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Closer Vehicle Sequence (time code 14:48:20-14:48:24)

0 200

Fig. 19 - Image sequence with close obsta-
cles

Fig. 20 - Same image 120mS later

Fig. 21 - Edge image of Fig. 19 Fig. 22 - Edge image of Fig. 20

Fig. 23 - Prediction of Fig. 19 Fig. 24 - Obstacle image. In this image, the
car on the right is easily detectable
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Distant Vehicle Sequence (time code 14:45:10-14:45:14)

0 20 40

Fig. 13 - Image sequence with distant vehi-
cles

Fig. 14 - Same image 120mS later

Fig 15 - Edge image of Fig. 13 Fig 16 - Edge image of Fig. 14

Fig. 17 - Prediction of Fig 15 Fig. 18 - Obstacle image. Note that the dis-
tant vehicles are hard to detect.
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Sequence at time code 13:03:20-13:03:22

0 50 100

Fig. 7 - Road image with no obstacles, taken
1 second after Fig 1

Fig. 8 - Same image after 66mS.

Fig. 9 - Edge image of Fig.7 Fig. 10 - Edge image of Fig 8

Fig. 11 - Prediction of Fig 9 Fig. 12 - Obstacle image
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10. Images

Sequence from which camera parameters were calibrated (time code 13:02:20-13:02:22)

0 50 100

Fig. 1 -Road image with no obstacles Fig. 2 - Same road image 66 mS later

Fig. 3 - Edge image of Fig 1 Fig 4 - Edge image of Fig 2

Fig. 5 - Model based prediction of Fig.3 Fig. 6 - Obstacle image generated by com-
paring Figs. 4 and 5



page 14

(1)

whereP is a projection matrix:

(2)

andT is a transform matrix:

(3)

Converting (1) to ordinary Cartesian coordinates, we get:

(4)

(5)

9.2. Inverse Perspective when Z=0

To findv givenp, we can invert (1). Without going through the tedious details, converting the resulting homog-
enous line to a cartesian line gives:

(6)

Whereλ is a free (positive real) variable which parameterizes the projection ray. However, our ground plane
assumption tells us that vz is 0. This means we can solve forλ, plug it back into (6), and solve for vx and vy.
Again, taken from [7], we see that the solution is:

(7)

(8)
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9. Appendix A - Prediction Equations

Figure A.1. - Computation of Predicted Image

This appendix describes the principles and equations behind our planar parallax prediction model. The above
figure demonstrates how we distinguish between a point on the road and an obstacle point.

• {Xw,Yw,Zw} is the world coordinate frame.
• {Xc, Yc, Zc} is the camera centered coordinate frame.
• Hc is the height of the camera from the ground plane.
• ϕ is the pitch angle of the image plane.
• θ (not shown) is the yaw angle of the image plane.
• f is the focal distance.
• g is a point on the ground plane at a distancey from the origin of the world frame.
• g’ is the pointg after travelling a distanced in the -Yw direction.
• o is an obstacle point above the ground plane.
• o’ is the pointo after travelling a distanced in the -Yw direction.

Now, consider the image pointp. Any real world point alongl1 could project top. There is no way to deter-
mine which point. However, if we assume the real world point is on the ground plane, we can calculate the
depthy. If we travel a certain known distanced, we can create a new world pointg’, by addingd meters to the
depth. If we reprojectg’ back onto the image plane, it projects top’. p’ is our prediction of the pointp given
that we’ve travelledd meters. However, if the image pointp was caused by a vertical obstacleo, it would
project top’’  after travellingd meters. Therefore, if we search the actual image taken after travellingd meters
for an image point atp’ and don’t find it, we know that the original image point was caused by an obstacle, and
not a shadow or other feature on the ground. The following equations formalize this. For a full explanation, see
Duda and Hart [7], Chapter 10. We simplify their equations by assuming that the translation from world frame
to camera frame is (0 0 Hc)T. We also assume the camera rotates about the lens center.

9.1. Forward Projection

Working with homogenous world coordinatesv, image coordinatesp can be calculated by

p

p’

p’’

XC

ZC

YC

HC

f

y

y+d

g g’

o o’

Image Plane

Xw

Zw

Yw

l1
l2 l3

ϕ
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6. Conclusions

We have presented a system which solves a restricted inverse perspective mapping problem to warp a camera
image to how it would appear after travelling a distanced, given our planar assumptions. This warped image is
then compared to the actual image taken at distanced, and an obstacle image is generated. The strengths of this
approach are that it is computational cheap (due to not computing an actual optical flow field), can run on stan-
dard PCs, and is not affected by shadows and other non-moving objects which lie in the ground plane. The dis-
advantages to this approach were discussed in the future work section. These initial experiments show
promise, and we believe that this is a potentially viable way to detect blind-spot impingement using a cheap,
passive sensor.
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5. Future Work

Future work will concentrate on using curvature information provided by RALPH to modify the prediction to
handle curved roads. An onboard pitch sensor can also be used to modify the model to allow operation on
varying terrain.

We are also looking at the possibility of using custom hardware to explicitly calculate the actual optical flow
field over the entire image. This would free us from the limitation of looking only at relatively small image
windows, and would allow us to look for aberrant flow over the entire road scene.

Camera calibration is also an issue which needs to be addressed. We will be investigating possible methods for
calibration which willnot require 40-50 calibration points, which would be infeasible for an AHS type appli-
cation.
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timer has a resolution of 10 mS., which is high compared to a frame time of 33 mS. Second, as we were not
running directly on Navlab 5, we didn’t have access to the GPS provided speed, so we hard set it at 60 m.p.h.
Regardless, the results were very encouraging, and comparable to the off-line version. A demonstration is
available on the web at http://hoagie.ius.cs.cmu.edu:8000/~parag/research/optic_flow/optic_flow.html.
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4. Experiments

4.1. Real World Digitized Images

Figures 1-24 show a set of images taken from a camera mounted on the rear window of Navlab 5. We drove
NL5 along Interstate 279 in Pittsburgh, while maintaining a speed of 55-65 m.p.h. We were generally driving a
bit slower than traffic, so we could get video of vehicles passing us from the rear. There are four sets of images.
The first two sets have no obstacle vehicles in them, while the last two sets have a vehicle in each lane. As
these experiments were done off-line, we processed the entire image.

Our first experiments were done with no camera calibration. The camera height and pitch were measured by
hand, and yaw and roll were assumed to be 0. Poor results and the analysis of [3] convinced us that at least
crude calibration was necessary. We still measured camera height by hand, as it is possible to do this within a
centimeter, which was less than 1% of the actual camera height. The pitch, however, was calibrated using a
method which relied on knowing the width of a lane. This produced better results. However, camera yaw was
still a problem. Not wanting to resort to an explicit calibration method like Tsai’s method [14], we used the
images in Figs. 1 and 2 to tune the yaw by hand, until a good match was found. For our camera setup, this
turned out to be 1.5 degrees. In the future, this can be calculated on-line.

Figs. 3 and 4 show the edge images corresponding to Figs. 1 and 2, respectively. Fig. 5 shows the edge image
predicted from Fig. 3, and Fig. 6 shows the obstacle image. The obstacle image shows almost no trace of the
median edges along the left side, and also eliminates the lane markers. The histogram near Fig. 6 is a horizon-
tal summation of obstacle pixels, which shows no peak in the area of the lane markers.

Figs. 7-12 show the same processes, computed for a pair of images taken exactly 1 second after the pair from
which the camera parameters were determined. Again, the median strip is mostly gone, as are the lane markers.
In both pairs of images, the treeline pops out as an obstacle, because we assume that it lies on the ground plane.
However, we ignore obstacles above the horizon, so this is not a problem.

The next set of images, Figs. 13-18, show what happens with relatively distant obstacle vehicles with low
apparent motion. In this case, the vehicles are back far enough (or close enough to the focus of expansion) that
both their actual and predicted motions are within 1 pixel of each other. This distinction gets lost when we
compute our obstacle image (due to the 3x3 search window around each candidate obstacle pixel). The vehicle
in the right hand lane is detectable, although the vehicle directly behind us is almost completely lost, as can be
seen in the histogram.

The final set, Figs. 19-24, show the target application of our system - a vehicle directly approaching the blind
spot. In this case, the predicted image shows a large skewing of the vehicle in the right lane, which is easily
detectable when compared against the actual next image, indicated by the peak in the histogram in Fig. 24.
Because we are taking the histogram over the entire image for these off-line trials, it is not possible to distin-
guish between the car behind us and the car approaching from the left, as they are vertically aligned in the
image plane. For the on-line version, however, the entire image is not processed, and an individual histogram is
computed for each sampling window, allowing multiple vehicles to be detected.

4.2. Live Video

We tested our system using the same video from which we digitized Figs. 1-24. Everything worked qualita-
tively the same using live video, as it did with the digitized images. A few minor problems added some noise to
the system, though. First, our digitizer hardware wasn’t capable of directly reading the time code on the video
tape, so we depended on the system timer to calculate how many frames have passed between runs. The system
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3.3. Model based prediction

Once the edge images are calculated, a prediction of the next image is generated using inverse perspective
mapping [11]. In regular perspective projection, 2-D image coordinates are computed from real world 3-D
coordinated. The problem with the inverse projection is that it is a mapping from R2 to R3. This means that the
solution is a ray passing through both the image point and the focus. However, by assuming that we are travel-
ling on a flat road and that everything we see lies on that road, the world coordinate of an image point is con-
strained to be the intersection of the ray with the plane formed by the road. In other words, by fixing the world
Y coordinate to be 0, we end up transforming from one 2-D plane to another (see Fig A1 in Appendix A.)

Solving this constrained inverse perspective mapping tells us that given an edge pixel and the flat earth
assumption, we can calculate its coordinates in a coordinate frame relative to the vehicle. If we also know the
vehicle velocity (which is available via on-board GPS) and time between successive frames, we can calculate
how far the vehicle has travelled. This means that we can compute the new coordinates of each edge pixel in
the image. This new coordinate can be projected back into the image plane to give us a prediction of what an
image would look like after travelling a certain distance. The global vertical flow described in the previous sec-
tion is added to the prediction to account for vehicle vibration. The prediction equations, taken from Duda and
Hart [7], are given in Appendix A.

This method is most sensitive along the edges of the visual field. The predicted location of a point directly in
front of the camera does not vary much with its height above the ground (unless the distance between images is
very large). Along the edges, however, an object at the height of an average car causes an easily detectable pre-
diction error. This is because when an object translates along a given direction, the magnitude of the optical
flow field near the focus of expansion is much less than at the edges. Therefore, the closer the approaching
vehicle is to one side of the image, the larger the prediction error. Since we are concentrating on the blind spot,
this is an ideal sensitivity profile.

3.4.  Obstacle Detection

The predicted image that was generated in the previous section is based on the assumption that any objects in
the image lie flat on the road plane. If, in fact, they do not lie on the road plane, they will project to slightly dif-
ferent image coordinates than predicted. It is this discrepancy that we search for. There is a certain amount of
inherent noise in this procedure due to camera calibration error, so simply subtracting the two images does not
work. Instead, for every edge pixel in the predicted image, we search a 3x3 neighborhood of the actual next
image for an edge pixel. If we find an edge pixel in this area, we assume the prediction is satisfied - i.e, that
edge point was caused by an object (such as a shadow) on the road plane. If an edge pixel in the predicted
image isnot found in the actual next image, we assume that it projected to some point outside our 3x3 window,
in which case it was caused by an objectnot on the ground plane. Although this may seem counter-intuitive
(i.e.,not seeing something means it’s an obstacle), a feature which is on the ground plane would be accounted
for by our prediction, and therefore would have been found (i.e., ‘seen’). Any such object which is not seen is
therefore assumed to be an obstacle.

Even with the above steps, there is some noise still present in both the prediction, and actual next images,
which cause false positive and false negatives to affect the results. Therefore, we make one more assumption,
which is that any vehicle that we are looking for has horizontal edges. So, for any prediction failure to be con-
sidered an obstacle vehicle, it must be part of a larger set of horizontally aligned prediction failures. Once we
generate the full obstacle image, we sum the image horizontally, and look for peaks which exceed a preset
threshold, which depends on sampling window size. If we find a peak, we then know that there is a horizontal
edge in the predicted image which isnot in its predicted location in the actual image. Therefore, it was gener-
ated by an object which is not on the ground plane, and therefore must be a vehicle. We assume any horizontal
line whichdoes match its prediction is caused by a shadow or other stationary feature on the ground.
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3. System Description

To detect vehicles, we do the following: first, we sample the image, perform an edge detection, and use our pla-
nar parallax model to predict what that edge image will look like after travelling a certain distance. Next, we
capture an image after travelling our assumed distance, and compare it to the prediction. For each edge point in
the predicted image, we verify that there is a corresponding edge point in the actual image. If there is a match,
then our prediction (based on a flat earth assumption) is verified. Otherwise, we know that the cause of the hor-
izontal line in the predicted image was an obstacle (i.e., above the ground plane). There are 4 components to
the system - sampling and preprocessing, dynamic image stabilization, model-based prediction, and obstacle
detection. Each is described below.

3.1. Sampling and Preprocessing

The first key to operating at near real time is to not process the entire image. A full image of 640x480 pixels
results in 9,216,000 pixels that need to be processed each second (assuming 30 frames per second). Because
we are only interested in monitoring the blind spots, we do not need to process the entire image. Instead, we
specify one or two windows (depending on the number of lanes), each centered on the lanes surrounding the
lane the vehicle is in. Currently, those locations are set by hand. However, the RALPH lane tracking system
[13] can provide lane curvature information which can be used to determine the location of the adjacent lanes.
So, rather than processing over 9 million pixels per image, we process two windows of 100x100 pixels. This is
a total of 20,000 pixels per frame. This number is further reduced, as we only compute our prediction on edge
pixels. By reducing the amount of data, we can handle 15 frames per second on a 166 MHz Pentium running
the QNX real time operating system.

Two stages of preprocessing are required - smoothing and edge detection. The smoothing is done by a 3x3
Gaussian window, run over each of the sampling windows. The edge detection is required, as mentioned
above, as we only compute the prediction on edge pixels. A standard sobel edge detection is used [10]. A pro-
totype implementation of this system, done by Alban Pobla [12] used the Canny edge detector [4]. However,
this required the edge images to be computed off-line.

3.2. Dynamic Image Stabilization

The ultimate goal is generation of a predicted edge image at timet for comparison with an actual image taken
at timet. While the model described in the next section can generate this predicted image, it does not take vehi-
cle vibration into account. When a car or van is driving down a road, it vibrates a great deal vertically, and this
needs to be accounted for. We tried an experiment using a camcorder with dynamic image stabilization, but it
was tuned to dampen vibration at a much lower frequency than generated by the average bumps and potholes
on a highway.

Our solution is to compute 1-dimensional optic flow (in the vertical direction). For speed and simplicity, we
take 10 column-wise slices out of each image, and find the largest magnitude edge in each slice using a 1-D
sobel filter. Ideally, these edges will correspond to features in the background of the scene, such as a treeline or
overpass. The slices extend from the top of the image to our calculated horizon - this usually prevents us from
finding edges due to moving vehicles. These edges are then searched for in the next image, giving us 10 esti-
mates of global vertical flow. A weighted average is computed, based on correlation score. This global flow is
used in adjusting the prediction model described in the next section. During normal operation, however, there
was only a 1-2 pixel ‘bounce’ due to vehicle vibration.



page 4

2. Previous Work

Many people have investigated explicitly calculating optical flow for obstacle detection. Bohrer et al [3] looked
at the idea of detecting vertical objects using optical flow. They present a useful analysis of the influence of
camera parameter estimation errors. De Micheli and Verri [5] detect obstacles using vehicle angular velocity
around an axis orthogonal to the road, and generalized time to contact. They show that motion recovery
becomes a linear problem if the image plane is orthogonal to the road and the optical axis points along the
direction of travel. Their method, like ours, seems to be sensitive to calculated camera parameters. However,
their method for calculating the angular velocity requires horizontal texture along the vertical line (in the
image plane) passing through the image plane origin. This means that it is not optimal for road scenes, in
which that line may consist mostly of untextured road.

Enkelmann [8] calculates a predicted optical flow field (OFF) given camera parameters, focus of expansion,
and camera motion. His results, while preliminary, showed the feasibility of using a planar parallax model to
generate a predicted optical flow field to compare to an actual flow field. We use this approach, but get around
calculating the actual optical flow by using the predicted flow to warp the current image, and compare images.

Graefe [9] uses a distance dependent subsampling along with vehicle templates to look for vehicles approach-
ing the ego-vehicle from the rear. Their system runs in real time on specialized hardware.

Zhao and Yuta [15] use stereo vision to predict the image seen by the right camera given the left image, assum-
ing flat earth. They use inverse perspective mapping to transform every point in the left image to world coordi-
nates, and reproject them back onto the right image, and compare against the actual right image. They are able
to pick out contours of objects above the ground plane, while rejecting stationary markings on the road.

Bertozzi and Broggi [1] use stereo vision for generic obstacle detection, but instead of warping the left image
into the right image, they compute the inverse perspective map of both images, and compare those. They find
objects that are not on the ground plane, and use this to determine the free space in front of a vehicle. They run
onPaprica, a massively parallel SIMD machine.

Dickmanns [6] uses parallel transputers to attack obstacle detection and avoidance from different angles. They
use recursive estimation techniques to extract obstacle vehicle state using monocular vision, and knowledge
based systems for 3-D obstacle recognition while dealing with occlusions. Their VaMoRs-P vehicle drives on
highways at speeds of up to 130km/h.

Betke et al [2] use a custom hard real time operating system running on a PC to look for sudden changes in
brightness over a few frames to indicate a possible passing vehicle. This is verified using model based template
matching, which requires a model set consisting of the front and rear views of several different types of vehi-
cles. To recognize distant cars, they use a feature based approach, looking for horizontal and vertical edges.
Their system is also sensitive to contrast changes caused by shadows.
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1. Introduction

Many active methods of obstacle detection such laser, radar, and sonar may not be possible in the Automated
Highway System due to interference between vehicles. For instance, two automated vehicles operating near
each other may have to coordinate radar frequencies to avoid interfering with each other. While these problems
can be solved, they present a great challenge. Therefore, it is worthwhile to investigate completely passive
approaches, such as vision, for obstacle detection. While vision generally cannot provide the accuracy, resolu-
tion, and speed of a high end laser range finder, an effective single camera vision system can be built cheaply
and operate with relatively minimal computational resources.

We have developed a system which is optimized for detecting obstacles in the blind spot of an intelligent vehi-
cle operating on city streets and highways. By blind spot, we mean the area behind and to the left and right of
the vehicle, which is normally not visible in the rear view and side view mirrors. Generally, the blind spot is
only viewable when the driver turns his head.

The principal approach is to make certain assumptions about the operating environment which let us solve the
inverse perspective problem to compute a predicted image given camera parameters and vehicle velocity. This
predicted image is then compared against an actual image, and any area which does not match our prediction is
presumed to be caused by an obstacle. One advantage is that although we use the notion of optical flow to gen-
erate the predicted image, we never have to explicitly calculate an optical flow field, which can be an expensive
operation. In addition, our method is sensitive to vertical obstacles, but ignores lane markers and shadows cast
by stationary objects. We present previous work, a system description, experimental results, conclusion, and an
appendix outlining the model equations.
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