NON-VOLATILE MEMORY DBMS

Joy Arulraj
15-799 : Final Presentation
TRADITIONAL DBMS

• Long Transactions
 – Interactive workload
• Small Memory Capacity
 – Disk latency
REALITY CHECK

• Short Transactions
• Repetitive Workloads
• Large Memory Capacity
MAIN-MEMORY DBMS
MAIN-MEMORY DBMS

• Disk used only for logging/recovery
• High-throughput OLTP
CHALLENGES

• DRAM SCALING LIMIT
 — Reliable sensing

• RECOVERY LATENCY
 — Throughput
NVM DBMS
Properties

<table>
<thead>
<tr>
<th></th>
<th>DRAM</th>
<th>NVM</th>
<th>SSD</th>
<th>DISK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read Latency</td>
<td>1x</td>
<td>2-5x</td>
<td>500x</td>
<td>10^5x</td>
</tr>
<tr>
<td>Write Latency</td>
<td>1x</td>
<td>2-5x</td>
<td>5000x</td>
<td>10^5x</td>
</tr>
<tr>
<td>Persistence</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Scalability</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Byte-Level Access</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>
ENVIRONMENT

• INTEL NVM EMULATOR
 — Instrumented motherboard

• PERSISTENT MEMORY FILE SYSTEM
 — MMAP interface to PM
NVM HARDWARE EMULATOR

- **READ LATENCY**
 - LLC Miss Stalls

- **WRITE BANDWIDTH**
 - Throttling in memory controller
PM FILE SYSTEM

Apps

OS VMM

DRAM

PMFS

Direct to PM

PM

Malloc/Free

Read/Write

MMap
GOALS

• MMAP-BASED STORAGE MANAGER
• EVALUATION ON NVM EMULATOR
• MOVE INDEX STORAGE TO NVM
IMPLEMENTATION

• STORAGE MANAGER
 — H-Store Table
 — Per-table memory mapped file
 — Metadata for recovery
IMPLEMENTATION

• STORAGE MANAGER
 — Pool Storage
 — String Pool (VARCHAR)
IMPLEMENTATION

• STL ALLOCATOR
 – Index Storage
 – On top of Storage Manager
 – Ordered and Unordered map
EXPERIMENTS
SETUP

• INTEL NVM EMULATOR
 — 62 GB DRAM

• YCSB BENCHMARK
 — Zipfian distribution
 — Read Only (100% Reads)
 — Update Heavy (50% Updates, 50% Reads)
READ-ONLY WORKLOAD
2X DRAM LATENCY

THROUGHPUT (TXNS./SEC)

HStore (MMAP) vs MySQL

- 0.5
- 1.5

Graph showing the throughput comparison between HStore (MMAP) and MySQL with 2X DRAM latency.
16X DRAM LATENCY

THROUGHPUT (TXNS./SEC)

HStore (MMAP)

MySQL

0.5

1.5
UPDATE-HEAVY WORKLOAD
IMPACT OF NVM LATENCY

THROUGHPUT (TXNS./SEC) vs. NVM LATENCY SLOWDOWN (W.R.T. DRAM LATENCY)

Skew
- 0.5
- 1
- 1.5

Throughput decreases as NVM latency increases, with different skews affecting the rate of decrease.
COMPARISON WITH DISK DBMS

THROUGHPUT (TXNS./SEC)

H-Store (MMAP)

MySQL

NVM LATENCY SLOWDOWN (W.R.T. DRAM LATENCY)
CONCLUSION

• Throughput comparison with MySQL
 — 4.5X on read-only workloads
 — 1.5X on update-heavy workloads

• Update-heavy workload
 — msync overhead
CONCLUSION

• A new design?
 — Recovery
 — Concurrency Control

THANKS!