Start-up

= Hadoop is slow to start executing programs:
= 10 seconds until first Map starts.
= 25 seconds until all 100 nodes are executing.

= 7 buffer copies per record before reaching
Map function [1].

= Parallel DBMSs are always “warm”

[1] The Anatomy of Hadoop I/0 Pipeline - August 27th, 2009
http://developer.yahoo.net/blogs/hadoop/2009/08/the anatomy of hadoop io pipel.html
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Repetitive Data Parsing

= SequencefFiles provide serialized key/value.

= Multi-attribute values must still handled by
user code.

= DBMSs parse records at load time:

= Allows for efficient storage and retrieval.

= Hadoop has to parse/cast values every time:
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Outline

= Google’s Response
= Sweet Spots

= Concluding Remarks
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Google’s Response

= Jeffrey Dean and Sanjay Ghemawat

= MapReduce: A Flexible Data Processing Tool
CACM’09

= Key points:

= Flaws in benchmark.

= Fault-tolerance in large clusters.
= MapReduce # DBMS
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Google’s Response: Flaws

* MR can load and execute queries in the
same time that it takes DBMS-X just to load.

= Alternatives to reading all of the input data:
= Select files based on naming convention.
= Use alternative storage (BigTable).

= Combining final reduce output.
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Google’s Response: Cluster Size

= Largest known database installations:
= Greenplum — 96 nodes — 4.5 PB (eBay) [1]
» Teradata — 72 nodes — 2+ PB (eBay) [1]

= Largest known MR installations:
= Hadoop — 3658 nodes — 1 PB (Yahoo) [2]
= Hive — 600+ nodes — 2.5 PB (Facebook) [3]

[1] eBay’s two enormous data warehouses — April 30t", 2009
http://www.dbms2.com/2009/04/30/ebays-two-enormous-data-warehouses/

[2] Hadoop Sorts a Petabyte in 16.25 Hours and a Terabyte in 62 Seconds — May 11th, 2009
http://developer.yahoo.net/blogs/hadoop/2009/05/hadoop sorts a petabyte in 162.html

[3] Hive - A Petabyte Scale Data Warehouse using Hadoop — June 10th, 2009
http://www.facebook.com/note.php?note id=89508453919
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Google’s Response: Functionality

= MapReduce enables parallel computations
not easily performed in a DBMS:

= Stitching satellite images for Google Earth.
= Generating inverted index for Google Search.

" Processing road segments for Google Maps.

= Programming Model vs. Execution Platform
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Outline

= Sweet Spots

= Concluding Remarks




Extract-Transform-Load

= “Read Once” data sets:

= Parse and clean.

= Perform complex transformations.

= Decide what attribute data to store.
= load the information into a DBMS.

= Allows for quick-and-dirty data analysis.

*" Read data from several different sources.
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Semi-Structured Data

= MapReduce systems can easily stored semi-
structured data since no schema is needed:

= Typically key/value records with a varying
number of attributes.

= Awkward to stored in relational DBMS:
= Wide-tables with many nullable attributes.
= Column store fairs better.
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Limited Budget Operations

= MapReduce frameworks:
= Community supported and driven.

= Attractive for projects with modest budgets
and requirements.

= Parallel DBMSs are expensive:

= No open-source option.
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Concluding Remarks

= What can MapReduce learn from Databases?
= Declarative languages are a good thing.

= Schemas are important.

= What can Databases learn from MapReduce?
" Query fault-tolerance.
= Support for in situ data.

= Embrace open-source.




Other Benchmarked Systems

= HadoopDB (Abadi ‘09 - Yale)
= Replaced Hadoop filesystem with Postgres.
= Makes JDBC calls inside of MR functions.

* Hive (Thusoo ‘09 - Facebook)

= Data warehouse interface on top of Hadoop.

= Converts SQL-like language to MR programs.
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Conclusion

= MapReduce goodness:
= Ease of use, “out of box” experience..
= Attractive fault tolerance properties.
= Fast load times.

= Database goodness:
= Fast query times.
= Schemas.

= Supporting tools.




More Information

= Complete benchmark information and
source code is available at our website:
* http://database.cs.brown.edu/sigmod09/

= Questions/Comments?
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