ABSTRACT
Better post-release defect prediction models could lead to better maintenance resource allocation and potentially a software insurance system. We examine a special class of software systems and analyze the ability of currently-available defect prediction models to estimate user-reported defects for this class of software, widely-used and multi-release commercial software systems. We survey currently available models and analyze their applicability to an example system. We identify the ways in which current models fall short of addressing the needs for maintenance effort planning and software insurance.

General Terms
Management, measurement, economics, reliability, software maintenance.

Keywords
User-reported defect estimation, empirical maintenance models, software defect models.

1. INTRODUCTION
Hedging the risks associated with owning software is an important economic issue for both producers and consumers of software products. Risk aversion on the part of software consumers has created a market for software maintenance contracts and has opened the opportunity for software insurance. Software producers must manage the uncertainties of providing software support and market decisions that balance the risks and benefits they present to their customers. A good defect prediction model is an important first step towards pricing maintenance contracts, estimating support costs such as maintenance staffing, and creating software insurance. We compare models for estimating user-reported defects in the particular setting of widely-used and multi-release commercial software systems. For a defect prediction model to be useful in this setting the model has to account for aspects of the software system and its operating environment that could cause large variances in defect predictions.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

EDSER '03,
2. EXAMPLE SYSTEM

We will use a concrete example to help us reason about the defect prediction problem. Consider a software system, SystemX.

SystemX is an operating system with the usual functionalities associated with such a system. Specification of these functionalities does not come from one customer, but rather has evolved through time in response to market demands. Customers of SystemX vary, from application development organizations that develop software for SystemX, to small businesses that depend on SystemX to run applications coordinating suppliers, and private users that use SystemX for leisure.

SystemX is developed by an organization whose business goal is to maximize profit. This organization has a clearly defined, repeatable development process. The organization’s profit maximizing strategy is to keep customers happy and loyal by implementing advanced features and by providing customer support, all at minimum costs. A customer service division answers and tracks user/customer questions that arrive through various channels. Incoming inquiries include a combination of questions that reflect defects in the software and questions that are requests for information or symptoms of user confusion. The support division records a defect when it determines that a customer question is a code related problem. The recorded defects then become the responsibility of the maintenance division, which could be the same as the development division, to resolve.

We will use SystemX to compare and evaluate defect prediction models.

3. THE OPERATIONAL SETTING

SystemX is a widely-used and multi-release commercial software system. This means that successive releases of SystemX implement changes as dictated by the market. Each release will have many instances, installed with different configurations. A new release of SystemX repairs some defects and, as history indicates, introduces new defects. The decisions to adopt a new release and to report defects are made by the customer. This section examines the implications of these conditions. Each condition introduces variation in defect occurrence characteristics, which includes both the number of defects and the occurrence rates. Effects of these variations must be understood in order to predict defect rates accurately.

3.1 User-reported defects

This section addresses user-reported defects, the occurrence of interest. We follow the definition set forth in [6] and [7]: a user-reported defect is a mistake at the coding level, which manifests in a deviation from the expected behavior that is reported by a user. We take defects to mean user-reported defects in this paper.

After SystemX is released, the meaningful measure of perceived quality in the commercial setting is defects as reported by the user [6]. The number of users causes variations in user-reported defect occurrence characteristics.

We count the number of defects associated with mistakes at the coding level. Many users might report the same defect or different symptoms of the same defect. For our purposes, a defect is recorded the first time it is reported, and subsequent reports of the same defect are ignored or attached to the prior defect report. In addition, not all calls to a call center reflect defects; some, for example, reflect misunderstanding by the user. Defects are recorded only when the support division can associate them with code mistakes.

3.2 Widely-used systems

This section addresses characteristics of a system that is used in many different configurations and for many different purposes. Widely-used systems have many instances in operation running with different hardware and software configurations, as is often the case when a system is sold to many different customers.

Differences in configuration include other software systems, such as databases, middleware, and applications, hardware components, such as processors and storage devices, and/or in purpose of use, such as for business critical infrastructure or for leisure.

Our description of “widely-used” is not to be confused with “widely-distributed”, which refers to systems that are implemented with many distributed communicating components. It is also not to be confused with a system that has simply many users. Although SystemX could have many users, we are concerned here with systems that have multiple instances.

The widely-used characteristic causes variation between defect occurrence characteristics during testing and in the field. The number of different possible configurations of SystemX makes it infeasible to consider and test all possible configurations during development. Moreover, the large number of different types of users makes it impractical to discover all usage scenarios.

3.3 Multi-release systems

This section discusses the characteristics of an evolving software system that changes to meet developing trends by incorporating the latest innovations. We characterize multi-release systems as having successive releases that incorporate incremental changes and improvements.

Depending on the features introduced in a release and customers’ usage characteristics, some customers might choose to adopt the latest release of SystemX right away, others might delay adoption, and others might choose to stay with older releases. The development process is also undergoing constant improvement.

Different user adoption strategies cause variations in defect occurrence rates. A software development company might always adopt the latest release of SystemX to assure continued compatibility with its own products. A small business might delay adoption to decrease the likelihood of defects. Leisurely users might never adopt the latest release of SystemX unless they wish to utilize an important feature. Defects associated with particular hardware and software configurations might or might not be discovered for a given release.

Differences in the complexity and the extent of changes introduced by a release can cause variations in defect occurrence characteristics. Major modifications or new technologies, which due to their critical nature and/or complexity might have significant impacts on the development process, the resulting software system, and user adoption and usage characteristics. For example, a release of SystemX implementing multi-tasking, an essential and complex feature, is likely to have different defect occurrence characteristics than a release implementing improved performance for a few hardware components.
Multi-release systems could also experience variations in defect occurrence characteristics resulting from changes in the development process. Development organizations are constantly trying to improve their processes. The improvements are incremental, but these process changes can affect the number of residual defects in a software system.

3.4 Commercial systems
This section presents characteristics of a software system developed by an organization in which the release schedule is driven by market forces.

SystemX’s quality is one among many forces guiding development and release decisions. Other considerations include demands of the market, timetables set forth by management, and resource constraints of the organization. Business objectives might make it necessary to make trade offs between time to market and quality. Commercial systems will have variations in defect occurrence characteristics, since the software must sometimes be release with substantial number of defects still in the system.

3.5 Summary
The problem is multi-dimensional. Table 1 presents a summary of concerns that a defect prediction model must address. This table serves as a reference when thinking about possible solutions

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Sources of variation in defect occurrence characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>User-reported defects</td>
<td>- Number of users</td>
</tr>
<tr>
<td>Widely-used system</td>
<td>- Software configurations</td>
</tr>
<tr>
<td></td>
<td>- Hardware configurations</td>
</tr>
<tr>
<td></td>
<td>- Usage patterns</td>
</tr>
<tr>
<td>Multi-release system</td>
<td>- Adoption patterns</td>
</tr>
<tr>
<td></td>
<td>- Changes introduced</td>
</tr>
<tr>
<td></td>
<td>- Development process changes</td>
</tr>
<tr>
<td>Commercial system</td>
<td>- Fixed release schedule</td>
</tr>
</tbody>
</table>

4. EXISTING MODELS
For simplicity, we focus only on the defect occurrences and treat all defects equally. We recognize that different defects will have different associated costs, both in their damages to the customer or cost to the development organization for their repair. We hope to address these concerns in later works. This section examines currently available prediction models focusing on aspects of the models that we will use for our analysis in section 5.

4.1 Parameterized mathematical models
Parameterized mathematical models have a fixed form with parameters that are tuned using data from the current release. Since these models were originally developed for customized one-off systems, the models assumed that the testing environment accurately simulates the intended usage environment, thus they extend defect occurrence rates found during testing into the field [10]. These models fit their parameters using defect counts and defect occurrence times starting from time zero up to time t. From the fitted model, the defect occurrence rates and in some cases the numbers of remaining defects after time t are estimated.

β and α are model parameters, which have different meanings and values for each model. The total number of defects, N, is assumed to be given in some models, like the Weibull [6] and variants of the exponential [11]. Since N cannot always be accurately estimated, other models include the total number of defects as a model parameter to be estimated. The model parameters are tuned using data from the current release up to some time t, through mathematical methods like maximum likelihood or least squares.

Due to the different model forms, each model will produce a different prediction for the number of defects and the rate of defect occurrences after time t. A summary of commonly applied models is in Table 2.

<table>
<thead>
<tr>
<th>Model Group</th>
<th>Model Form</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finite Exponential</td>
<td>$\mu(t) = \alpha(1-\exp(-\beta t))$</td>
<td>Defect occurrence counts and times, up to time t</td>
<td>Defect rates and defect counts after time t</td>
</tr>
<tr>
<td>Infinite Geometric</td>
<td>$\mu(t) = (1/\beta)\ln((\alpha\exp(\beta t) + 1)$</td>
<td>Defect occurrence counts and times, up to time t</td>
<td>Defects rates and defect counts after time t</td>
</tr>
<tr>
<td>Infinite Logarithmic</td>
<td>$\mu(t) = \ln((\alpha + 1)\beta)$</td>
<td>Defect occurrence counts and times, up to time t</td>
<td>Defect rates and defect counts after time t</td>
</tr>
<tr>
<td>Finite Weibull</td>
<td>$\mu(t) = N(1-\exp(-\beta t))$</td>
<td>Defect occurrence counts and times, up to time t</td>
<td>Defect rates and defect counts after time t</td>
</tr>
<tr>
<td>Finite Gamma</td>
<td>$\mu(t) = \alpha(1-(1+\beta^{2})\exp(-\beta t))$</td>
<td>Defect occurrence counts and times, up to time t</td>
<td>Defect rates and defect counts after time t</td>
</tr>
</tbody>
</table>

Table 3 gives a summary of implied assumption and applications. Due to the different model forms and parameterizations, each model in Table 2 has a different implied assumption regarding the hazard rate, the rate at which the defects remaining in the system are uncovered at time t. The hazard rate will be important when we analyze and compare the ability of parameterized models to predict defect for SystemX in Section 5.1. Detailed explanations of the concepts presented in this section can be found in [8].

<table>
<thead>
<tr>
<th>Model Group</th>
<th>Hazard Rate</th>
<th>Defect Total</th>
<th>Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finite Exponential</td>
<td>Constant</td>
<td>Finite</td>
<td>Jelinski and Moranda, 1972; Masa, 1979</td>
</tr>
<tr>
<td>Infinite Geometric</td>
<td>Decreasing</td>
<td>Infinite</td>
<td>Moranda, 1979</td>
</tr>
<tr>
<td>Infinite Logarithmic</td>
<td>Decreasing</td>
<td>Infinite</td>
<td>Musa-Ookamoto, 1984</td>
</tr>
<tr>
<td>Finite Weibull</td>
<td>Increasing</td>
<td>Finite</td>
<td>Kenny, 1993</td>
</tr>
<tr>
<td>Finite Gamma</td>
<td>Increasing</td>
<td>Finite</td>
<td>Yamada, Ohba, and Osaki, 1983</td>
</tr>
</tbody>
</table>
4.2 Bayesian methods

In contrast to parameterized mathematical models, which require data from the current release up to time \(t \) to estimate defect occurrences after time \(t \), Bayesian models can take prior information, such as information from previous releases, to estimate defects occurrences before the release of the current release. An important feature of the Bayesian framework is its ability to use information as it become available to improve and adjust estimates.

The Bayesian model has the same model form as its non-Bayesian cousin except that the parameters in the Bayesian models are treated as variables as well. Thus, Bayesian model need prior distributions, an estimate, for each parameter in the model [10]. There are various ways to construct the prior such as creating a distribution of possible parameter values using fitted model parameters of previous releases or eliciting values from experts, and in the worst case where no prior information is available, it is possible to mathematically construct a non-informative prior that offers no insight into the system but which makes defect predictions possible. Once data becomes available from the field, model parameters can be adjusted from the prior to better fit the data. At any time \(t \) it is possible to have modified predictions as result of re-estimating model parameters using field defect information.

Table 4 gives a summary of the inputs, outputs, and research on Bayesian models. We analyze the ability of Bayesian models to predict defects occurrences for SystemX in Section 5.2.

Table 4. Summary of Bayesian models.

<table>
<thead>
<tr>
<th>Model Group</th>
<th>Research</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bayesian Exponential</td>
<td>Littlewood 1987</td>
<td>Historical defect occurrence information and available defect occurrence information</td>
<td>Defects occurrence information and available defect occurrence information</td>
</tr>
<tr>
<td>Bayesian Gamma</td>
<td>Littlewood-Verrall 1980</td>
<td>Historical defect occurrence information and available defect occurrence information</td>
<td>Defect occurrence rates and counts</td>
</tr>
<tr>
<td>Bayesian Geometric</td>
<td>Liu 1987</td>
<td>Historical defect occurrence information and available defect occurrence information</td>
<td>Defect occurrence rates and counts</td>
</tr>
</tbody>
</table>

4.3 Product/process models

Process and product models estimate the number of defects in the current release using estimates of the size of the product or the deviation from the previous release and known organizational information.

Research in this area traces back to Belady and Lehman’s work on system growth and system structure degradation in successive system releases [7]. Their research serves as the basis for several methods, which measure the amount of change in a software system and predict the number of defects that result from the changes. Some notable results are summarized in Table 5. We analyze the ability of product/process models to predict defect occurrences for SystemX in Section 5.3.

Table 5. Product/process models.

<table>
<thead>
<tr>
<th>Model Group</th>
<th>Research</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using lines of code with organizational adjustments</td>
<td>Rome Laboratory, 1992</td>
<td>Lines of code estimate and process effectiveness estimates</td>
<td>Total number of residual defects</td>
</tr>
<tr>
<td>Using software change information</td>
<td>Mockus et al. 2003, Graves et al. 2000</td>
<td>Change management information</td>
<td>Number of residual defects (effort)</td>
</tr>
</tbody>
</table>

5. ANALYSIS OF EXISTING SOLUTIONS

Given the various models available, we now examine how well they address the concerns involved with modeling user-reported defects for SystemX.

5.1 Ability of the model to fit the data

The first step is to choose a model that accurately describes defect occurrences data. This involves picking a model from Table 3 that fits the conditions of SystemX.

Section 4.1’s survey of parameterized mathematical models in practice shows that three categories of models are widely applied: finite exponential, infinite, and finite Weibull and Gamma.

Finite exponential models like those that used by Jelinski and Moranda [11] and Musa [14], (First row in Table 3.) assume that the number of defects in the system is finite and that the hazard rate, the rate at which defects are uncovered, is constant. These assumptions do not fit SystemX since the repair process can introduce defects, and the rate at which the varying numbers of customers are uncovering defects is non-constant.

Infinite models like those used by Musa-Okumoto [15] and Moranda [12], (The third and forth rows in Table 3.) assume that the number of defects in the system is infinite due to a decreasing hazard rate. Although this class of models correctly assumes that defects are being re-introduced into the system. It also assumes that the rate at which defects are being uncovered is always decreasing, but since the number of users of SystemX increases over time, the rate at which defects in the system is uncovered should be increasing.

Finally, we examine Weibull and Gamma models like those used by Kenny [6], Yamada and Ohba [17]. (Row five and six in Table 3) Like exponential models, the total number of defects is assumed finite. However, unlike both exponential and infinite models, this class of models accurately describes the migration characteristic. Due to the expressive power offered by the models’ parameters, Gamma and Weibull models can describe the ramping up characteristic due to migration seen in SystemX.

The Weibull model has been shown to be able to describe defect occurrence patterns seen in widely-used commercial systems[6]. We not aware of any other paper that attempts to fit other models to defect occurrences data from a system with our characteristics.
5.2 Ability to incorporate prior information
The main drawback of parameterized mathematical models is the need to wait until defect data from the current release is available. However, if we want to plan for maintenance, we need to make defect predictions before release to the field. We cannot use defects occurrences during testing to tune model parameters before release, because defect rates during testing will not reflect occurrence characteristics in the field due to the widely-used characteristic of SystemX. However, we can use the multi-release characteristic of SystemX to help us to overcome this difficulty.

Defect information from previous releases can be used by Bayesian models in Table 4 to construct prior distribution for model parameters before field defect information from the current release is available. The resulting model will be able to estimate defect occurrence rates and defect occurrence counts for the current release before release to the field. The Bayesian process can also uses defect information as it becomes available to update the parameter estimates. Intuitively this means that whenever defects are reported and repaired for SystemX, a Bayesian model can re-computed the expected number of defects in the system to reflect the fact that repairs could have introduce new defects into the system.

The Bayesian Gamma model used by Littlewood should be able to describe the defect occurrence characteristics of a commercial system, but the total number of defects in the current release is a model parameter that is estimated using defect occurrences data from previous releases. Intuitively this does not make sense because the number of defects in any given release of SystemX should be the result of the amount change in the release and the status of development organization, and not a result of the field defect occurrence characteristics of previous releases.

There is not a Bayesian Weibull model at present. However, we feel that the machinery available through Bayesian methods and the ability of the Bayesian framework to update estimates could be combined with the Weibull model.

5.3 Ability to account for product/production differences
Up to this point, we have not considered variations due to changes in the product or due to the organization that developed the product. Since information about the changes that a release implements and the development process is available before release, product/process models use this information to estimate defect occurrences.

COQUALMO, the extension into the software quality domain of Bohem’s work with COCOMO estimates the number of residual defects in a system using lines of code and process drivers related to characteristics of the development organization concerning various defect introduction stages and defect removal methods. These drivers are derived from expert guesstimate at first, and then tuned to match actual defect counts [3]. COQUALMO assumes that the number of defects at release time is the result of two processes during development, defect introduction and defect removal. The drawbacks of COQUALMO are that it estimates only the total number of defects and it uses lines of code. Lines of code alone are not very good estimators of complexity. In addition, maintenance planning and software insurance for SystemX require defect occurrence estimations at any time t, not merely the total number of defect.

An alternative is to use change data captured by change management systems. In addition to lines of code changed data, the recorded data includes the number of changes, the associated feature request, and the developer who made the change. Mockus uses the non-intrusively recorded feature/fix requests data, which can be seen as a change data at a high level, along with lines of code and number of changes to estimate maintenance efforts [13]. The method uses a delay factor to determine when the estimated effort will occur and a ratio to describe the defect repair effort relative to the development effort. However, this method does not consider adoption characteristics of SystemX, which could vary between releases depending on the features implemented. In addition, this method does not take into consideration process changes.

Currently, there does not exist a model that incorporates research in parameterized mathematical models, Bayesian models, and process and product models.

6. CONCLUSION AND THE ROAD AHEAD
Widely-used and multi-release commercial software systems are an important class of software systems. Reliance on these systems has created a need for maintenance contracts to assure defect resolution and for software insurance to provide compensation in the event of a defect. Both techniques require a defect occurrence model, but no model is currently available that can account for all possible causes of variation in defect occurrence characteristics. We find existing solutions lacking in their considerations of organizational changes and user adoption characteristics. A summary is in table 6.

<table>
<thead>
<tr>
<th>Model Grouping</th>
<th>Best solution</th>
<th>Desirable features</th>
<th>Main Drawbacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameterized mathematical models</td>
<td>Weibull model</td>
<td>Describes the ramping up pattern</td>
<td>Assumes no defects are introduced into the system after release.</td>
</tr>
<tr>
<td>Bayesian models</td>
<td>Bayesian Gamma model</td>
<td>Predictive by using priors and parameters (like defect totals) can change after release</td>
<td>Does not consider release differences</td>
</tr>
<tr>
<td>Process/Product models</td>
<td>Product change model</td>
<td>Describes release differences through change data</td>
<td>Does not consider organizational changes</td>
</tr>
</tbody>
</table>

Current modeling techniques do not adequately consider organizational changes, which includes process changes, tool changes as well as changes in influential personnel, such as a lead designer, which could affect defect occurrence characteristics [4]. We feel that insights gained from case studies, postmortems, and experience reports suggest that evaluations by developers who...
have worked on multiple releases of a software system can accurately evaluate variations in the product and in the development process. However, currently no model attempts to quickly capture and use this source of information.

Current approaches to defect modeling do not account for differences in customer adoption characteristics. We feel these differences are important because the customers are the ones who exercise the code to detect defects in the commercial setting. The number of customers and the configurations they use has a direct effect on the number of defects found. Customer support divisions and sales departments could provide this information.

Research in customer adoption is not to be confused with customer usage profiles and defect profiles as researched by Weyuker [16] and Bassin and Santhanam [1]. Customer usage profiles describe the frequency with which a piece of code is exercised. Defect profiles describe the type and order in which defects occur. While both are interesting, we are interested in rates of adoption: the number and type of customers who adopt a release and the time when they adopt.

An improved defect prediction model in our setting needs to be validated by showing it is applicable to a wide range of commercial software systems like operating system, servers, office suites, and web browsers. In addition, it has been an improvement over existing solutions such as ones listed in Table 6.

Once a defect occurrence estimation model is available, can we move towards structured maintenance planning and begin to evaluate the possibility of software insurance.

7. ACKNOWLEDGMENTS

This research was supported by the National Science Foundation under Grand CCR-0086003, by the Carnegie Mellon Sloan Software Center, by the High Dependability Computing Program from NASA Ames cooperative agreement NCC-2-1298.

The authors would like to thank Peter Santhanam and Bonnie Ray of IBM Research for their contribution to this work.

The authors would like to thank Audris Mockus for his insights, and Vahe Poladian for his valuable input.

8. REFERENCES

