
Predictors of Customer Perceived Software Quality

Audris Mockus and Ping Zhang
Avaya Research
233 Mt Airy Rd

Basking Ridge, NJ 07920
audris@mockus.org,pingzhang@avaya.com

Paul Luo Li
Institute for Software Research International

School of Computer Science
Carnegie Mellon University

Pittsburgh PA, 15213
Paul.Li@cs.cmu.edu

ABSTRACT
Predicting software quality as perceived by a customer may al-
low an organization to adjust deployment to meet the quality ex-
pectations of its customers, to allocate the appropriate amount of
maintenance resources, and to direct quality improvement efforts to
maximize the return on investment. However, customer perceived
quality may be affected not simply by the software content and the
development process, but also by a number of other factors includ-
ing deployment issues, amount of usage, software platform, and
hardware configurations. We predict customer perceived quality as
measured by various service interactions, including software de-
fect reports, requests for assistance, and field technician dispatches
using the afore mentioned and other factors for a large telecom-
munications software system. We employ the non-intrusive data
gathering technique of using existing data captured in automated
project monitoring and tracking systems as well as customer sup-
port and tracking systems. We find that the effects of deployment
schedule, hardware configurations, and software platform can in-
crease the probability of observing a software failure by more than
20 times. Furthermore, we find that the factors affect all quality
measures in a similar fashion. Our approach can be applied at other
organizations, and we suggest methods to independently validate
and replicate our results.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous; D.2.8
[Software Engineering]: Metrics—complexity measures, perfor-
mance measures

Keywords
Quality, Metrics, Modeling

1. INTRODUCTION
Anticipating customers’ experience with a new software release is
of significant business importance. The decision to release soft-
ware early may be necessary because of competitive pressures or
the need for additional revenue. However, a product that does not
satisfy customers’ quality needs may incur additional expenses in

ICSE’05, May 15–21, 2005, St. Louis, Missouri, USA.

repair, maintenance, and future business opportunities. Our main
focus is to predict customers’ experiences within the first three
months of installation to facilitate maintenance resource planning,
software deployment, and other key aspects of the software busi-
ness. We use customer perceived quality and customer experi-
ence interchangeably, even though each term has a slightly different
meaning.

We are also interested in quantifying the relative importance of var-
ious process and product factors on customer experience, which can
help guide quality improvement efforts to maximize the return on
investment. The factors we examine are: deployment issues, usage
patterns, software platform, and hardware configurations.

Finally, we want a method that can be easily adapted and used at
other organizations. Therefore, we attempt to use data that is avail-
able at other comparable organizations. We describe our data col-
lection and data analysis methods so our experiments can be repli-
cated and our results can be independently validated.

Our approach is first to design and operationalize a small set of
customer experience measures and product/process factors, then
to create and validate customer experience models based on these
measures and factors, and finally to produce predictions that answer
questions essential to a software company. Our primary motivation
is to answer two basic questions:

1. What is the likely customer experience for a particular cus-
tomer?

2. What resources will be needed to handle the flow of customer
reported issues?

We use measures and factors gathered during the customer support
process from systems that track customer installations, updates, and
complaints. We also use measures and factors gathered during de-
velopment from systems that track and manage software develop-
ment activities.

To operationalize customer perceived quality measures we spend a
significant amount of effort familiarizing ourselves with the busi-
ness processes used in customer support and product development,
while paying particular attention to the usage of tools that support
these processes. We apply various validation techniques to ensure
the accuracy of the extracted measures and factors.

We find predictors measuring system installation date, operating
system, upgrades, and system size to be significant in determining

the customer experience and predicting resources needed to han-
dle customer issues. We fit a logistic model and four linear re-
gression models to quantify the relative importance of eight predic-
tors on four measures of customer perceived quality and to enable
informed decisions regarding deployment strategies and staffing
needs. The predictive value of the models varies based on the fre-
quency of the predicted event: rare events like a customer reported
problem that causes a change in the software are more difficult to
predict than frequent aggregated events like customer calls in the
first three months of installation.

We start by describing our motivation in Section 2. Background on
the project under study and the analysis method are in Section 3.
Section 4 introduces our models of customer experience and Sec-
tion 5 presents our findings. Section 6 discusses the validity of our
results and Section 7 outlines how similar prediction techniques can
be applied at other organizations. We conclude with related work
in Section 8 and discussion in Section 9.

2. MOTIVATION
While there are techniques to predict how many faults remain in
an unchanging software system (see, e.g., [14, 7, 11]), which mod-
ules (see, e.g., [8, 9]) or changes (see, e.g., [12]) will have defects,
and how much effort defect repairs will require (see, e.g., [1]), the
release of a software system is typically full of unknowns: when
is the quality finally good enough, what will a particular customer
experience, how much resources will the maintenance support re-
quire? In this paper, we focus on customer experience prediction
models that quantify the effects of various factors on customer ex-
periences and to provide a quantitative basis for making business
decisions.

Our findings can enable a company to assess the quality being de-
livered to a specific customer and can allow for deployment or other
adjustments to ensure that the quality expectations of the customer
are met.

Knowing the influence of each factor on customer perceived qual-
ity can also allow for targeted improvements in the development
process, the support processes, or the software itself, to maximize
the return on improvement efforts.

We also address resource planning issues. We predict customer
calls, technician dispatches, and field software defects, which can
be aggregated to predict customer support and maintenance resource
needs.

Many research works have examined the effects of software con-
tent and development process on measures of customer perceived
quality. However, few works have considered hardware configu-
rations, software platform, usage patterns, and deployment issues.
The end users of a software typically experience the quality of the
entire “solution”, which includes physical systems, terminals, and
networks, as well as the “pure” software platform which includes
operating systems, servers, clients, and other software components
that are required to use a particular piece of software. Therefore,
it is often difficult to separate failures in the surrounding hardware,
network, and software environment from failures in the software
under study. Human factor problems such as software upgrade and
configuration often yield their own significant share of failures.

Prior work have assumed that hardware configurations, software
platform, usage patterns, and deployment issues are important, but

few research work have attempted to validate the claim or to quan-
tify the effects of the factors. Musa emphasizes the importance of
establishing an operational profile that considers hardware config-
urations, software platform, usage patterns and deployment issues
in [14], but provides no evidence of the factors’ importance.

Determining the quality delivered by a software product is a com-
plicated task, given research indicating that customer satisfaction
is far more complex than merely minimizing the number of defects
in a system [3, 6]. Our research seeks to capture and predict mul-
tiple aspects of customer perceived quality in quantitative models
that can explain and order various factors in terms of their effect on
customer experience.

To determine the various measures and factors, we rely on data that
established companies with a large customer base already capture
during customer support and product development processes. We
use quality measures that are similar to those used by other large
established companies such as IBM and HP [3, 6, 17]. The factors
we consider have been cited as important in previous work such as
[9] by Jones et. al. and [11] by Lyu .

3. BACKGROUND
In this section, we describe the context of our study. We describe
the software project, the systems that track development, and the
systems that track installed products. We also briefly describe the
methodology used to extract data from the databases.

3.1 The software project
We examine the call processing software installed on many Avaya
telephony systems. This software system is an established prod-
uct and embodies several decades of knowledge and experience
in the telephony field. In a recent release, the software contains
approximately seven million lines of code mostly in C and C++
languages. The software development organization deploys major
releases on a fixed schedule, with subsequent dot releases that bun-
dle patches and refinements to the system.

Multiple releases are in the field and are used by tens of thousands
of customers, many of whose businesses depend on the high avail-
ability of the product. This makes the software exceedingly dif-
ficult to enhance while maintaining the smooth operation of the
hardware/software combinations deployed.

We use customer interaction measures and factors captured in four
databases. Two databases contain customer information including
service request information (e.g., trouble tickets) captured during
the post-sale customer support process and customers’ product in-
formation. The other two databases contain information captured
during product development including change requests and code
changes, which we use to identify customer reported problems that
resulted in software changes.

The project under consideration uses the Sablime system for prob-
lem tracking and an internal version control system. Modifications
as a result of customer interactions described below can be traced
back to the customer and the related interaction. Details on the
nature and analysis of software change data is in [13].

3.2 The customer support process
Avaya uses a tiered support process similar to those in other orga-
nizations [17, 3], and has smart agents deployed on most products.

Our data come from the trouble ticket database and the equipment
database.

The trouble ticket database contains information about customer
contacts. A trouble ticket is generated for each customer contact,
whether it is an alarm sent by the smart agent or a phone call from a
real person. Each ticket contains information that allows a problem
report to be associated with a customer and an installed product.
A ticket can be routed, escalated, or dispatched depending on the
type of the problem and the type of service contract the customer
has. Roughly half of the over 4 million tickets created in 2003 are
related to products we analyze in this paper.

The equipment database contains information about products in-
stalled at each customer location, regardless of whether the product
has reported any problems. Typical product attributes include soft-
ware release, number of licensed ports, and product configuration,
etc.. This information is updated whenever a change in these at-
tributes occurs (e.g., software updates). There are over 4 million
systems listed in the equipment database, but only around 100K
systems contain products we consider in this paper.

4. MODELS OF CUSTOMER PERCEIVED
QUALITY

We assume that customers’ perception of quality will be negatively
affected if customers are distracted away from their normal busi-
ness activities by problems with the system. This is consistent with
prior findings at IBM [3, 6]. We distinguish two major aspects of
customer perceived quality:

• impact of problem occurrence

• frequency of problem occurrence

In addition we assume that these problems are related to how the
software is deployed, operated, and configured. In this paper, we
focus on aspects of customer experiences that are captured dur-
ing the course of product deployment and maintenance, and ignore
other important aspects like price, feature richness that may be col-
lected as a part of marketing efforts.

We are interested in rare high impact problems, which are infre-
quent problems that are costly in terms of time and resources needed
to resolve and the interruption to the customers’ business.

A customer reported failure that leads to a software change is an
example of this type of problem. It is costly to the customer be-
cause of the time needed to escalate the problem through the tiered
customer support organization, diagnose and fix the problem, and
delivery the fix via a patch to the customer. The problem remains
unresolved for a long period of time which may reduce the func-
tionality of the system for the customer. Chulani et. al. in [6]
shows that this type of measure is related to customer satisfaction.

We are also interested in frequent low impact problems, which are
problems that may have a low per incident impact, but which, if oc-
cur frequently, may negatively impact customer perceived quality.
A customer call into the support center is an example of this class
of problems. A single call may not be a major interruption to the
customer. However, a large volume of calls may indicate a serious
issue. Buckley and Chillarege [3] shows that this type of measure
is related to customer satisfaction.

In the following sections we define and operationalize measures
and predictors of customer perceived quality based on data captured
in the project monitoring and customer support systems. Similar
data are available for most high availability business-critical soft-
ware systems and are discussed in Section 8.

4.1 Measures of customer perceived quality
We consider measures that are extracted from Avaya’s customer
support systems, which have been developed and improved over
several decades. The measures are:

• Rare high-impact problems

– equipment service outages

– malfunctions resulting in software modifications

• Frequent low impact problems

– technician dispatches

– customer calls

– alarm reports

We call these measures of customer perceived quality customer
interactions. Each of these customer interactions approximates a
slightly different aspect of the customer experience. The measures
reflect experiences that vary in severity and amount of time until
resolution.

We have chosen to model customer interactions in the first three
months of system installation, because this is a reasonable amount
of time to set up, configure, and tune even a very sophisticated
software system such as a switching software. The initial period is
most fraught with risks, therefore of the most concern to the soft-
ware provider and to the customer. For example, the probability of
a custumer reporting a software issue was several times greater in
the first three months after installation than in the subsequent three
months.

4.2 Predictors of customer perceived quality
We examine deployment issues, usage patterns, software platform,
and hardware configurations. We use several measures, which we
call predictors, to measure these factors. Ideally, we would like
one-to-one or many-to-one mappings between the predictors and a
factor so we can isolate the effects of each factor. However, such
perfect measures are rarely available in empirical studies. The pre-
dictors sometimes measure several factors.

For example, the number of ports on an installed system, mea-
sures the usage patterns factor and the hardware configurations fac-
tor (since some hardware components are usually associated with
larger systems). However, there are substantial variations in the
number of ports even within systems with similar hardware con-
figurations, so the number of ports provides information about the
system not captured by other predictors.

4.2.1 System size
The system size predictor measures the hardware configurations
factor, software platform factor, as well as the usage patterns factor.
We consider systems running on small to medium and large plat-
forms. Larger systems have hardware and software components to
support special functions or devices that are not present in smaller

systems. In our models, we encode whether the systems is on a
small to medium or a large platform using an indicator variable
called LARGE.

We expect small to medium systems to have fewer customer in-
teractions. First, there are fewer settings to configure and fewer
systems to interface with. Second, smaller systems may have less
usage than larger systems. Finally, smaller systems may not be as
likely to be involved in business critical applications that require
7x24 uptime. Consequently, customers of smaller systems are less
likely to experience and report issues.

4.2.2 Operating system
The operating system predictor measures the software platform fac-
tor and the hardware configurations factor. We consider systems
running on a proprietary, an open (Linux), and a commercial (Win-
dows) operating system. Small, medium, and large systems use
the proprietary and the open operating systems. Only a very small
version of the system uses the WindowsNT/Windows2000 operat-
ing system. In our models, we encode the three operating systems
using two indicator variables, OX and WIN.

We expect off-the-shelf operating systems (Windows and Linux)
to introduce unnecessary complexity and configuration issues that
can be more easily controlled in a proprietary system (encoded as
OX), where only essential features are supported and versions and
configurations can be precisely tested and tuned to reflect deployed
environments.

4.2.3 Ports
The ports predictor measures the usage pattern factor and the hard-
ware configurations factor. The number of ports indicates how
many licensed endpoints are supported by the system. The usage
patterns are likely to be very different for machines with different
number of ports and some equipment is only available for systems
with more ports. In our models, we encode the log number of ports
with the log(nPort) variable.

We expect systems with more ports to be have more customer inter-
actions. A system supporting only 100 users is less likely to experi-
ence a problem compared with a system supporting 3000 customers
that is likely to be operating near its operational limits. This is due
to both the increased amount of usage and the increased amount of
usage at borderline and complex situations.

4.2.4 Total deployment time
The deployment time predictor measures the deployment issues
factor. We use total system runtime on all deployed systems from
the installation of the first system until the installation of the jth

system as a measure of deployment time:

Runtime(tj) =
X

ti<tj

(tj − ti)

where ti is the installation times of the i-th systems. In our models,
we encode the log of the total deployment time using the log(rtime)
variable.

As a new release is used by customers and exposed to the varied
usage patterns, more issues may be reported. These issues are then
fixed via patches and incorporated in the later dot releases. Since
these dot releases are shipped later in a major release’s deployment
cycle, systems installed later will not experience problems detected

by early customers. These systems may demonstrate better quality.
As Avaya gathers experience in detecting and remediating prob-
lems and as technician and customer support teams improve prod-
uct knowledge through installation and configuration, field person-
nel will become better in helping customers avoid problems. There-
fore, we expect fewer customer interactions as the total deployment
time increases.

4.2.5 Software upgrades
The software upgrades predictor measures the deployment issues
factor. Upgrades (indicator variable Upgr) are specific cases where
the software received an upgrade within three months prior to in-
stallation of a major release. In our model we encode the existence
of an upgrade using an indicator variable called Upgr.

In general, upgrades serve to keep machines running properly by
incorporating the latest fixes and refinements to the system. Up-
grades have the clearly defined purpose of making the system more
stable, so we expect them to have that effect.

4.3 Nuisance factors
In addition to the predictors in Section 4.2, it is clear that customer
reporting practices and organizational factors also affect customer
interactions. These may include industry segmentation (financial,
government, health care, etc), customer support organization (US
domestic vs international), or company size (large cap, mid-cap,
etc). In our analysis, we include variables that we think will have
significant effects on the measures of customer perceived quality.
We call them nuisance factors because they are likely to identify
peculiarities of data reporting and collection process, but not nec-
essarily differences in the underlying customer perceived quality.

4.3.1 US or international installation
We make a distinction between US domestic and international cus-
tomers because the support processes differ significantly. There
may be other differences, for example, the system may interfaces
with slightly different equipment and networks. In our models, we
encode the location of the installation using the indicator variable
called US.

4.3.2 Service contracts
We make a distinction between customers that have and do not have
service contracts. If a customer does not have a service agreement,
then each time the customer requests help, the customer may be
charged a fee depending on the nature of the problem, plus the
appropriate parts and labor charges. We speculate that customers
without a service contract agreement tend to report issues less fre-
quently. By contrast, customers with a service contract tend to re-
port problems more often. In our models, we encode the existence
of a service contract using the indicator variable called Svc.

In addition, customers with an Avaya service contract also get re-
mote monitoring service that may prevent some of the issues from
having significant impact by implementing quick (and automatic)
fixes.

This measure may be confounded with customer types. Customers
that require very high availability are more likely to pay for a full
coverage service agreement.

4.3.3 Missing configuration information

The deployment data, especially the number of ports variable, have
a large number of missing entries. The proportion of customers
missing data for the number of port is large (44%) and the cus-
tomer population where data are missing may be different, making
conventional statistical treatment of missing data (e.g. imputation)
inappropriate. We introduce the indicator variable nPortNA in the
analysis to identify systems missing the number of ports data.

5. RESULTS
In this section, we present results of our regression analysis. The
response variables are in the form of occurrence counts except for
the very rare event of a software malfunction, which we convert to
a binary indicator (i.e., whether the count is positive or not) and
fit a logistic regression model. For other measures we take a log
transformation of the response variable and fit a linear regression
model [16].

We first fit models to test the relationships hypothesized in Sec-
tion 4 using the data from a single major release. Then we use the
models to predict customer interactions for the next major release.

Due to space limitations, we present full results only for two mea-
sures that reflect the two types of quality issues of interest described
in section 4 and briefly discuss the results for the other measures.

5.1 Software failures
We attempt to predict if a customer will observe a failure that leads
to a software change using logistic regression. Our response vari-
able Y MR

i is binary. One, if a customer observes a failure that leads
to a software modification within the first three months of system
installation and zero otherwise. Our predictor variables, x̃i are de-
scribed in Section 4.The model is:

P(Y MR
i = 1|x̃i) =

ex̃T
i β

1 + ex̃T
i

β

5.1.1 Modeling software failures
Estimate Std. Err. z-value Pr(>|z|)

(Intercept) −5.26 0.64 −8.18 3 ∗ 10−16

log(rtime) −0.30 0.03 −8.85 < 2 ∗ 10−16

Upgr 1.38 0.15 9.01 < 2 ∗ 10−16

OX −1.18 0.17 −6.75 2 ∗ 10−11

WIN 1.01 0.34 2.98 0.003
log(nPort) 0.36 0.08 4.37 10−5

nPortNA 2.03 0.58 3.49 5 ∗ 10−4

LARGE 0.52 0.20 2.67 0.01
Svc 0.57 0.18 3.11 .002
US 0.52 0.27 1.92 0.05

Table 1: Software failure regression results.

The results are presented in Table 1. Total deployment time (rtime),
as described in Section 4.2, decreases the probability that a cus-
tomer will observe a failure that leads to a software change. Ex-
istence of upgrades (Upgr) increases the probability. A customer
using the Windows platform has the highest probability. The next
most likely is the Linux platform. The least likely is the pro-
prietary platform. The probability increases with the number of
ports (nPort) and also where the number of ports is not reported

(nPortNA). Large systems (LARGE) have a higher probability. Fi-
nally, the two nuisance factors indicate that customers with service
contracts (Svc) and in the United States (US) are more likely to
observe a failure that leads to a software change.

The model reduces the deviance by about 400, the residual deviance
is still quite high: around 2000, indicating that there is still much
unexplained variation. This is not particularly surprising since de-
velopment, verification, deployment, and service processes are all
designed to eliminate failures. Consequently, if there are obvious
causes of failures, then the relevant organizations will have taken
measures to address the issues. The result is a more random failure
occurrence pattern.

The model indicates that the total deployment time is one of the
most important predictors of observing a failure that leads to a soft-
ware change. It is important to understand why such a relationship
exists. Customers who installed the application early may have
detected malfunctions that are fixed by the time later customers
install their systems. In addition, the individuals performing the
installation and configuration may have acquired more experience,
have access to improved documentation (by documentation we also
have in mind emails, informal conversations, and discussion lists),
and have better training, which increase the awareness of potential
problems and work-arounds.

The lesson from this relationship is that customers that are less tol-
erant of availability issues should not be the first to install a ma-
jor software release. This is a well known practice that is often
expressed as a qualitative statement: “never upgrade to dot zero
release.” The probability of observing a failure that leads to a soft-
ware change drops from 13 to 25 times for the most reliable propri-
etary operating system as runtime goes from zero (the first system
installed) to the time that is at the midpoint in terms of the rtime
predictor, depending on system configuration. The least reliable
Windows platform experiences a drop in probability of 4 to 8 times
and the Linux platform experiences a drops of 7 to 24 times de-
pending on configuration. This indicates that for the most reliable
software platform the deployment schedule has a tremendous im-
pact on the probability that a customer will experience a failure that
leads to a software change.

The number of ports is significant even after adjusting for the sys-
tem size. Since the number of licensed ports also represents system
utilization, we may infer that the amount of usage is important in
predicting the probability of observing a failure that leads to a soft-
ware change as hypothesized.

The only surprise is that the existence of an upgrade is related to a
higher probability. This suggests that upgrades may be the mani-
festation of system complexity, which increases the probability of
both upgrades and failures.

Nuisance parameters require slightly different interpretations be-
cause they distinguish among populations of customers and dif-
ferent reporting processes. The positive coefficient in Table 1 for
the Svc variable may appear to be counterintuitive because having
a service agreement should help reduce the probability (a nega-
tive coefficient for Svc). Our interpretation is that having a service
agreement significantly increases a customer’s willingness to report
minor problems, which biases results (for more detail see [18]). To
really measure the effect of service agreement, one should control
for the over-reporting effect by looking at customers with similar

experiences. This is known as a case control study, see, e.g., [2], in
the statistical literature.

5.1.2 Predicting software failures
To demonstrate the applicability of our model we predict software
failures that lead to a software change for a new release using the
model fitted from previous releases (in this case one previous re-
lease). We refit the model in Table 1 for prediction using the most
significant predictors with p-values below 0.01 as shown in Table 2.
We also exclude the predictors log(nPorts) and nPortNA because
the predictors are not available to us at the time of analysis for the
new release.

Estimate Std. Error z value Pr(>|z|)
(Intercept) −2.58 0.27 −9.64 < 10−16

log(rtime) −0.30 0.03 −9.10 < 10−16

Upgr 1.69 0.15 11.51 < 10−16

OX −1.34 0.16 −8.64 3 ∗ 10−12

WIN 0.61 0.30 2.01 0.04
Svc 1.03 0.15 6.67 3 ∗ 10−11

Table 2: Software failure prediction model.

We used the parameter values from Table 2 estimated from data
on the old release and predictors for the customers deploying the
new release to predict the probability of a customer experiencing a
failure that leads to a software change. Customers with predicted
probability of failure above a certain cutoff value c are predicted
to experience a software related failure. These predictions are then
compared with actual reports. The predictions are characterized us-
ing Type I (the proportion of systems that do not observe a failure
but that are predicted to observe a failure) and Type II (the propor-
tion of systems that observe a failure but that are not predicted to
observe a failure) errors.

The plots of the two types of errors for different cutoff values are
in Figure 1.

0.70 0.72 0.74 0.76 0.78 0.80

0.1
8

0.2
0

0.2
2

0.2
4

0.2
6

0.2
8

0.3
0

Cutoff

Er
ror

Type I Error
Type II Error

Figure 1: Type I and II errors.

The horizontal axis in Figure 1 shows the cutoff in terms of quan-
tiles of the probability (fraction of customers that have probability
below certain value) rather than actual probability for confidential-
ity reasons. All predicted probabilities are less than 3% indicating
that failure is a rare event.

To choose an appropriate cutoff value, we need to conduct a cost-
benefit analysis of the cut-off values. The decision may be different
for different products and customers. A higher cut-off may satisfy

customers that are less tolerant of failures. A lower cut-off may
satisfy customers that are aggressively exploring new capabilities.

5.2 Customer calls and other quality measures
We attempt to predict the number of calls, system outages, techni-
cian dispatches, and alarms within the first three months of instal-
lation using linear regression. For example, in the case of calls, the
response variable Y calls is the number of calls within the first three
months of installation transformed using the log function to make
errors more normally distributed. The predictor variables, x̃i are
described in detail in section 4. The model is:

E(log(Y calls
i)) = x̃

T
i β

5.2.1 Modeling customer calls
Estimate Std. Err. t value Pr(>|t|)

(Intercept) 0.35 0.04 7.90 3 ∗ 10−15

log(rtime) −0.08 0.00 −27.72 < 2 ∗ 10−16

Upgr 0.73 0.02 46.78 < 2 ∗ 10−16

OX 0.13 0.01 9.62 < 2 ∗ 10−16

WIN 0.75 0.03 25.73 < 2 ∗ 10−16

log(nPort) 0.10 0.01 16.82 < 2 ∗ 10−16

nPortNA 0.39 0.04 10.80 < 2 ∗ 10−16

LARGE 0.30 0.01 20.78 < 2 ∗ 10−16

Svc 0.28 0.01 23.06 < 2 ∗ 10−16

US 0.41 0.01 28.99 < 2 ∗ 10−16

Table 3: Number of calls regression. R2 = .36.

Most predictors are statistically significance due to large sample
sizes. Table 3 shows the fitted coefficients for the number of calls.
The regression results for the other three quality measures (system
outages R2 = .06, technician dispatches R2 = .15, and alarms
R2 = .18) are similar except for the cases discussed below.

The total deployment time factor improves (decreases the num-
ber) all five quality measures and is highly significant. The exis-
tence of an upgrade (Upgr) makes all five quality measures worse.
As we discussed in Section 5.1.1, upgrades may be confounded
with complexity. Larger (LARGE) systems are worse than small
to medium systems across all measures. Increase in the number of
ports (nPorts) degrades quality with respect to all five measures.

The operating system did not always have the hypothesized effect.
The numbers of outages, dispatches, and calls are lower for Linux
than for the embedded system. We do not have a good explanation
of this discrepancy. Furthermore, the Windows platform has worse
quality measures except for the number of alarms. However, this
is not surprising since only a few types of alarms are generated on
low end systems running on the Windows platform.

Despite the few exceptions, it is reassuring to see the diverse mea-
sures of customer perceived quality being affected in almost the
same fashion by the factors. This implies that, at least in terms
of these measures, different aspects of quality do not need to be
traded-off against each other. Simultaneous improvements in all
measures of customer perceived quality are possible.

5.2.2 Predicting customer call traffic

We demonstrate the applicability of our model by predicting cus-
tomer call traffic from new customers for a new release to help de-
termine staffing needs of a customer support organization. On aver-
age, each customer support specialist can process a fixed number of
calls per month. Therefore, to predict staffing needs, it is sufficient
to predict the total number of calls per month. We refit the model in
Table 3 without the predictors log(nPorts) and nPortNA to predict
the number of calls from new customers for a new release. Figure 2
illustrates the trend of predicted and actual inflows of calls.

2003.6 2003.7 2003.8 2003.9 2004.0 2004.1 2004.2 2004.3

0
50

0
10

00
15

00
20

00

Months

Ca
lls Actual calls per month

Predicted calls per month

Figure 2: Prediction of monthly call traffic.

The two trends are very close to each other indicating that the flow
of calls can be predicted fairly accurately. Due to space limitations
we do not present full details of predicting the inflow of calls for
new and existing systems.

6. VALIDATION
It is important to validate data, measures, and models to ensure that
results reflect underlying phenomena and not the peculiarities of
the data collection method or of a particular project.

We inspected documents related to the development and support
process and interviewed relevant process experts to verify their ac-
curacy. Through this process, we discovered differences between
different populations of customers, which lead to the inclusion of
location and service predictors into the models.

External validation involved interviewing experts and field person-
nel to ensure that results are consistent with their perception of re-
ality. We used multiple operationalizations of customer perceived
quality to discover common trends (we also used multiple measures
because it is impossible to capture various aspects of customer per-
ceived quality using a single measure).

We performed internal validation of the data by obtaining and com-
paring metrics from several data sources. For example, we con-
sidered both calendar time since general availability and total de-
ployment time. Our comparisons showed that both predictors had
similar effects.

To validate our data extraction process and analysis, we indepen-
dently wrote programs to extract and process data and performed
independent analysis. Data analysis was conducted as a pipeline
process where raw data was imported from operational databases
in the first stage, the relevant filtering was performed in the second
stage, summaries were produced in the third stage, and statistical
analysis was performed in the last stage. The analysis code in-
cluded several thousand lines of Perl and R code and small amounts
of SQL and shell script code.

Validation and test data sets were constructed to verify the accuracy
of each stage.

To ensure that data was homogeneous we used nuisance factors to
separate data sets that were reported or collected using different
processes or by different organizations.

Spearman correlations between predictors were mostly low. The
top correlation of −.89 was between nPortNA and log(nPort).
This relationship was obvious. The port information was either
available log(nPort) or not nPortNA. The only other correlation
above .5 was between Svc and nPort 0.51. The correlation indi-
cated that the number of ports was more likely to be recorded in
equipment databases if the customer had a service contract. Inspec-
tion of regression residuals did not reveal any unusual patterns.

Each organization or software system might be deployed in a differ-
ent manner that would affect the type of models that may be most
suitable. For example, shrinkwrap software might be introduced
quite broadly to thousands or millions of users, while the software
investigated here was introduced more gradually.

Figure 3 shows number of newly installed systems over time for
the two major releases we investigate. The counts include new sys-
tems and upgrades. Despite attempts to validate the results, it is

2002.0 2002.5 2003.0 2003.5 2004.0 2004.5

0
50

0
10

00
15

00

Months

De
plo

ye
d s

ys
tem

s

Figure 3: Deployment of systems each month

important to note that they represent one, albeit, very large project
and may not generalize elsewhere. We try to make the analysis
transparent and applicable to other projects and organizations. We
expect to learn much from applying the method elsewhere. We en-
courage application of the results to address questions of significant
business importance including predicting customer experiences and
predicting staffing needs. The ultimate validation is the quality and
utility of the prediction in practice. Indeed, initial application of the
approach in two other Avaya projects is bringing excellent results.

7. MEASUREMENT USING PROJECT SUP-
PORT SYSTEMS

In this section we outline the steps necessary to replicate results
at another organization. There are three basic steps: project data
extraction, project data validation, and modeling of relevant phe-
nomena.

In the data extraction stage access to the project support and project
management systems is obtained and raw project data is extracted.
In case of home-grown tools, it may be necessary to interview a
person responsible for tool support to understand the structure and
functionality of such systems.

We identify data sources that are available at other organizations
that can be used to replicate our results. IBM has data from a tiered
customer support tracking system and change management systems
similar to the one at Avaya. Buckley and Chillarege describe the
RETAIN database as well as license tracking systems at IBM that
capture call center information, defect information, and software
license information [3]. In fact, more detailed Orthogonal Defect
Classification information is available at IBM [4, 11].

HP’s NonStop Enterprise Division (NED) has a customer support
tracking system and a software polling system that produces data
similar to Avaya’s [17]. HP’s support organization has information
about non-defect related support requests for HP NED products as
well as software failures. NED uses installation data and software
polling information to determine the installed base.

The analysis based on data produced by project support tools and
databases has a number of distinct benefits that may not be imme-
diately obvious. The data already exist and data collection is non-
intrusive, which makes analysis possible in commercial projects
that are usually under intense schedule pressure and do not have
time or resources to collect additional data. History on past projects
is available, which enables comparison to what happened in the
past and enables customization and calibration of methods to the
environment. The information is often fine grained: at the prob-
lem report/customer call/software change level. The information
is complete. All issues and artifacts that are supported by project
tools are recorded. The way project support systems, tools, and
databases are used rarely changes, which makes data uniform over
time. Even small projects generate large volumes of data, which
makes it possible to detect even small effects statistically. Project
support and tracking systems are used as a standard part of the
project. The development project is unaffected by experimenter
intrusion, which eliminates observer effects.

8. RELATED WORK
Our work differs from previous work in three ways. First, we quan-
tify and predict quality perceived by a single customer. Second, our
models predict quality measures for a widely-deployed commercial
system and can be used to predict current staffing needs. Finally,
we examine a broad range of customer perceived quality measures
and factors.

Related work like [8, 12, 9, 5] predict the total number of faults
in a system or if a component will be defect prone. The results aid
maintenance resource planning and guide testing. However, previ-
ous work have not focused on a single customer, have not included
a wide range of quality measures, and have not considered deploy-
ment issues, software platform, or hardware configurations.

Many works have considered content factors and development fac-
tors, likes lines of code, Cyclomatic complexity, code age, and
the number changes to implement a feature, to predict defect oc-
currences. One such effort is the COQUALMO project at USC,
which is the quality extension of the COCOMO II project [5]. The
COQUALMO model uses size metrics and various process (devel-
opment process) modifiers, to predict the total number of residual
defects in a software system using a linear model. However, CO-
QUALMO does not consider deployment issues, hardware config-
urations, software platform, or usage patterns and predicts only the
total number of defect. Jones et. al. [9] uses usage patterns data
in addition to software product metrics to predict the probability
of a defect occurrence for a large telecommunications system at

Nortel. The authors use a logistic regression model to predict the
probability of a defect occurrence and to quantify the impact of the
predictors. Results show usage to be a statistically important pre-
dictor. However, Jones et. al. do not consider deployment issues,
hardware configurations and software platform. The predictions in-
dicate the probability that a module contains a defect and not the
probability that a customer will experience a defect. Neither work
predict other important customer interactions.

Our work is related to previous work that examine quality measures
linked to customer perceived quality. Buckley and Chillarege at
IBM [3] examine customer surveys to determine that the number of
defect fixes and the total number of problem reports have the most
influence on customer satisfaction for one IBM product. Chulani et.
al. in [6] examine customer satisfaction surveys across multiple
IBM products to find that the amount of time to resolve an issue
is more closely related to customer satisfaction than the number of
code related defects. We use their results to determine our measures
of customer perceived quality.

Our focus on quality as perceived by a single customer is similar to
efforts to certify software. Voas advocates certifying commercial
software for use in a customer’s environment [15], and Wallnau
et. al. at the Software Engineering Institute are conducting re-
search on predictable assembly from certified components [10].
Both approaches test software in the customer’s environment then
extend results into usage. These approaches account for several en-
vironmental variables and make statistical guarantees about various
properties. However, we feel that their cost is prohibitively expen-
sive. In order to help guide staffing needs for the development or-
ganization, every customer’s setting needs to be tested. With thou-
sands of customers, schedule constraints, and resource constraints,
exhaustive testing is infeasible. Our approach does not require in-
trusive individual customer testing and we examine wide range of
customer interactions.

Much of the prior research in software reliability has been con-
ducted on systems where the testing environment and the deploy-
ment environment are similar. Similarities in hardware configu-
rations, software platform, and usage patterns have allowed re-
searchers to extend defect occurrence patterns from development
into the field. Lyu in [11] provides a comprehensive review of pre-
vious works, including model origins, modeling assumptions, and
a classification of commonly used reliability models.

Our approach is different from prior approaches that extend results
from testing into the field. We consider a commercial software sys-
tem that is widely deployed and is used by many customers. We
have neither prior knowledge nor control over environmental fac-
tors. This makes extending results from testing to the field infea-
sible. In addition, we take a broader view of customer perceived
quality and consider many other quality measures in addition to
defect occurrences.

9. DISCUSSION
We present models that can predict customer experience for a sin-
gle customer and can predict aggregated customer interactions. The
results are encouraging, showing that predictions are not only pos-
sible, but are also accurate enough to guide important business de-
cisions including targeted deployment that could improve customer
perceived quality. The models also quantify the relative importance
of delivery issues, usage patterns, software platform, and hardware
configurations in shaping customer perceived quality. These results

can help guide quality improvement efforts.

We predict a wide variety of measures that allows for customer
support resource planning by customer support organizations and
for maintenance resource planning by the software development
organization. In addition to traditional software defect occurrence
predictions, which help resource planning at the development or-
ganization level, we also predict customer calls and technician dis-
patches, which aid planning for direct customer support.

Finally, we present methodology and caveats on how to use soft-
ware and customer support data repositories to facilitate replication
of our results in other organizations.

Our models show that some measures of customer perceived qual-
ity can vary by up to 30 times for the highest availability systems
just depending on the manner of deployment. This indicates the
profound importance of deployment strategy in managing customer
perceived quality, especially when a customer’s expectations are
high. It is also important to note that the complexity of configura-
tions and environments for the products we analyzed makes it im-
possible to replicate all customer environments during system ver-
ification. Surprisingly, the predictors affect all five customer per-
ceived quality measures in similar ways, i.e., a change in the pre-
dictors associated with improvement in one of the quality measures
is also associated with improvements in the other quality measures.
The knowledge of such large differences and simple relationships
between predictors and the five customer perceived quality mea-
sures allows making decisions that can have significant impact on
the project. We plan to report applications of our models to sup-
port release planning and to improve software quality in this and in
other projects.

10. ACKNOWLEDGMENTS
This research was supported by the National Science Foundation
under Grand CCR-0086003, by the Sloan Software Industry Cen-
ter at Carnegie Mellon University, and by the NASA High Depend-
ability Computing Program under cooperative agreement NCC-2-
1298. We would like to thank all the people in Avaya who provided
information directly (via interviews) or indirectly (by working on
the products under study.) In particular we thank E. Moritz and D.
Sokoler and others for providing insight on customer support pro-
cess, project management and other aspects of the studied software
projects. We would also like to thank Jim Herbsleb and Mary Shaw
for their valuable insight and support.

11. REFERENCES
[1] D. Atkins, T. Ball, T. Graves, and A. Mockus. Using version

control data to evaluate the impact of software tools: A case
study of the version editor. IEEE Transactions on Software
Engineering, 28(7):625–637, July 2002.

[2] N. Breslow. Statistics in epidemiology: the case control
study. JASA, 91(433):14–28, 1996.

[3] M. Buckley and R. Chillarege. Discovering relationships
between service and customer satisfaction. Proceedings of
the International Conference on Software Maintenance,
pages 192 – 201, 1995.

[4] R. Chillarege, S. Biyani, and J. Rosenthal. Measurement of
failure rate in widely distributed software. Twenty-Fifth
International Symposium on Fault-Tolerant Computing,
pages 424–433, 1992.

[5] S. Chulani. Coqualmo (constructive quality model) a
software defect density prediction model. Project Control for
Software Quality, 1999.

[6] S. Chulani, P.Santhanam, D. Moore, and G. Davidson.
Deriving a software quality view from customer satisfaction
and service data. European Conference on Metrics and
Measurement, 2001.

[7] S. R. Dalal and C. L. Mallows. When should one stop testing
software? Journal of American Statist. Assoc, 83:872–879,
1988.

[8] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting
fault incidence using software change history. IEEE
Transactions on Software Engineering, 26(2), 2000.

[9] W. Jones, J. Hudepohl, T. M. Khoshgoftaar, and E. B. Allen.
Application of a usage profile in software quality models.
Third European Conference on Software Maintenance and
Reengineering, pages 148–157, March 1999.

[10] P. L. Li, M. Shaw, K. Stolarick, and K. Wallnau. The
potential for synergy between certification and insurance.
International Workshop on Reuse Economics in conjunction
with ICSR7, April 2002.

[11] M. R. Lyu. Handbook of Software Reliability Engineering.
IEEE Society Press, Los Alamitos, CA, 1996.

[12] A. Mockus and D. M. Weiss. Predicting risk of software
changes. Bell Labs Technical Journal, 5(2):169–180,
April–June 2000.

[13] A. Mockus, D. M. Weiss, and P. Zhang. Understanding and
predicting effort in software projects. In 2003 International
Conference on Software Engineering, pages 274–284,
Portland, Oregon, May 3-10 2003. ACM Press.

[14] J. Musa, A. Iannino, and K. Okumoto. Software Reliability:
Measurement, Prediction, Application. McGrawHill, New
York, 1987.

[15] J. Voas. User participation-based software certification.
Proceedings of Eurovav 1999, pages 267–276, June 1999.

[16] S. Weisberg. Applied Linear Regression, 2nd Edition. John
Wiley & Sons, USA, 1985.

[17] A. Wood. Software reliability from the customer view. IEEE
Computer, pages 37–42, August 2003.

[18] P. Zhang, J. Landwehr, and M. Serban. Quantifying the value
of remote maintenance: An analysis of customer outage data,
2004.

