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ABSTRACT
dbDedup is a similarity-based deduplication scheme for on-line
database management systems (DBMSs). Beyond block-level
compression of individual database pages or operation log (oplog)
messages, as used in today’s DBMSs, dbDedup uses byte-level
delta encoding of individual records within the database to achieve
greater savings. dbDedup’s single-pass encoding method can be
integrated into the storage and logging components of a DBMS
to provide two benefits: (1) reduced size of data stored on disk
beyond what traditional compression schemes provide, and (2) re-
duced amount of data transmitted over the network for replication
services. To evaluate our work, we implemented dbDedup in a dis-
tributed NoSQL DBMS and analyzed its properties using four real
datasets. Our results show that dbDedup achieves up to 37× reduc-
tion in the storage size and replication traffic of the database on its
own and up to 61× reduction when paired with the DBMS’s block-
level compression. dbDedup provides both benefits with negligible
effect on DBMS throughput or client latency (average and tail).

1. INTRODUCTION
The rate of data growth is exceeding the decline of hardware

costs. Database compression is one solution to this problem. For
database storage, in addition to space saving, compression helps
reduce the number of disk I/Os and improve performance, because
queried data fits in fewer pages. For distributed databases replicated
across geographical regions, there is also a strong need to reduce
the amount of data transfer used to keep replicas in sync.

The most widely used approach for data reduction in operational
DBMSs is block-level compression [30, 37, 46, 43, 3, 16]. Such
DBMSs are used to support user-facing applications that execute
simple queries to retrieve a small number of records at a time (as
opposed to performing complex queries that scan large segments
of the database). Although block-level compression is simple and
effective, it fails to address redundancy across blocks and there-
fore leaves significant room for improvement for many applications
(e.g., due to application-level versioning in wikis or partial record
copying in message boards). Deduplication (dedup) has become
popular in backup systems for eliminating duplicate content across
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Figure 1: Compression ratio and index memory usage for Wikipedia data
stored in five MongoDB configurations: with dbDedup (1 KB chunk size
and 64 B), with traditional dedup (4 KB and 64 B), and with Snappy (block-
level compression). dbDedup provides higher compression ratio and lower
index memory overhead than traditional dedup. Snappy provides the same
1.6× compression for the post-dedup data or the original data.

an entire data corpus, often achieving much higher compression
ratios. The backup stream is divided into chunks and a collision-
resistant hash (e.g., SHA-1) is used as each chunk’s identity. The
dedup system maintains a global index of all hashes and uses it to
detect duplicates. Dedup works well for both primary and backup
storage data sets that are comprised of large files that are rarely
modified (and if they are, the changes are sparse).

Unfortunately, traditional chunk-based dedup schemes are un-
suitable for operational DBMSs, where applications execute update
queries that modify single records. The amount of duplicate data
in an individual record is likely insignificant. But large chunk sizes
(e.g., 4–8 KB) are the norm to avoid huge in-memory indexes and
large numbers of disk reads.

This paper presents dbDedup, a lightweight scheme for on-line
database systems that uses similarity-based deduplication [65] to
compress individual records. Instead of indexing every chunk hash,
dbDedup samples a small subset of chunk hashes for each new
database record and then uses this sample to identify a similar
record in the database. It then uses byte-level delta compression on
the two records to reduce both online storage used and remote repli-
cation bandwidth. dbDedup provides higher compression ratios
with lower memory overhead than chunk-based dedup and com-
bines well with block-level compression, as illustrated in Fig. 1.

We introduce and combine several techniques to achieve this ef-
ficiency. Foremost is that we present a novel two-way encoding
to efficiently transfer encoded new records (forward encoding) to
remote replicas, while storing new records with encoded forms of
selected source records (backward encoding). As a result, no de-

1355

mailto:lianghon@andrew.cmu.edu
mailto:pavlo@cs.cmu.edu
mailto:sudipta@microsoft.com
mailto:ganger@ece.cmu.edu
http://dx.doi.org/10.1145/3035918.3035938


code is required for the common case of accessing the most recent
record in an encoding chain (e.g., the latest Wikipedia version).
To avoid performance overhead from updating source records, we
also introduce a lossy write-back delta cache tuned to maximize
compression ratio while avoiding I/O contention. Our approach
also uses a new technique, called hop encoding, that minimizes the
worst-case number of decode steps required to access a specific
record in a long encoding chain. Finally, we describe how to adap-
tively disable deduplication for databases and records where little
savings are expected.

To evaluate our approach, we implemented dbDedup in the Mon-
goDB DBMS [5] and measured its efficacy using four real-world
datasets. Our results show that it achieves up to 37× reduction
(61×when combined with block-level compression) in storage size
and replication traffic. dbDedup outperforms chunk-based dedup
while imposing negligible impact on the DBMS’s performance.

This paper makes the following contributions.
1. To the best of our knowledge, we present the first dedup sys-

tem for operational DBMSs that reduces both database storage
and replication bandwidth usage. It is also the first database
storage dedup system that uses similarity-based dedup.

2. We introduce novel techniques that are critical to achieving
acceptable dedup efficiency, enabling practical use for online
database storage.

3. We evaluate a full implementation of the system in a dis-
tributed NoSQL DBMS, using four real-world datasets.

The rest of this paper is organized as follows. Section 2 mo-
tivates use of similarity-based dedup for database applications and
categorizes our approach relative to other dedup systems. Section 3
describes dbDedup’s dedup workflow and mechanisms. Section 4
details dbDedup’s implementation, including its integration into the
storage and replication frameworks of a DBMS. We then evaluate
our approach using several real-world data sets in Section 5. Lastly,
we conclude in Section 6 with a discussion of the related work.

2. BACKGROUND AND MOTIVATION
Deduplication consists of identifying and removing duplicate

content across a data corpus. This section motivates its potential
value in DBMSs, explains the two primary categories (exact match
and similarity-based) of dedup approaches and why similarity-
based is a better fit for dedup in DBMSs, and puts dbDedup into
context by categorizing previous dedup systems.

2.1 Why Dedup for Database Applications?
The most common way that operational DBMSs reduce the stor-

age size of data is through block-level compression on individual
database pages. For example, MySQL’s InnoDB can compress
pages when they are evicted from memory and written to disk [3].
When these pages are brought back into memory, the system can
keep the pages compressed as long as no query tries to read its con-
tents. Since the scope of the compression algorithm is only a single
page, the amount of reduction that the system can achieve is low.

Analytical DBMSs use more aggressive schemes (e.g., dictio-
nary compression, run-length encoding) that significantly reduce
the size of a database [18]. This is because these systems compress
individual columns, and thus there is higher likelihood of duplicate
data. And unlike in the above MySQL example, they also support
query processing directly on compressed data.

This type of compression is not practical in an operational
DBMS. These systems are designed for highly concurrent work-
loads that execute queries that retrieve a small number of records
at a time. If the DBMS had to compress each attribute every time

a new record was inserted, then they would be too slow to support
on-line, Web-based applications.

We observe, however, that many database applications could
benefit from dedup due to similarities between non-collocated
records whose relationship is not known to the underlying DBMSs.
In addition, we find that the benefits from dedup are complemen-
tary to those of compression—combining deduplication and com-
pression yields greater data reduction than either alone. Although
dedup is widely used in file systems, it has not been fully ex-
plored in operational databases. The primary reason is that database
records are usually small compared to typical dedup chunk sizes
(4–8 KB), so applying traditional chunk-based dedup would not
yield sufficient benefits.

For many applications, a major source of duplicate data is
application-level versioning of records. While multi-version con-
currency control (MVCC) DBMSs maintain historical versions to
support concurrent transactions, they typically clean up older ver-
sions once they are no longer visible to any active transaction. As
a result, few applications take advantage of versioning support pro-
vided by the DBMS to perform “time-travel queries”. Instead, most
applications implement versioning on their own when necessary. A
common feature of these applications is that different revisions of
one data item are written to the DBMS as completely unrelated
records, leading to considerable redundancy that is not captured
by simple page compression. Examples of such applications in-
clude websites powered by WordPress, which comprise 25% of the
entire web [12], as well as collaborative wiki platforms such as
Wikipedia [14] and Baidu Baike [1].

Another source of duplication in database applications is inclu-
sion relationships between records. For instance, an email reply
or forwarding usually includes the content of the previous message
in its message body. Another example is on-line message boards,
where users often quote each other’s comments in their posts. Like
versioning, this copying is an artifact of the application that cannot
be easily exposed to the underlying DBMS. As a result, effective
redundancy removal also requires a dedup technique that identifies
and eliminates redundancies across the entire data corpus.

It is important to note that there are also many database applica-
tions that would not benefit from dedup. For example, some do not
have enough inherent redundancy, and thus the overhead of find-
ing opportunities to remove redundant data is not worth it. Typical
examples include most OLTP workloads, where many records fit
into one database page and most redundancies among fields can be
eliminated by block-level compression schemes. For applications
that do not benefit, dbDedup automatically disables dedup func-
tionalities to reduce its impact on system performance.

2.2 Similarity-based Dedup vs. Exact Dedup
Dedup approaches can be broadly divided into two categories.

The first and most common (“exact dedup”) looks for exact
matches on the unit of deduplication (e.g., chunk) [67, 40, 27, 34,
35]. The second (“similarity-based dedup”) looks for similar units
(chunks or files) and applies delta compression to them [61, 53,
22]. For those database applications that do benefit from dedup, we
find that similarity-based dedup outperforms chunk-based dedup in
terms of compression ratio and memory usage, though it can in-
volve extra I/O and computation overhead. This section briefly de-
scribes chunk-based dedup, why it does not work well for DBMSs,
and why similarity-based dedup does. Section 3 details dbDedup’s
workflow and its techniques for mitigating the potential overheads.

A traditional file dedup scheme based on exact matches of data
chunks (“chunk-based dedup”) [44, 49, 67] works as follows. An
incoming file (corresponding to a new record in the context of
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Figure 2: Comparison between chunk-based deduplication and similarity-
based deduplication using delta compression for typical database workloads
with small and dispersed modifications.

DBMS) is first divided into chunks using Rabin-fingerprinting [50];
Rabin hashes are calculated for each sliding window on the data
stream, and a chunk boundary is declared if the lower bits of the
hash value match a pre-defined pattern. The average chunk size can
be controlled by the number of bits used in the pattern. Generally,
a match pattern of n bits leads to an average chunk size of 2n B.
For each chunk, the system calculates a unique identifier using a
collision-resistant hash (e.g., SHA-1). It then checks a global index
to see whether it has seen this hash before. If a match is found, then
the chunk is declared a duplicate. Otherwise, the chunk is consid-
ered unique and is added to the index and the underlying data store.

While chunk-based dedup generally works well for backup stor-
age workloads, it is rarely suitable for database workloads. From
our observations, duplicate regions for database workloads are usu-
ally small (on the order of 10’s to 100’s of bytes) and spread out
within a record. At this small size, chunk-based dedup with a typ-
ical chunk size on the order of KBs is unable to identify many du-
plicate chunks. Reducing chunk size to match up with duplication
length may improve the system’s compression ratio, but the chunk
tracking index becomes excessively large and negates any perfor-
mance benefits gained by I/O reduction.

In contrast, dbDedup’s similarity-based dedup identifies one
similar record from the database corpus and performs delta com-
pression between the new record and the similar one. As shown in
Fig. 2, dbDedup’s byte-level delta compression is able to identify
much more fine-grained duplicates and thus provide greater com-
pression ratio than chunk-based dedup.

2.3 Categorizing Dedup Systems
Table 1 illustrates one view of how dbDedup relates to other

systems using dedup, based on two axes: dedup approach (exact
match vs. similarity-based) and dedup target (primary storage vs.
secondary/backup data). To our knowledge, dbDedup is the first
similarity-based dedup system for primary data storage, as well as
being the first dedup system for on-line DBMSs addressing both
primary storage and secondary data (the oplog).

Much prior work in data deduplication [67, 40, 20, 53, 54] was
done in the context of backup data (as opposed to primary storage)
where dedup does not need to keep up with primary data ingestion
nor does it need to run on the primary (data-serving) node. More-
over, such backup workloads often run in appliances on premium
hardware. dbDedup, being in the context of operational DBMSs,
must run on primary data-serving nodes on commodity hardware
and be frugal in its usage of CPU, memory, and I/O resources.

There has been recent interest in primary data dedup on the pri-
mary (data-serving) server but the solutions are mostly at the stor-
age layer (and not at the data management layer, as in our work).
In such systems, depending on the implementation, dedup can hap-
pen either inline with new data (Sun’s ZFS [17], Linux SDFS [4],
iDedup [55]) or in the background as post-processing on the stored

Exact Dedup Similarity-based Dedup

Primary

iDedup [55]

dbDedup

ZFS [17]
SDFS [4]

Windows server 2012 [15]
NetApp ASIS [19]

Ocarina [7]
Permabit [8]

Secondary

DDFS [67] Extreme binning [22]

SDS [20]
Venti [49] Sparse Indexing [40]

sDedup [65]
ChunkStash [31] Silo [64]

DEDE [27] SIDC [53]
HydraStor [33] DeepStore [66]
Table 1: Categorization of related work

data (Windows Server 2012 [35]), or provide both options (Ne-
tApp [19], Ocarina [7], Permabit [8]).

Systems in the lower middle column use a combination of ex-
act and similarity-based dedup techniques at different granulari-
ties, but are in essence chunk-based dedup systems because they
store hashes for every chunk. To the best of our knowledge, dbD-
edup is the first similarity-based dedup system for primary stor-
age workloads that achieves data reduction on storage and network
bandwidth requirement at the same time. This is because byte-level
delta compression is traditionally considered expensive for on-line
databases, due to the extra I/O and computation overhead relative
to hash comparisons. As a result, previous systems either com-
pletely avoid it or use it when disk I/O is not a major concern. For
example, SIDC [53] and sDedup [65] use delta compression for
network-level deduplication of replication streams; SDS [20] ap-
plies delta compression to large 16 MB chunks in backup streams
retrieved by sequential disk reads. While dbDedup takes advantage
of delta compression to achieve superior compression ratio, it uses
a number of techniques to reduce the overhead involved, making it
a practical dedup engine for on-line DBMSs.

3. dbDedup DESIGN
This section describes dbDedup’s dedup workflow, encoding

techniques, I/O overhead mitigation mechanisms, and approaches
to avoiding wasted effort on low-benefit dedup actions.

3.1 Deduplication Workflow
dbDedup uses similarity-based dedup to achieve good compres-

sion ratio and low memory usage simultaneously. Fig. 3 shows the
dedup encode workflow used when preparing updated record data
for local storage and remote replication. During insert or update
queries, new records are written to the local oplog, and dbDedup
encodes them in the background, off the critical path. Four key
steps are (1) extracting similarity features from a new record, (2)
looking in the deduplication index to find a list of candidate similar
records in the database corpus, (3) selecting one best record from
the candidates, and (4) performing delta compression between the
new and the similar record to compute encoded forms for local stor-
age and replica synchronization.

3.1.1 Feature Extraction
As a first step in finding similar records in the database, dbDedup

extracts similarity features from the new record using a content-
dependent approach. dbDedup divides the new record into several
variable-sized data chunks using the Rabin Fingerprinting algo-
rithm [50] that is widely used in many chunk-based dedup systems.
Unlike these systems that index a collision-resistant hash (e.g.,
SHA-1) for every unique chunk, dbDedup calculates a (weaker,
but computationally cheaper) MurmurHash [6] for each chunk and
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Figure 3: dbDedup Workflow – (1) Feature Extraction, (2) Index Lookup, (3) Source Selection, and (4) Delta Compression.

only indexes a representative subset of the chunk hashes. dbDedup
adapts a technique called consistent sampling [47] to select repre-
sentative chunk hashes, which provides better similarity character-
ization than random sampling. It sorts the hash values in a consis-
tent way (e.g., by magnitude from high to low), and chooses the
top-K1 hashes as the similarity sketch for the record. Each chunk
hash in the sketch is called a feature—if two records have one or
more common features, they are considered to be similar.

By indexing only the sampled chunk hashes, dbDedup bounds
the memory overhead of its dedup index to be at most K index en-
tries per record. This important property allows dbDedup to use
small chunk sizes for better similarity detection while not consum-
ing excessive RAM like in chunk-based dedup. Moreover, because
dbDedup does not rely on exact match of chunk hashes for dedupli-
cation, it is more tolerant of hash collisions. This is why it can use
the MurmurHash algorithm instead of SHA-1 to reduce the com-
putation overhead in chunk hash calculation. While this may lead
to a slight decease in compression rate due to more false positives,
using a weaker hash does not impact correctness since dbDedup
performs delta compression in the final step.

3.1.2 Index Lookup
For each extracted feature, dbDedup finds existing records that

share that feature with the new record. Since dbDedup is an on-
line dedup system, it is imperative that this index lookup process is
fast and efficient. dbDedup achieves this by building an in-memory
feature index that uses a variant of Cuckoo hashing [45, 31] to map
features to records. This approach uses multiple hashing functions
that map a key to multiple candidate slots, which increases the ta-
ble’s load factor while bounding lookup time to a constant. In the
feature index, each entry is comprised of a 2-byte key that is a com-
pact checksum of the feature and a 4-byte value that is a pointer to
the database location of the corresponding record.

On feature lookup, dbDedup first calculates a hash of the feature
value using one of the Cuckoo hashing functions that maps to a
candidate slot containing multiple index entries (buckets). It then
iterates over the buckets, compares their checksums with the given
feature, and adds any matched records to the list of similar records.
This process repeats with the other hashing functions until it finds
an empty bucket indicating the end of search. dbDedup then inserts
the feature and a reference to the new record to the empty bucket for
future lookup. Finally, dbDedup combines the lookup results for all
top-K features and generates a list of existing similar records as in-
put for the next step. To further reduce CPU and memory usage,
dbDedup limits the maximum number of similar records that ex-
amines for each feature. Once the threshold is reached, the lookup
process terminates and the entry containing the least-recently-used
(LRU) record is evicted from the feature index.
1We find K = 8 strikes a reasonable trade-off between compression ratio
and memory usage, and we use it as a default value for all experiments
unless otherwise noted.

3.1.3 Source Selection
The index lookup results may contain multiple candidate similar

records, yet dbDedup only chooses one of them to delta compress
the new record in order to minimize the overhead involved. While
most previous similarity selection algorithms make such decisions
purely based on the similarity metrics of the inputs, dbDedup adds
consideration of system performance, giving preference to candi-
date records that are present in the source record cache (see Sec-
tion 3.3). We refer to this selection technique as cache-aware se-
lection. Specifically, dbDedup first assigns an initial score for each
candidate similar record based on the number of features it has in
common with the new record. Then, dbDedup increases that score
by a reward if the candidate record already resides in the cache.
The candidate with the highest score is then selected as the input
for delta compression. While cache-aware selection may end up
choosing a record that is sub-optimal in terms of similarity, we find
it greatly reduces the I/O overhead to fetch source records from the
database. We evaluate the effectiveness of cache-aware selection
and its sensitivity to the reward score in Section 5.4.

3.1.4 Delta Compression
The last step in dbDedup workflow is to perform delta compres-

sion between the new record and the selected similar record. We
describe the details of the encoding techniques in Section 3.2 and
the compression algorithms in Section 4.2.

3.2 Encoding for Online Storage
Efficient access of delta-encoded storage is a long-standing chal-

lenge due to the I/O and computation overhead involved in the en-
coding and decoding steps. In particular, reconstructing encoded
data may require reading all the deltas along a long encoding chain
until reaching an unencoded (raw) data-item. To provide reason-
able performance guarantees, most online systems use delta en-
coding only to reduce network transmission (leaving storage unen-
coded) or use it to a very limited extent in the storage components
(e.g., by constraining the maximum length of the encoding chain
to a small value). But, doing so significantly under-exploits the
potential space savings that could be achieved.

dbDedup greatly alleviates the painful tradeoff between com-
pression gains and access speed in delta encoded storage with two
new encoding schemes. It uses a two-way encoding technique that
reduces both remote replication bandwidth and database storage,
while optimizing for common case queries. In addition, it uses
hop encoding to reduce worst-case source retrievals for reading en-
coded records, while largely preserving the compression benefits.

3.2.1 Two-way Encoding
After a candidate record is selected from the data corpus, dbD-

edup generates the byte-level difference between the candidate and
the new record in dual directions, using a technique that we call
two-way encoding. For network transmission, dbDedup performs
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Figure 4: Illustration of two-way encoding – dbDedup uses forward en-
coding to reduce the network bandwidth for replica synchronization while
using backward encoding to compress database storage.

forward encoding (Fig. 4a), which uses the older (i.e., the selected
candidate) record as the source and the new record as the target. Af-
ter the encoding, the source remains in its original form, while the
target is encoded as a reference to the source plus the delta from the
source to the target. dbDedup sends the encoded data, instead of the
original new record, to remote replicas. Using forward-encoding
for network-level deduplication is a natural design choice, because
it allows the replicas to easily decode the target record using the
locally stored source record.

dbDedup could simply use the same encoded form for local
database storage. Doing so, however, would lead to significant per-
formance degradation for read queries to the newest record in the
encoding chain, which we observe to be the common case with app-
level versioning and inclusions. Because the intermediate records
in a forward chain are all stored in the encoded form using the
previous one as the source, decoding the latest record requires re-
trieving all the deltas along the chain, all the way back to the first
record, which is stored unencoded.

Instead, dbDedup uses backward encoding (Fig. 4b) for local
storage to optimize for read queries to recent records. That is, for
local storage, dbDedup performs delta compression in the reverse
temporal order, using the new record as the source and the similar
candidate record as the target. As a result, the most recent record
in an encoding chain is always stored unencoded. Read queries to
the latest version thus incur no decoding overhead at all. Although
backward encoding is optimized for reads, it creates two potential
issues. First, it amplifies the number of write operations, since an
older record selected as a source needs to be updated to the en-
coded form. To mitigate the write amplification, dbDedup caches
backward-encoded records to be written back to the database and
delays the updates until system I/O is relatively idle, which we dis-
cuss in more detail in Section 3.3. A second issue arises when an
older record is selected as the source. The existing data (a delta
from its current base record) is replaced by the delta from the new
record. Since backward encoding realizes space savings by updat-
ing delta sources, such overlapped encoding (Fig. 5) on the same
source records can lead to some compression loss. Forward encod-
ing, in contrast, naturally avoids this problem since no writeback is
required. Fortunately, we find overlapped encoding is not common
in real-world applications—most (> 95%) updates are incremental
based on the latest version (see Section 5.2).

dbDedup performs delta encoding between new and candidate
records in two directions, yet it only incurs the computation over-
head of one encoding pass. It achieves this by first generating the
forward-encoded data and then efficiently transforming it into the
backward delta at memory speed. We call this process re-encoding
and detail the algorithm in Section 4.2.

3.2.2 Hop Encoding
As discussed above, using backward encoding minimizes the de-

coding overhead for reading recent records, but it may still incur ex-
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Figure 5: Overlapped encoding – Backward encoding may lead to com-
pression loss when an older record is selected as the source. In this example,
when R0 is selected as the source for R2, backward encoding leaves R1 and
R2 both unencoded.

Storage #Worst-case
usage retrievals #Writebacks

Backward encoding Sb +(N−1) ·Sd N N
Version jumping N

H ·Sb +(N− N
H ) ·Sd H N− N

H
Hop encoding Sb +(N−1) ·Sd H + logH N N +N · H

(H−1)2

Table 2: Summary of the different encoding schemes – Hop encoding
largely eliminates the painful tradeoff between space savings and decoding
speed. N is the length of the encoding chain, and H denotes the hop distance
(cluster size for version jumping). Sb and Sd refer to the size of a base
record and a delta respectively, where Sb � Sd in most cases. These sizes
obviously vary for different records. Here we use the general notation for
ease of reasoning.

cessive source retrieval time for occasional queries to older records
(e.g., a specific version of a Wikipedia article). Prior work on delta
encoded storage [26, 42] used a technique called version jumping
to cope with this problem, by bounding the worst-case number of
source retrievals at the cost of lower compression benefits. The
idea is to divide the encoding chain into fixed-size clusters, where
the last record in each cluster, termed reference version, is stored
in its original form and the other records are stored as backward-
encoded deltas. Doing so bounds the worst-case retrieval times
to the cluster size but results in lower compression ratio, because
the reference versions are not compressed. As the encoding clus-
ter size decreases, the compression loss can increase significantly,
since deltas are usually much smaller than base records.

dbDedup uses a novel technique that we call hop encoding,
which preserves the compression ratio close to standard backward
encoding, while achieving comparable worst-case retrieval times to
the version jumping approach. As illustrated in Fig. 6, extra deltas
are computed between particular records and others some distance
back in the chain, in a fashion similar to skip lists [48]. We call
these records hop bases and the minimum interval between them
hop distance, noted as H. Hop encoding employs multiple levels
of indirection to speed up the decoding process, with the interval
on level L being HL. Decoding a record involves first tracing back
to the nearest hop base in logarithmic time and then following the
encoding chain starting with it.

Table 2 summarizes the trade-offs among three encoding tech-
niques in terms of storage usage, worst-case number of retrievals,
and the extra number of write-backs. For hop encoding, the number
of worst-case source retrievals is close to that of version jumping
(H). But because hop bases are stored in an encoded form, the
compression ratio achieved is much higher than version jumping
and comparable to standard backward encoding. All three encod-
ing schemes incur some amount of write amplification, but the dif-
ference becomes negligible as hop distance increases. We present
a more detailed comparison in Section 5.

3.3 Caching for Delta-encoded Storage
Delta encoded storage, due to its “chained” property, merits spe-

cialized caching mechanisms. Exploiting this property, dbDedup
only caches a few key nodes in a given encoding chain, maximiz-
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Figure 6: Hop encoding – A comparison of hop encoding and version jumping with an encoding chain of 17 records. Shaded records (R0, R4, etc.) are hop
bases (reference versions), with a hop distance (cluster size) of 4. Hop encoding provides comparable decoding speed as version jumping while achieving a
compression ratio close to standard backward encoding.

ing memory efficiency while eliminating most I/O overhead for ac-
cessing encoded records. It uses two specialized caches: a source
record cache that reduces the number of database reads during en-
code and a lossy write-back delta cache that mitigates write ampli-
fication caused by backward encoding.

3.3.1 Source Record Cache
A key challenge in dbDedup, like in other delta-encoded sys-

tems, is the I/O overhead to retrieve the base data from the disk as
input for delta compression. Specifically, reading a selected simi-
lar record may involve an extra disk access, contending with client
query processing and other database activities.

dbDedup uses a small yet effective record cache to avoid most
disk reads for source records. The design of the record cache ex-
ploits the high degree of temporal locality in record updates of
workloads that dedup well. For instance, updates to a Wikipedia
article, forum posts to a specific topic, or email exchanges in the
same thread usually occur within a short time frame. So, the prob-
ability of finding a recent similar record in the cache is high, even
with a relatively small cache size. Another key observation is that
the updates are usually incremental (based on the immediate pre-
vious update), meaning that two records tend to be more similar if
they are closer in creation time.

Based on the observations above, the source record cache retains
the latest record of an encoding chain in the cache. To accelerate
backward encoding of hop bases, dbDedup additionally caches the
latest hop bases in each hop level.2 When a new record arrives,
if dbDedup identifies a similar record in the cache (which is the
normal case due to the cache-aware selection technique described
in Section 3.1), it replaces the existing record with the new one. If
the new record is a hop base, dbDedup replaces its adjacent bases
accordingly. When no similar source is found, dbDedup simply
adds the new record to the cache, and evicts the oldest record in a
LRU manner if the cache becomes full.

3.3.2 Lossy Write-back Delta Cache
As discussed in Section 3.2, backward encoding optimizes for

read queries, but introduces some write amplification—record in-
sertion triggers the source record to be delta compressed and up-
dated on disk. The problem is exacerbated somewhat with hop en-
coding, where inserting a hop base causes writeback not only to the
source record, but also to the adjacent bases on each hop level. For
heavy insertion bursts, this could significantly increase the number
of disk writes, leading to visible performance degradation.

dbDedup uses a lossy write-back cache to address this problem.
The key observation is that write-backs are not strictly required for
backward-encoded storage. Failure or delay in applying such write-
back operations does not impair data consistency or integrity—
updated records remain intact and the only consequence is potential
compression loss. This unique “lossy” property provides natural

2In our experience, the number of hop levels is usually small (≤ 3), so the
cache only needs to store very few records for each encoding chain.

fault tolerance and allows dbDedup great flexibility in scheduling
when and in which order writebacks are applied.

On record insertion, dbDedup writes the new record to the
database as normal, and stores the delta of the source record in the
cache. It delays the actual write-back operation until the system I/O
becomes relatively idle. The idleness metric can vary, but we use
the I/O queue length as an indication in our current implementation.

To preserve maximum compression with constrained memory,
dbDedup sorts deltas in the cache by the absolute amount of space
saving they contribute and prioritizes the order of writebacks ac-
cordingly. When I/O becomes idle, more valuable deltas are written
out first. When the cache becomes full before the system gets idle
enough, the entry with the least compression gain is discarded with-
out impacting correctness. By prioritizing the update and eviction
orders, dbDedup more effectively reaps the compression benefits
from cached deltas.

3.4 Avoiding Unproductive Dedup Work
dbDedup uses two approaches to avoid applying dedup effort

with low likelihood of yielding significant benefit. First, a dedup
governor monitors the runtime compression ratio and automatically
disables deduplication for databases that do not benefit enough.
Second, a size-based filter adaptively skips dedup for smaller
records that contribute little to overall compression ratio.

3.4.1 Automatic Deduplication Governor
Database applications exhibit diverse dedup characteristics. For

those that do not benefit much, dbDedup automatically turns off
dedup to avoid wasting resources. In our experience, most dupli-
cation exists within the scope of a single database, that is, dedu-
plicating multiple different databases usually yields little marginal
benefits as compared to deduplicating them individually. There-
fore, dbDedup partitions its in-memory dedup index by database
and internally tracks the compression ratio for each. If the com-
pression rate for a database stays below a certain threshold (e.g.,
1.1×) for a long enough period (e.g., 100k record insertions), the
dedup governor disables dedup for it and deletes its correspond-
ing index partition. Future records belonging to that database are
processed as normal, bypassing the deduplication engine, while al-
ready encoded data remains intact. dbDedup does not reactivate a
database for which dedup is already disabled, because we do not
notice dramatic change in compression ratio over time for any par-
ticular workload, which we believe is the norm.

3.4.2 Adaptive Size-based Filter
In our observation of several real-world database datasets (see

Section 5.1), we find that most dedup savings come from a small
fraction of the records that are larger in size. Fig. 7 shows the cumu-
lative distribution function (CDF) of record size and the weighted
CDF by contribution to space saving for the four workloads used
in our experiments. For these datasets, the 60% largest records ac-
count for approximately 90–95% of data reduction. In other words,
if we only deduplicate records larger than the 40%-tile record size,
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Figure 8: Integration of dbDedup into a DBMS.

we can reduce dedup overhead by 40% while only losing 5–10% of
the compression ratio.

dbDedup exploits this observation, using a size-based dedup fil-
ter that bypasses (treats as unique) records smaller than a certain
threshold. Unlike specialized dedup systems whose workload char-
acteristics are known in advance, dbDedup determines the cut-off
size on a per-database basis using a simple heuristic. For each
database, the dedup threshold is first initialized to zero, meaning
that all incoming records are deduplicated. This value is then peri-
odically updated with the 40%-tile record size of the database every
1000 record insertions.

4. IMPLEMENTATION
This section describes dbDedup implementation details, includ-

ing how it fits into DBMS storage and replication frameworks and
internals of its delta compression algorithm.

4.1 DBMS Integration
While implementation details vary across DBMSs, we illustrate

the integration of dbDedup using a simple distributed setup con-
sisting of one client, one primary node and one secondary node,
as shown in Fig. 8. For simplicity, we assume that only the pri-
mary node serves write requests3 and that it pushes updates asyn-
chronously to the secondary node in the form of oplog batches. We
now describe dbDedup’s behavior for primary DBMS operations.

Insert: The primary node writes the new record into its local
database and appends the record to its oplog. Each oplog entry in-
cludes a timestamp and a payload that contains the inserted record.
When the size of unsynchronized oplog entries reaches a threshold,
the primary sends them in a batch to the secondary node. The sec-
ondary receives the updates, appends them to its local oplog, and
replays the new oplog entries to update its local database.

3When secondaries also serve write, each of them would maintain a sepa-
rate dedup index. These indexes would be updated during replica synchro-
nization and eventually converge.

INSERT COPY COPY INSERT INSERT 

Anchor Duplicate segment Byte-wise comparison 

Source 

Target 

Figure 9: Illustration of delta compression in dbDedup.

With dbDedup, the primary node first stores the new record in
its local oplog. Later, when preparing to store the record or send it
to a replica, it is processed by the dbDedup encoder following the
deduplication steps described in Section 3.1. If dbDedup success-
fully selects a similar record from the existing data corpus, it re-
trieves the content of the similar record by first checking the source
record cache. On cache misses, it reads the record from the un-
derlying storage. It then applies bidirectional delta compression to
the source and target records to generate the forward-encoded form
of the new record and the backward-encoded form of the similar
record. dbDedup inserts the new record to the primary database in
its original form and caches the backward-encoded similar record
in the lossy write-back cache until system I/O becomes idle. Then,
dbDedup appends the forward-encoded record to the primary oplog
that is transferred to the secondary during replica synchronization.

On the secondary node, the DBMS’s oplog syncer receives and
propagates the encoded oplog entries to the dbDedup re-encoder.
The re-encoder first decodes the new record by reading the base
similar record from its local database4 (or the source record cache,
on hits) and applying the forward-encoded delta. It then delta com-
presses the similar record using the newly reconstructed new record
as the source, like in the primary, and generates the same backward-
encoded delta for the similar record. Finally, dbDedup writes the
new record to the secondary database and updates the similar record
to its delta-encoded form. These steps ensures that the secondary
stores the same data as the primary node.

dbDedup maintains a reference count for each stored record that
tracks the number of records referencing it as a decode base. Be-
cause dbDedup uses backward encoding for database storage, after
insertion, the reference count of the new record is set to one, while
that of the similar record is unchanged. The reference count of the
original base of the similar record, if existing, is reduced by one.

Update: Upon update, dbDedup first checks the reference count
of the queried record. If the count is zero, meaning no other records
refer to it for decoding, dbDedup directly applies the update as nor-
mal. Otherwise, dbDedup keeps the current record intact and ap-
pends the update to it. Doing so ensures that other records using
it as a reference can still be decoded successfully. When the refer-
ence count reaches zero, dbDedup compacts all the updates to the
record and replaces it with the new data.

dbDedup uses a write-back cache to delay the update of a delta-
encoded source record. To prevent it from overwriting normal
client updates, dbDedup always checks the cache for each update.
If it finds a record with the same ID (to be written back later), it
invalidates the entry and proceeds normally with the client update.

Delete: If the reference count for record to be deleted is zero,
then the deletion proceeds as normal. Otherwise, dbDedup marks
it as deleted but retains its content. Any client reads to a deleted
record returns an empty result, but it can still serve as a decoding

4Because the secondary and primary nodes are mostly synchronized, the
base record used in the primary to encode the record is almost always also
present in the secondary. In rare cases where it is not, the secondary queries
the primary node for the new record to avoid extra decoding overhead.
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Algorithm 1 Delta Compress

1: function DELTACOMPRESS(src, tgt)
2: i← 0 . Initialization
3: j← 0
4: pos← 0
5: ws← 16
6: sIndex← empty
7: tInsts← empty
8: while i+ws <= src.length do . Build index for src anchors
9: hash← RABINHASH(src, i, i+ws)

10: if ISANCHOR(hash) then
11: sIndex[hash]← i
12: end if
13: i← i+1
14: end while
15: while j+ws <= tgt.length do . Scan tgt for longest match
16: hash← RABINHASH(tgt, j, j+ws)
17: if ISANCHOR(hash) and hash in sIndex then
18: (so f f , to f f , l)← BYTECOMP(src, tgt,sIndex[ f p], j)
19: if pos < to f f then
20: insInst← INST (INSERT, pos, to f f − pos)
21: memcpy(insInst.data, tgt, to f f − pos)
22: tInsts.append(insInst)
23: end if
24: cpInst← INST (COPY,so f f , l)
25: tInsts.append(cpInst)
26: pos← to f f + l
27: j← to f f + l
28: else
29: j← j+1
30: end if
31: end while
32: return tInsts
33: end function

base for other records referencing it. When the reference count of
a record drops to zero, dbDedup removes it from the database and
decrement the reference count of its base record by one.

Read: If the queried record is stored in its raw form, then it is
directly sent to the client just like the normal case. If the record
is encoded, then the dbDedup’s decoder returns it back to its orig-
inal form before it is returned to the client. During decoding, the
decoder fetches the base record from the source record cache (or
storage, on cache miss) and reconstructs the queried record using
the stored delta. If the base record itself is encoded, the decoder
repeats the step above iteratively until it finds a base record stored
in its entirety.

Garbage Collection: Each record’s reference count ensures that
an encoding chain will not be corrupted on updates or deletions. To
facilitate garbage collection, dbDedup checks for deleted objects
on reads. Specifically, along a decoding path, if a record is seen
as deleted, dbDedup creates a delta between its two neighboring
records, and decrements its reference count by one. When no other
records depend on it for decoding, the record can be safely deleted
from the database.

4.2 Delta Compression
To ensure lightweight dedup, it is important to make dbDedup’s

delta compression fast and efficient. The delta compression al-
gorithm used in dbDedup is adapted from xDelta [42], a classic
copy/insert encoding algorithm using a string matching technique
to locate matching offsets in the source and target byte streams.
The original xDelta algorithm mainly works in two steps. In the
first step, xDelta divides the source stream into fixed-size (by de-
fault, 16-byte) blocks. It then calculates an Alder32 [32] checksum
(the same fingerprint function used in gzip) for each byte block

Algorithm 2 Delta Re-encode

1: function DELTAREENCODE(src, tgt, tInsts)
2: sPos← 0
3: tPos← 0
4: copySegs← empty
5: sInsts← empty
6: for each inst in tInsts do
7: if inst.type =COPY then
8: copySegs.append(inst.sO f f , tPos, inst.len)
9: end if

10: tPos← tPos+ inst.len
11: end for
12: copySegs.sortBy(sO f f )
13: for each seg in copySegs do
14: if sPos < seg.sO f f then
15: insInst← INST (INSERT,sPos,sO f f − sPos)
16: memcpy(insInst.data,src,sO f f − sPos)
17: sInsts.append(insInst)
18: end if
19: cpInst← INST (COPY,seg.tO f f ,seg.len)
20: sInsts.append(cpInst)
21: sPos← seg.sO f f + seg.len
22: end for
23: return sInsts
24: end function

and builds a temporary in-memory index mapping the checksums
to their corresponding offsets in the source. In the second step,
xDelta scans the target object byte by byte from the beginning, us-
ing a sliding window of the same size as the byte blocks. For each
target offset, it calculates a Alder32 checksum of the bytes in the
sliding window and consults the source index populated in the first
step. If it finds a match, xDelta extends the search process from the
matched offsets, using bidirectional byte-wise comparison to de-
termine the longest common sequence (LCS) between the source
and target streams. It then skips the matched region to continue the
iterative search. If it does not find a match, it moves the sliding
window by one byte and restarts the matching. Along this process,
xDelta encodes the matched regions in the target into COPY instruc-
tions and the unmatched regions into INSERT instructions.

As shown in Algorithm 1 and Fig. 9, dbDedup’s delta compres-
sion algorithm is a modified version of xDelta based on the observa-
tion that a large fraction of its time is spent in source index building
and lookups. In the first encoding step, dbDedup samples a subset
of the offset positions, called anchors, whose checksums’ lower
bits match a pre-determined pattern. The interval between anchors
indicates the sampling ratio and is controlled by the length of the bit
pattern. In the second step, dbDedup performs index lookups only
for the anchors in the target, avoiding the need to consult the source
index at every target offset. The anchor interval provides a tunable
trade-off between compression ratio and encoding speed, and we
evaluate its effects in Section 5. We omit some optimizations in the
pseudo-code given above due to space constraints. For example,
contiguous and overlapping COPY instructions are coalesced; short
COPY instructions are converted into equivalent INSERT instructions
when the encoding overhead exceeds space savings.

As discussed in Section 3.2, after computing the forward-
encoded data using the algorithm above, dbDedup uses delta
re-encoding (Algorithm 2) to efficiently generate the backward-
encoded source record. Instead of switching the source and target
objects and performing delta compression again, dbDedup reuses
the COPY instructions generated before and sorts them by their cor-
responding source offsets. It then fills the unmatched regions in
the source with INSERT instructions. While it may result in slightly
sub-optimal compression rate (e.g., due to overlapping COPY in-
structions that are merged), the re-encoding process is extremely
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fast (at memory speed), since there are no checksum calculations
or index operations.

Delta decompression in dbDedup is straightforward. It simply it-
erates over the instructions generated by the compression algorithm
and concatenates the matched and unmatched regions to reproduce
the original target object.

5. EVALUATION
This section evaluates dbDedup using four real-world datasets.

For this evaluation, we implemented both dbDedup and traditional
chunk-based dedup (trad-dedup) in MongoDB (v3.1). The results
show that dbDedup provides significant compression benefits, out-
does traditional dedup, combines with block-level compression,
and imposes negligible overhead on DBMS performance.

Unless otherwise noted, all experiments use a replicated Mon-
goDB setup with one primary, one secondary, and one client node.
Each node has four CPU cores, 8 GB RAM, and 100 GB of local
HDD storage. We use MongoDB’s WiredTiger [16] storage engine
with the full journaling feature turned off to avoid interference.

5.1 Workloads
The four real-world datasets represent a diverse range of

database applications: collaborative editing (Wikipedia), email
(Enron), and on-line forums (Stack Exchange, Message Boards).
We sort each dataset by creation timestamp to generate a write
trace, and then generate a read trace using public statistics or known
access patterns to mimic a real-world workload, as detailed below.

Wikipedia: The full revision history of every article in the
Wikipedia English corpus [13] from January 2001 to August 2014.
We extracted a 20 GB subset via random sampling based on ar-
ticle IDs. Each revision contains the new version of the article
and meta-data about the user that made the edits (e.g., username,
timestamp, comment). Most duplication comes from incremental
revisions to pages. We insert the first 10,000 revisions to populate
the initial database. We then issue read and write requests accord-
ing to a public Wikipedia access trace [62], where the normalized
read/write ratio is 99.9 to 0.1. 99.7% of read requests are to the lat-
est version of a wiki page, and the remainder to a specific revision.

Enron: A public email dataset [2] with data from about 150
users, mostly senior management of Enron. The corpus contains
around 500k messages, totaling 1.5 GB of data. Each message
contains the text body, mailbox name, message headers such as
timestamp and sender/receiver IDs. Duplication primarily comes
from message forwards and replies that contain content of previous
messages. We insert the sorted dataset into the DBMS as fast as
possible. After each insertion, we issue a read request to the spe-
cific email message, resulting in an aggregate read/write ratio of 1
to 1. This is based on the assumption that each user uses a sin-
gle email client that caches the requested message locally, so each
message is written and read once to/from the DBMS.

Stack Exchange: A public data dump from the Stack Exchange
network [10] that contains the full history of user posts and asso-
ciated information, such as tags and votes. We extracted a 10 GB
subset via random sampling. Most of the duplication in this data
set comes from users revising their own posts and from copying
answers from other discussion threads. We insert the posts into the
DBMS as new records in temporal order. For each post, we read
it for the same number of times as its view count. The aggregate
read/write ratio is 99.9 to 0.1.

Message Boards: A 10 GB forum dataset containing users’

posts crawled from a number of public vBulletin-powered [11]
message boards that cover a diverse range of threaded topics, such
as sports, cars, and animals. Each post contains the forum name,
thread ID, post ID, user ID, and the post body including quotes
from other posts. This dataset also contains the view count per
thread, which we use to generate synthetic read queries. Duplica-
tion mainly originates from users quoting others’ comments. To
mimic users’ behavior in a discussion forum, for each post inser-
tion, we issue a certain number of “thread reads” that request all
the previous posts in the containing thread. The number of thread
reads per insertion is derived by dividing the total view count of the
thread by the number of posts it contains.

5.2 Compression Ratio and Index Memory
We first evaluate dbDedup’s compression ratio and index mem-

ory usage and compare them to trad-dedup and Snappy [9], Mon-
goDB’s default block-level compressor. For each dataset, we load
the records into the DBMS as fast as possible and measure the re-
sulting storage sizes, the amount of data transferred over the net-
work, and the index memory usage.

Fig. 10 shows the results for five configurations: (1) dbDedup
with chunks of 1 KB or 64 bytes, (2) trad-dedup with chunks of
4 KB or 64 bytes, and (3) Snappy. The pink (left) bar shows stor-
age compression ratio, indicating the contribution of dedup alone
and compression after dedup. The compression ratio is defined as
original data size divided by compressed data size, so a value of one
means no compression achieved. The blue (right) bar shows index
memory usage. The small source record cache (32 MB, used by
both dbDedup and trad-dedup) and lossy write-back cache (8 MB,
used by dbDedup only) are not shown.

The benefits are largest for Wikipedia (Fig. 10a). With a chunk
size of 1 KB, dbDedup reduces data storage by 26× (41× com-
bined with Snappy) using 36 MB index memory. Decreasing the
chunk size to 64 B increases compression ratio to 37× (61×) using
only 45 MB index memory. Decreasing chunk size for dbDedup
does not increase index memory usage much, because dbDedup
indexes at most K entries per record, regardless of chunk size. In
contrast, while trad-dedup’s compression ratio increases from 2.3×
(3.7×) to 15× (24×) when using a chunk size of 64 B instead of
4 KB, its index memory grows from 80 MB to 780 MB, making
it impractical for operational DBMSs. This is because trad-dedup
indexes every unique chunk hash, leading to almost linear increase
of index overhead as chunk size decreases, and also because it must
use much larger index keys (20-byte SHA-1 hash vs. 2-byte check-
sum) since collisions would result in data corruption. Consuming
40% less index memory, dbDedup with 64 B chunk size achieves a
compression ratio 16× higher than trad-dedup with its typical 4 KB
chunk size. Snappy compresses the dataset by only 1.6×, because
it can not eliminate the duplication caused by application-level ver-
sioning, but requires no index memory. It provides the same 1.6×
compression when applied to the deduped data.

For the other datasets, the absolute benefits are smaller, but
the primary observations are similar: dbDedup provides higher
compression ratio with lower memory usage than trad-dedup, and
Snappy’s compression benefits (1.6–2.3×) complement deduplica-
tion. For the Enron dataset (Fig. 10b), dbDedup reduces storage
by 3.0× (5.8×), which is consistent with results we obtained from
experiments with data from a cloud deployment of Microsoft Ex-
change servers containing PBs of real user email data.5 The two
forum datasets (Figs. 10c and 10d) do not exhibit as much duplica-
tion as the Wikipedia or email datasets, because users do not quote

5Sadly, we cannot reveal details due to confidentiality restrictions.
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Figure 10: Compression Ratio and Index Memory – The compression ratio and index memory usage for dbDedup (1 KB or 64 byte chunks), trad-dedup
(4 KB and 64 byte), and Snappy. The upper portion of each bar represents the added benefit of compressing after dedup.
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Figure 11: Storage and Network Bandwidth Savings – Relative com-
pression ratios achieved by dbDedup (with 64-byte chunk size) for local
storage and network transfer, for each of the datasets, normalized to the
absolute storage compression ratios shown in Fig. 10 (for dbDedup with
64-byte chunks).

or edit comments as frequently as Wikipedia revisions or email for-
wards/replies. Even so, we still observe that dbDedup reduces stor-
age by 1.3–1.8× (3–3.5×). Because we were only able to crawl
the latest posts in the Message Boards dataset, dbDedup’s com-
pression ratio is conservative, not including the benefits from delta
compressing users’ revisions to their own posts.6

In addition to storage usage, dbDedup simultaneously achieves
significant compression on data transmission over the network with
forward encoding. Fig. 11 shows the network-level compression as
a normalized result to that on storage usage (1.0 on the Y-axis for
each dataset). dbDedup achieves slightly lower compression on
database storage than on data transferred over the network, mainly
due to overlapped encodings (Section 3.2) and delta evictions from
the write-back cache. Nevertheless, the difference is below 5%
for all datasets, because overlapped encodings are uncommon and
because the lossy write-back cache uses prioritized eviction.

5.3 Runtime Performance Impact
This experiment is designed to measure dbDedup’s impact on the

DBMS’s performance. We compare three MongoDB deployment
configurations: (1) No compression ("Original"), (2) dbDedup, and
(3) Snappy. For each setting, we run the experiments three times
for all the workloads and report the average.

Throughput: Fig. 12a shows the throughput for the four work-
loads. We see that dbDedup imposes negligible overhead on
throughput. Snappy also degrades performance slightly for three
of the workloads, since it is a fast and lightweight inline compres-
sor. The exception is Wikipedia, for which using Snappy causes
5% throughput reduction, because some large Wikipedia records
cannot fit in a single WiredTiger page and require extra I/Os.

6We find that 15% of posts are edited at least once, and most edited posts
are larger than the average post size.
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Figure 12: Performance Impact – Runtime measurements of MongoDB’s
throughput and latency for the different workloads and configurations.

Latency: Fig. 12b shows the CDF of client latency. For clarity,
we only show the results for MongoDB with and without dbDedup
enabled. Again, we observe that dbDedup has almost no effect
on performance. The latency distribution curves with dbDedup en-
abled closely track those for no compression/dedup. The difference
in the 99.9%-tile latency is less than 1% for all workloads.

5.4 Effects of Caching
dbDedup uses two specialized caches to minimize I/O overheads

involved in reading and updating source records: a source record
cache (32 MB) and lossy write-back cache (8 MB). We now evalu-
ate the effectiveness of these caches.

Source Record Cache: Fig. 13a shows the effect of the source
record cache on compression ratio (left Y-axis) and percent of
source record retrievals requiring a DBMS read (cache miss ratio;
right Y-axis), with a range of reward score values for the Wikipedia
workload. Recall that dbDedup uses cache-aware selection of can-
didate similar records, assigning a reward score to candidates that
are present in the cache (see Section 3.1.3).

When no cache is used (the left-most bars), every retrieval of a
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Figure 13: Effects of Caching – Runtime measurements of dbDedup’s
caching mechanisms for the Wikipedia workload.

source record incurs a read query. Even without cache-aware selec-
tion (0 reward score), the small source record cache eliminates 74%
of these queries. With a reward score of two (default), the cache-
aware selection technique further cuts the miss ratio by 40% (to
16%), without reducing the compression ratio noticeably. Further
increases to the reward score marginally reduce the cache miss ratio
while reducing the compression ratio slightly, because less similar
candidates are more likely to be selected as the source records.

Lossy Write-back Cache: dbDedup uses backward encoding
to avoid decode when reading the latest “versions” of an update se-
quence. Thus, deduplicating a new record involves both writing the
full new record and replacing the source record with delta-encoded
data. The extra write (the replacing) may lead to significant perfor-
mance problems for I/O intensive workloads during write bursts.
dbDedup’s lossy write-back cache mitigates such problems.

To emulate a bursty workload with I/O intensive and idle peri-
ods, we insert Wikipedia data at full speed for 10 seconds and sleep
for 10 seconds, repeatedly. Fig. 13b shows MongoDB’s insertion
throughput over time, with and without the write-back cache. With-
out the cache, DBMS throughput visibly decreases during busy pe-
riods because of the extra database writes. In contrast, using the
write-back cache avoids DBMS slowdown during workload bursts,
as shown by the difference between the two lines at various points
of time (e.g., at seconds 0, 130, 170, and 190).

dbDedup has two primary tunable parameters, beyond those ex-
plored above, that affect compression/performance trade-offs: hop
distance and anchor interval. This subsection quantifies the effects
of these parameters and explains the default values.

5.5 Hop Encoding
dbDedup uses hop encoding to reduce the worst-case retrieval

times while maintaining compression benefits. To evaluate its effi-
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Figure 14: Hop Encoding vs. Version Jumping – For the Wikipedia
workload and moderate hop distances, hop encoding provides much higher
compression ratios with small increases in worst-case source retrievals and
number of write-backs.

cacy, we also implemented version jumping in MongoDB and com-
pared the two encoding schemes.

Fig. 14 shows the results for three metrics as a function of hop
distance: compression ratio (normalized to standard backward en-
coding), worst-case number of source retrievals (for an encoding
chain length of 200), and number of write-backs. Version jumping
results in significantly (60–90%) lower compression ratios, because
all reference versions are stored unencoded. Its compression ratio
improves as the hop distance increases, because fewer records are
stored in unencoded form. In contrast, because hop bases are stored
as deltas, hop encoding provides compression ratios within 10% of
full backward encoding. For hop encoding, the compression ratio
remains relatively steady as hop distance increases, due to having
fewer but less similar hop bases.

The number of worst-case source retrievals for hop encoding
is close to that for version jumping. With multiple hop levels,
tracing back to the nearest hop base only takes logarithmic time.
As the hop distance increases, the decoding time is dominated by
traversing backward deltas between adjacent hop bases. The bot-
tom graph shows the number of extra writebacks needed in each
scheme. While hop encoding incurs more writebacks for small hop
distances, both schemes quickly approach the length of the encod-
ing chain as hop distance increases. Empirically, we find that a hop
distance of 16 (default) provides a good trade-off between com-
pression ratio and decoding overhead.

5.6 Optimization of Delta Compression
dbDedup outperforms the xDelta algorithm by reducing the com-

putation overhead on source index insertion and lookups. It intro-
duces a tunable anchor interval that controls the sampling rate of
the offset points in the source byte stream.

Fig. 15 shows the compression ratio (left Y-axis) and throughput
(right Y-axis) for various anchor interval values, as a comparison
with xDelta, for the Wikipedia workload. With an anchor inter-
val of 16 (the default window size in xDelta), dbDedup performs
almost the same as xDelta. dbDedup’s delta compressing speed im-
proves as anchor interval increases, because it reduces the number
of insertions and lookups in the source offset index . The com-
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Figure 15: Optimization of Delta Compression – Comparison of the op-
timized variant of dbDedup versus xDelta using the Wikipedia workload.

pression ratio does not significantly decrease, because dbDedup
performs byte-level comparison bidirectionally from the matched
points. With an anchor interval of 64, dbDedup outperforms xDelta
by 80% in terms of compression throughput, while incurring only
7% loss in compression ratio. Increasing the anchor interval to 128
further improves the throughput by 10% but results in 15% loss
in compression ratio. We use 64 as the default value, providing a
reasonable balance between compression ratio and throughput.

6. ADDITIONAL RELATED WORK
Most previous dedup work is discussed in Section 2. This section

discusses some additional related work.

Database Compression: A number of database compression
schemes have been proposed during the past few decades. Most
operational DBMSs that compress the database contents use page
or block-level compression [30, 37, 46, 43, 3, 16]. Some use prefix
compression, which looks for common sequences in the beginning
of field values for a given column across all rows on each page.
Just as with our dbDedup approach, such compression requires the
DBMS to decompress tuples before query processed.

There are schemes in some OLAP systems that allow the DBMS
to process data in its compressed format. For example, dictio-
nary compression replaces recurring long domain values with short
fixed-length integer codes. This approach is commonly used in
column-oriented data stores [18, 36, 69, 51]. These systems typ-
ically focus on attributes with relatively small domain size and ex-
plore the skew in value frequencies to constrain the resulting dic-
tionary to a manageable size [23]. The authors in [56] propose
a delta encoding scheme where every value in a sorted column is
represented by the delta from the previous value. Although this
approach works well for numeric values, it is unsuitable for strings.

None of these techniques detect and eliminate redundant data
with a granularity smaller than a single field, thus losing potential
compression benefits for many applications that inherently con-
tain such redundancy. dbDedup, in contrast, is able to remove
much more fine-grained duplicates with byte-level delta compres-
sion. Unlike other inline compression schemes, dbDedup is not in
the critical write path for queries, and hence, it has minimal im-
pact on the DBMS’s runtime performance. In addition to this, be-
cause dbDedup compresses data at record level, it only performs
the dedup steps once, and uses the encoded result for both database
storage and network transfer. In contrast, the same record would
be compressed twice (in database page and oplog batch), for page
compression schemes to achieve data reduction at both layers.

Delta Encoding: There has been a large body of previous work
on delta encoding techniques, including several general-purpose
algorithms based on the Lempel-Ziv approach [68], such as vcd-

iff [21], xDelta [42], and zdelta [60]. Specialized schemes can be
used for specific data formats (e.g., XML) to improve compression
quality [28, 63, 39, 52]. The delta compression algorithm used in
dbDedup is adapted from xDelta, to which the relationship is dis-
cussed in Section 4.2.

Delta compression has been used to reduce network traffic for
file transfer and synchronization protocols. Most systems assume
that previous versions of the same file are explicitly identified by
the application, and duplication only exists among prior versions
of the same file [61, 57]. On exception is TAPER [38], which re-
duces network transfer for synchronizing file system replicas by
sending delta-encoded files; it identifies similar files by computing
the number of matching bits on the Bloom filters generated with the
files’ chunk hashes. dbDedup identifies a similar record from the
data corpus without application guidance and therefore is a more
generic approach than most of these previous systems.

The backward-encoding technique used in dbDedup is inspired
by versioned storage systems such as RCS [59] and XDFS [42].
Similar techniques have been used in version control systems such
as Git [41] and SVN [29] to enable traveling back over the commit
history. Unlike these systems which explicitly maintain versioning
lineage for all the files, dbDedup establishes the encoding chain
entirely based on the similarity relationships between records, and
thus does not require system-level support for versioning. [54] uses
delta encoding for deduplicated backup storage. It uses forward
encoding and only allows encoding chains with a maximum length
of two items. Similar to other delta encoded storage systems that
uses version jumping, it has to sacrifice compression gains in order
to bound the worst-case retrievals for base data.

To our knowledge, dbDedup is the first system to explore dis-
tinct forms of encoding for network and storage-level compression
and to provide efficient transformations between the two. With the
novel hop encoding scheme, dbDedup significantly alleviates the
painful trade-offs between compression ratio and retrieval overhead
for delta encoded storage. In addition, it introduces new caching
mechanisms specialized for delta encoded storage, significantly re-
ducing the I/O overhead involved while maximizing memory ef-
ficiency. All the techniques combined make online access of en-
coded storage practical.

Similarity Detection: Prior work has provided various ap-
proaches to computing sketches (similarity metrics) for identifying
similar items. The basic technique of identifying features in ob-
jects so that similar objects have identical features was pioneered
by Broder [24, 25] in the context of web pages. Several papers [58,
47, 20, 53, 65] propose methods for computing sketches for simi-
larity detection that are robust to small edits in the data. The feature
extraction approach used in dbDedup is similar to that in DOT [47]
and sDedup [65].

7. CONCLUSION
dbDedup is a lightweight similarity-based deduplication engine

for operational DBMSs that reduces both storage usage and the
amount of data transferred for remote replication. Combining par-
tial indexing and byte-level delta compression, dbDedup achieves
higher compression ratios than block-level compression and chunk-
based deduplication while being memory efficient. It uses novel
encoding and caching mechanisms to avoid significant I/O over-
head involved in accessing delta-encoded records. Experimental
results with four real-world workloads show that dbDedup is able
to achieve up to 37× reduction (61× when combined with block-
level compression) in storage size and replication traffic while im-
posing negligible overhead on DBMS performance.
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