Micro Planning for Mechanical Assembly Operations

S. K. Gupta

Robotics Institute
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Significant advances have been made wn the area of
macro planning for assembly operations (i.e., divid-
g a product into sub-assemblies, determining the se-
quence of assembly operations). On the contrary, the
state of the art in micro planning (i.e., tool selection,
path planning for tool and part movements) is rather
primative. To generate a realizable assembly plan, both
macro planning and micro planning problems need to
be solved. Tooling considerations are an important
component of the micro planning problem. Therefore,
we present a methodology for modeling assembly tools,
selecting tools for assembly operations, and generating
detailed tool movements. Techniques described in this
paper can be combined with macro planning techniques
to result in a complete assembly planner.

1 Introduction

Developing high-performance electro-mechanical
products is a very challenging task. To improve the ef-
ficiency and to reduce the product weight and volume,
designers have to pack a large number of components
in a very small space. At the same time, there needs
to be sufficient room for performing assembly and dis-
assembly operations. These conflicting requirements
make design of electro-mechanical products a highly
iterative process. Quite often, the product develop-
ment process includes physical prototyping in the de-
sign loop to verify proper functioning and ease of as-
sembly. Physical prototyping tends to slow down the
product development process and constrain the num-
ber of design alternatives that can be examined con-
siderably.

We are developing an assembly planning and sim-
ulation environment for electro-mechanical products.
Our goal in this project is to develop a high fidelity
assembly simulation and visualization systems that

C. J. J. Paredis

P. F. Brown

Institute for Complex Engineered Systems

Carnegie Mellon University

Pittsburgh, PA 15213

can detect assembly related problems without going
through physical mock-ups. To assist the user in cre-
ating these simulations, we have developed a micro
planning system.

Depending on the level of plan detail, assembly
planning systems can be divided into two different
types: macro planners and micro planners. Macro
planners deal with the high level planning decisions,
such as dividing a product into sub-assemblies, or de-
termining the sequence of assembly operations. Mi-
cro planners, on the other hand, deal with the low
level planning decisions, such as selecting appropriate
tools, or planning detailed tool and part movements.
To create a completely automated assembly planning
system both capabilities are necessary. A lot of work
has been done in developing macro planners for as-
sembly planning [6, 7, 3, 2, 12, 17, 24, 15, 20], but the
area of micro planning is relatively under-explored.
Therefore, we have chosen to focus on micro planning.
We hope that our work can later be integrated with
macro planners to create a complete assembly plan-
ning system. In the mean time, we intend to rely on
designers/process engineers for macro planning while
providing them with micro planning tools to quickly
verify the high level plans.

This paper primarily describes our research in the
areas of tool modeling, tool selection, and path plan-
ning for tool movements.

2 System Overview

As shown in Figure 1, our assembly toolkit consists
of four major components: interface agents, synthesis
agents, analysis agents, and a data manager. We have
chosen to adopt a modular agent-based architecture
for the following reasons:

e expandability: new synthesis and analysis agents
can be easily added.

Assembly Editing | [« > Interference
Plan Editing Assembly Model
y Mode o
Augmentation Tool Accessibility
Workspace Editing || |—7———| | :
Micro Planning Stabilit !
Simulation Control \ / ___________ y_ o i
[T TTT T T 1
I
i Macro Planning i Ergonomics |
U | b !
Interface Synthesis Analysis
Agents Agents Agents
Data Assembly Assembly Workspace
Manager Model Plan Model

Figure 1: System architecture of the assembly toolkit.
Dashed components have not yet been implemented.

e composability: the user can compose a group of
analysis agents that is appropriate for the current
design phase.

e performance: some synthesis and analysis algo-
rithms are computationally expensive; one may
want to distribute these agents over several net-
worked workstations for parallel processing.

The following scenario illustrates the overall capa-
bilities of our system and describes the function of each
of the components. A designer creates an assembly
design using a commercial CAD package. After sav-
ing the design in ACIS format, he imports the assem-
bly into our system using the assembly editor. Next,
the assembly model augmentation agent automatically
builds a contact graph indicating the types of contacts
fixed, prismatic joint, revolute joint, etc.) between
the parts of the assembly. Using feature recognition, it
also recognizes assembly features on individual parts,
e.g. a hexagonal slot on a screw; this information will
later be used by the micro planner to select tools and
determine tool paths. In collaboration with the pro-
cess engineer, the designer then uses the workspace
editor to create the work-cell in which the assembly
operations will take place. They decide the layout
of the environment and the positions of each of the
parts and tools. Subsequently, the process engineer
enters a high level plan (macro plan) using the plan
editor. The micro planner automatically converts the
high-level assembly operations and tooling informa-
tion into low-level part and tool motions (micro plans).
The animation viewer allows the process engineer to
verify the assembly plan visually. For a more scrupu-
lous analysis, he selects several analysis agents (e.g.
interference or stability analysis) with the simulation
controller, and composes them into a customized sim-

—_

ulation. After several design and planning iterations,
the process engineer generates a final animation of the
assembly process and downloads it to the operator’s
desktop computer. The assembly operator can start
assembling the parts immediately without the need
for extensive training. He can randomly access any
particular operation in the assembly sequence and in-
teractively change the 3D viewpoint within the ani-
mation.

3 Tooling

The ability to account for tooling requirements
is critical in both design and assembly of complex
electro-mechanical products. The designers need to
make sure there 1s no interference between tools and
parts. Likewise, process engineers need to ensure that
an assembly operator has enough room to manipulate
the tools. Moreover, both the execution time and the
quality of the assembly depend on the tool type and
its particular application.

Without adequate software-aids, designers cur-
rently rely on physical prototypes to investigate tool
accessibility issues. We are building micro planning
software that helps designers and process engineers to
select and evaluate tool applications within assembly
plans.

3.1 Previous Work

To analyze tool accessibility in machining oper-
ations, two different approaches have been devel-
oped. The first approach checks for interference be-
tween the workpiece and the tool accessibility vol-
ume, which is defined as the non-cutting portion of
the tool [10, 19, 8]. The second approach uses visi-
bility maps [23, 14]; a machining operation for a par-
ticular face is selected such that the tool approach
direction is inside the visibility region for that face.
Both approaches have also been applied for coordinate
measuring machines, to determine the accessibility of
inspection points.

The tool accessibility problem has also been inves-
tigated for the assembly domain. Homem deMello and
Sanderson’s [4] model of assemblies include attach-
ments, which describe fastening methods. Four types
of attachment are considered: clip, pressure, screw,
and glue. Even though the attachments can be used
to generate disassembly sequences, the detailed tool
movements required to carry out these attachment are
not modeled. Diaz et al. [5] present a method that au-
tomatically determines the complexity of an assembly

Figure 2: Tool representation for a plier including its
application frame and degree-of-freedom.

task based on the tool use. The most detailed work
is reported by Wilson [22]. Wilson developed a tool
representation that includes the tool’s use volume, i.e.
the minimum space that must be free in an assem-
bly to apply the tool. He further divides tools into
pre-tool, in-tool, and post-tool classes, based on the
time at which the tools are applied relative to when
the parts are mated in the assembly operation. In ad-
dition, he provides algorithms for finding feasible tool
placements.

3.2 Tool Representation

To enable reasoning about tool usage, we have de-
veloped tool models that capture the following three
types of information.

Tool Geometry: To investigate accessibility issues,
we need to represent the geometry of a tool. In gen-
eral, we model tools as articulated devices. During
the assembly process, one can control the joint values
for each of the DOFs of the tool. As illustrated in
Figure 2 and 3, we also define a tool application frame
that indicates the tool’s position relative to the part
to which it is applied. Some tools can be used in more
than one way. Therefore, we allow the same physical
tool to correspond to multiple logical tools. For ex-
ample, the Allen wrench in Figure 4 can be treated as
two different logical tools each with its own applica-
tion frame and motion definition.

Tool Parameters: For a given assembly operation,
the size and shape of the tool need to match the size
and shape of the part feature to which it is applied. To
check whether this condition is satisfied without hav-
ing to rely on geometric reasoning with solid models,
the size of the tool is abstracted in the tool parame-
ters. As illustrated in Figure 5, a flathead screwdriver
is characterized by the length, width, and height of its
tip. These parameters are compared to the parameters

Figure 3: Tool representation for a screw driver.

z

Tool B

Tool A

Figure 4: Two logical tools corresponding to the same
physical tool.

of the corresponding part feature in the applicability
condition.

Tool Use: The final component of our tool model
lists, for each type of assembly operation supported
by the tool, the sequence of motions describing the
proper tool use. Some of the types of assembly op-
erations that are currently supported are: position,
screw, unscrew, tighten, loosen, reorient, fit, and ex-
tract. A tool will typically support one or more of
these operations. We have also modeled a logical tool
called “no_tool” that has no physical tool attached to
it and supports all of the above operations.

As shown in Figure 5, the motion primitives are
expressed in TCL syntax and may contain references
to both the part and tool parameters. This paramet-
ric description allows complicated tool movements to
be expressed as a simple sequence of elementary mo-
tions. Some elementary motions, such as relative and
absolute linear moves of parts or tools, translate di-
rectly into low-level simulation primitives; others, such
as “screw with retraction,” require a large number of
simulation primitives. The “screw with retraction”
motion-macro divides a single screwing operation into
multiple applications over 60 or 120 degrees each. This

{ Tool

{
{

}
{

Name screwdriver }

Body

{ URL screwdriveril.asm }
{ Transform identity }

PartFeatures
{ Name FlatSlot }
{ Name Thread }

Parameters

{ Length 3 }

{ Width 0.8 }
{ Height 1.2 }

ApplicabilityCondition

TCL script

Yexpr $Width < $FlatSlot(Width) &&
$Height > $FlatSlot (Depth)"

Operation { Type screw }
TCL script
"# engage motion
AbsMoveTool $FlatSlot (Reference)
RelativeTo $part (transform);
RelMoveTool Transform translation
0 0 -$FlatSlot (Depth);
Attach $tool(name) $part (name);
operate motion
RelMoveTool Transform screw 0 0 0 0 0 1
[expr -360%$Thread (Depth) *$Thread (hand) /
$Thread (Pitch)] -$Thread(Depth);
disengage motion
Detach $tool (name) $part (name);
RelMoveTool Transform translation
0 0 $FlatSlot(Depth);"

Operation { Type unscrew }
TCL script
"# engage motion
AbsMoveTool $FlatSlot (Reference)
RelativeTo $part (transform);
RelMoveTool Transform translation
0 0 -$FlatSlot (Depth);
Attach $tool(name) $part (name);
operate motion
RelMoveTool Transform screw 0 0 0 0 0 1
[expr 360%$Thread (Depth)*$Thread (hand) /
$Thread (Pitch)] $Thread(Depth);
disengage motion
Detach $tool (name) $part (name);
RelMoveTool Transform translation
0 0 $FlatSlot(Depth);"

Figure 5: A file describing a flathead screwdriver.

Figure 6: A Phillips slot feature.

z

PhillipsSlot
« Reference

Y Thread
Reference
_ X

Figure 7: Phillips slot feature on a screw.

1s useful in case a wrench 1s used in a confined area in
which it cannot complete a full 360-degree rotation.

3.3 Tool selection

Whether a tool is applicable depends on the type
of operation for which it is to be used, and on the fea-
tures of the part to which 1t is applied. For example,
a Phillips screwdriver can only be used for screwing in
a screw with a Phillips slot of the appropriate dimen-
sions. For a given assembly operation, a feasible tool
is selected according to the following steps:

1. Consider only those tools for which the given as-
sembly operation is supported.

2. Verify that the part to which the tool is applied
has all the required features listed in the tool
model (the definitions of the part features are de-
scribed in the next section)

3. Evaluate the tool applicability condition to verify
that the dimensions of the tool match the dimen-
sions of the corresponding part feature.

4. Finally, for parts containing symmetry, determine
the initial position of the tool and part such that

no collisions occur during the execution of the
motion script; this is a planning problem that will
be addressed in Section 4.

3.4 Part feature recognition

We have developed an algorithm that automatically
recognizes the following assembly features: FlatSlot,
PhillipsSlot, HexagonalSlot, HexagonalBoss, and
CircularHole.

The feature recognition algorithm is quite generic
because of our canonical representation of features.
The representation consists of a parametric base face
(with a particular surface type, number of edges, in-
terior angles, and accessibility condition) and a set
of neighboring faces. The algorithm loops over all
the faces in the solid model and compares each of
them with the parametric representation of the fea-
tures’ base face. If there is a match and the base
face needs to be accessible, the algorithm checks for
intersections between the normally swept volume of
the base face and the rest of the part. Finally, the
neighboring faces of the base face are matched with
the neighboring faces of the feature template. If all of
the above conditions are met, the algorithm extracts
features’ reference frame and the values of its param-
eters.

Two additional features are required to support au-
tomatic tool generation for all the assembly opera-
tions: Thread and AdhesiveFace. These features do
not have any distinguishing geometric characteristics
(a thread is commonly modeled as a plain cylinder);
therefore, the user has to identify them and provide
their relevant parameters. As an example consider the
PhillipsSlot feature defined in Figure 6 and shown
in Figure 7 as part of a screw. The parameter values
and reference frame are listed in the description file in
Figure 8.

4 Planning

As described in the previous section, for a given
tool and assembly operation, the tool motion script
models the motion sequence of the tool required to
execute the assembly operation. However, to specify
the tool motion completely, there are still two main
issues that need to be addressed:

Determination of the tool application position:
Many part and tool features contain an element of
symmetry. For instance, the thread of a screw can be
considered axially symmetric, while the tool feature of
an Allen wrench has hexagonal symmetry. As a result,

{ Part
{ Color steelblue }
{ Transform identity }
{ Material
{ Name steel }
{ Density 7.8 }

{ Feature
{ Type PhillipsSlot }
{ Wwidth 1.5 }
{ Depth 1.2 }
{ Length 6.5 }
{ Reference Transform homogeneous
0040-101001}

{ Feature
{ Type Thread }
{ Pitch 1.5 }
{ Depth 20 }
{ Hand 1 }
¥

metric thread

right-handed

Figure 8: A file describing a part with its features.

a tool may be applied in a (possibly infinite) number of
different application positions; sometimes, the choice
of application position determines whether an assem-
bly operation fails or succeeds. For instance, certain
application position may cause a collision during the
execution of the tool’s motion script. It is the task of
the micro planner to determine a feasible application
position.

Determination of the approach/return path: In
most (dis-)assembly sequence planners, it is assumed
that parts and tools can be extracted along a straight
line from their assembled position to infinity [21, 12].
In real world assemblies, part and tool trajectories
commonly consist of sequences of translations and ro-
tations along different directions. It is the task of the
micro planner to determine this motion sequence.

4.1 Tool application position

For symmetric tools and/or parts, there may exist
multiple tool application positions. Wilson [22] rec-
ognized this and defined the number of DOFs for a
tool as the number of independent directions along
which a tool can be repositioned while performing a
given assembly operation. For instance, when apply-
ing glue with a glue gun, the orientation of the gun
can be chosen freely, resulting in 3 DOFs. It is im-
portant to notice that the number of DOFs depends

Figure 9: Finding the initial position for a wrench.

not only on the tool but also on the part to which
the tool is applied; an open-end wrench does not have
any symmetry, but when applied to a bolt with axial
symmetry, the operation still has one DOF. Figure 9
shows an example.

The goal is to find values for each of the DOFs so
that the resulting application position does not cause
any collisions during the execution of the tool’s mo-
tion script. Strictly speaking, the goal should be to
find not only the initial application position but the
complete tool path, including intermediate retractions
and articulations of the tool. This is a very compli-
cated problem that we have yet to address. In this
paper, we will limit ourselves to finding the applica-
tion position for 1-DOF assembly operations.

Finding a tool application position with 1-DOF re-
quires a search through a 1-dimensional search space.
To guide the search, we have chosen the following
heuristic: the fraction of time during which the tool
collides with any other part in the assembly or envi-
ronment. This heuristic is computed by performing
a simulation of the motion script starting from the
current application position, and checking for interfer-
ence at discrete time intervals. Note that the heuristic
may introduce multiple local minima, so that a global
search method is required. We have chosen the P*
algorithm introduced by Zilinskas [25]. P* combines a
one-stage Bayesian algorithm with Brent’s local mini-
mization, resulting in smart global coverage and accu-
rate local refinement. Moreover, the method does not
require gradient information and is relatively easy to
implement.

4.2 Tool approach path

To move a tool from its initial position in the
workspace environment to the application position, re-

quires in general a sequence of translations/rotations.

To generate these complicated paths, one could rely
on the user’s geometric intuition. Indeed, humans
tend to be rather good at finding a collision free path
between an initial and final position. However, there is
currently no convenient mechanism available to enter
a 6-DOF path into the computer; specifying via-points
textually is tedious and error-prone, graphical entry is
difficult because a mouse has only two DOFs, and VR,
environments with 6-DOF hand tracking are still very
expensive and therefore not readily accessible.

It is our goal to relieve the user from the path
planning task all together, and generate tool and part
paths automatically. The 6-DOF path planning prob-
lem is very challenging, however, due to the following
characteristics. First, in the application position, the
tool tends to be in contact with the part to which 1t is
applied. That means that in the configuration space
the goal configuration may be almost completely sur-
rounded by obstacles, which is a situation that is typ-
ically difficult to handle for path planning algorithms.
Second, one only computes a path once for each part
in the assembly. This means, that one cannot amor-
tize any of the pre-computations required by some of
the path planning algorithms (e.g. pre-computation
of the configuration space).

Over the years, many different path planning al-
gorithms have been developed [13]: roadmap meth-
ods, cell decomposition methods, potential field meth-
ods, etc. Most algorithms require the computation
of the configuration space representation of obstacles
which is very expensive for a 6-DOF C-space cluttered
with obstacles, as in assembly planning. Moreover,
this computation cannot be amortized, because the
C-space changes dramatically when tools and parts
are moved.

Several path planning algorithms have been devel-
oped specifically for assembly planning [1, 18]. Our
implementation is based on a group of randomized
path planners [1, 11, 16]. These algorithms do not
require the computation of the C-space; they consist
of the following components: a simple potential field
method, generation of random via-points, creation of a
roadmap graph, and search of the roadmap. For a de-
tailed description of these algorithms refer to [11, 16].

We have implemented a simple potential field
method that is an extension of the method described
in [16]. The method lets the tool make small moves to
36 neighboring positions (6 pure translations, 6 pure
rotations, and 24 combined rotations/translations),
and ranks these positions according to their distance
from the goal position. The tool is moved to that

direct neighbor that is closest to the goal without col-
liding with any obstacles. The algorithm terminates
when the goal is reached or when no neighboring po-
sitions closer to the goal are collision free.

To check for collision, we use a combination of
RAPID and ACIS. RAPID is a fast collision detection
algorithm based on oriented bounding-box trees [9].
Because 1t uses a faceted representation of the tools
and objects, it often detects collisions between objects
that are in contact but do not really intersect. For
instance, when rotating a cylindrical object inside a
cylindrical hole of the same diameter, RAPID will al-
ways detect a collision except when the facets of the
hole happen to line up perfectly with the facets of the
cylinder. Since contact situations are common in as-
sembly, we use the ACIS geometric kernel to check for
intersections between the exact solid models whenever
RAPID detects a collision between the faceted models.
In this way, we are able to check for collisions rapidly
and accurately.

The creation of the roadmap based on randomly
generated via-points is unacceptably slow for our pur-
poses. Instead, we have defined a set of via points that
yields feasible paths in most cases. These points are
located at the corners of an expanded bounding box
around the subassembly of the parts that are being
mated. If this selection does not result in a connected
roadmap, then the user is asked to identify promis-
ing via-points using a graphical user interface; until a
feasible path is found.

Most of the time, this simple algorithm is able to
find feasible paths relatively quickly for a single tool
movement. By performing the computation in the
background, while the user is specifying the next as-
sembly operation, the path planning does not cause
significant delays. Only when the user changes or
inserts an assembly operation towards the beginning
of the assembly plan becomes path planning a bot-
tleneck. Indeed, a change in an assembly operation
may change the position of one or more objects in the
workspace which invalidates all subsequent tool paths.

5 Conclusions

In this paper, we have present a methodology for
modeling tools, selecting tools, and generating de-
tailed tool paths for mechanical assembly operations.
Our approach improves the state of the art in micro
planning for mechanical assemblies in the following
manner:

e Tools are modeled as articulated devices. This al-
lows us to consider tools that use articulation to
perform assembly operations. Our notion of artic-
ulated devices can be easily extended to include
a model of the assembly agent (human hand, or
robot) that is manipulating the tool.

e We model the motion of tool during its use. This
allows us to perform very accurate accessibility
checks and select the appropriate tool for a given
assembly operation.

e We have developed tool selection and path plan-
ning techniques to automatically select tools and
generate detailed tool movements for a wide va-
riety of assembly operations.

We believe that the research presented in this paper
is a step towards an automated micro planner and can
eventually be combined with macro planning to create
a complete assembly planner.

Acknowledgments

This research was funded in part by DARPA un-
der contract ONR #N00014-96-1-0854 , by Raytheon
Company, the Robotics Institute, and the Institute
for Complex Engineered Systems at Carnegie Mellon
University.

References

[1] Nancy M. Amato and Yan Wu. A randomized
roadmap method for path and manipulation plan-
ning. In Proceedings of the 1996 IEEE Interna-
tional Conference on Robotics and Automation,
Minneapolis, MN, April 1996. IEEE.

[2] L Homem de Mello. Task Sequence Planning for
Robotic Assembly. PhD thesis, Carnegie Mellon
University, May 1989.

[3] L Homem de Mello and A Sanderson. A correct
and complete algorithm for the generation of me-
chanical assembly sequences. In IEEE Interna-
tional Conference on Robotics and Automation,

pages 5661, May 1989.

[4] L.S. Homem de Mello and A.C. Sanderson. A cor-
rect and complete algorithm for the generation of
mechanical assembly sequences. [EEE Transac-
tions on Robotics and Automation, 7(2):228-240,
April 1991.

[5]

[10]

[11]

Antonio Diaz-Calderon, D. Navin-Chandra, and
Pradeep K. Khosla. Measuring the difficulty of
assembly tasks from tool access information. In
Proceedings of the IEEE International Symposum
on Assembly and Task Planning, pages 87-93,
1995.

T De Fazio and D Whitney. Simplified gen-
eration of all mechanical assembly sequences.
IEEFE Transactions on Robotics and Automation,

3(6):640-658, Dec 1987.

T De Fazio, D Whitney, Man-Cheung Max Lui,
T Abell, and D Baldwin. Aids for the design of
choice of assembly sequences. In IEEE Interna-

tional Conference on Systems Machines and Cy-
bernatics, Nov 1989.

Daniel Gaines and Caroline Hayes. A constraint-
based algorithm for reasoning about the shape
producing capabilities of cutting tools in ma-
chined part. In ASME Design for Manufacturing
Conference, Sacremento, CA, September 1997.

S. Gottschalk, M. C. Lin, and D. Manocha. OBB-
tree: a hierarchical structure for rapid inter-
ference detection. In Proceedings of ACM Sig-
graph’96, 1996.

S.K. Gupta. Automated Manufacturability Anal-
ysis of Machined Parts. PhD thesis, University of
Maryland, College Park, MD, September 1994.

Lydia E. Kavraki, Petr Svestka, Jean-Claude
Latombe, and Mark H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional
configuration spaces. [EEE Transactions on
Robotics and Automation, 12(4):566-580, August
1996.

P Khosla and R Mattikalli. Determining the as-
sembly sequence from a 3-d model. Journal of
Mechanical Working Technology, pages 153-162,
Sep 1989.

Jean-Claude Latombe. Robot motion planning.
Kluwer Academic Publishers, Norwell, MA | 1991.

Putta Laxmiprasad and Sanjay Sarma. A fea-
ture free approach to 5-axis tool path generation.
In ASME Design for Manufacturing Conference,
Sacremento, CA, September 1997.

Joseph Millner, Stephen Graves, and Daniel

Whitney. Using simulated annealing to select

[16]

[17]

[18]

[19]

[25]

least-cost assembly sequences. In IEFE Interna-
tional Conference on Robotics and Automation,

pages 2058-2063, San Diego, May 1994.

Mark. H. Overmars and Petr Svestka. A prob-
abilistic learning approach to motion planning.
In Proceedings of the First Workshop on the
Alogrithmic Foundations of Robotics, pages 19—
37. A. K. Peeters, Boston, MA, 1994.

A Sanderson, . Homem de Mello, and H Zhang.
Assembly sequence planning. Al Magazine,

11(1):62-81, Spring 1990.

Achim Schweikard and Fabian Schwarzer. Gen-
eral translational assembly planning. In Proceed-
wngs fo the 1997 IEEE International Conference
on Robotics and Automation, pages 612-619, Al-
buquerque, NM, April 1997.

Roger Stage, Mark Henderson, and Chell
Roberts. A framework for representing and
computing tool accessibility. In ASME Design
for Manufacturing Conference, Sacremento, CA,

September 1997.

A Swaminathan and K S Barber. Ape: An
experience-based assembly sequence planner for
In IEEE International
Conference on Robotics and Automation, vol-
ume 2, pages 1278-1283, May 1995.

mechanical assemblies.

R. Wilson. On Geometric Assembly Planning.
PhD thesis, Dept of Computer Science, Stanford
University, March 1992.

Randall H. Wilson. A framework for geometric
reasoning about tools in assembly. In Proceedings
of the 1996 International Conference on Robotics
and Automation, pages 1837-1844, Minneapolis,
MN, 1996.

T. Woo. Visiblity maps and spherical algorithms.
Computer-Aided Design, 26(1), 1994.

T. C. Woo and D. Dutta. Automatic disassembly
and total ordering in three dimensions. ASME
Transactions, Journal for Engineering for Indus-

try, 113(2):207-213, 1991.

A. Zilinskas. Optimization of one-dimensional
multimodal functions, algorithm AS133. Applied
Statistics, 23:367-375, 1978.

