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Abstract— A network that provides not only connectivity but
also computational resources to application flows will enable
a new array of network services. For example, applications
that require content adaptation can be deployed more easily
in a network that provides integrated communication and com-
putational resources. In this paper, we study the problem of
finding a path for a flow that has both computational and
bandwidth constraints. We present a distributed load-sensitive
routing algorithm that generates precomputed routing informa-
tion and optimizes the routing decisions for both applications
and computational and communication resource providers. We
show through simulations that our distributed approach performs
comparably to a centralized algorithm and is more resilient to
longer routing update intervals.

I. INTRODUCTION

In today’s network, many service providers are starting to
deliver services that require “computational resources” in the
network. For example, in a video streaming application, a
transcoder may be needed to handle different codecs; when a
handheld device accesses a web site, a proxy may be needed
to rewrite the web pages. To provide such services, the service
provider will have to route the application flows along paths
that meet the communication constraints and also traverse
network nodes with sufficient computational resources to run
the service. We are interested in the problem of how to find
a path that meets both the computational resource and the
bandwidth constraints of an application flow. We will call
this the QoS Routing with Computational Constraints (QRCC)
problem, and it is an instance of the multi-constrained routing
problem.

There are centralized algorithms that can solve the QRCC
problem. However, centralized algorithms require that the
global network state is available to the node running the
algorithm. This may be a scalability problem. Therefore, our
goal is to devise a distributed solution for the QRCC problem.
Finding such a solution is difficult because a distributed algo-
rithm needs to precompute routing information for all possible
flow requests, the routing decisions need to be optimized
to satisfy application constraints and achieve high resource
efficiency, and the highly dynamic metrics in this problem
may cause routing loops in a distributed environment.

In this paper, we present an extended distributed Bellman-
Ford algorithm for the QRCC problem. Leveraging previous
results in centralized QoS routing, we use a combination of
two heuristics to handle the problem. The “discretization”
heuristic is used on the computational resource metric to
reduce the complexity of the problem, and a function of

various metrics is used as the path cost function (PCF) for
calculating the shortest paths so that the algorithm can adapt to
the changing metrics. Our simulation results demonstrate that
our heuristics are effective and that our distributed approach
performs comparably to centralized source routing in many
configurations.

In the remainder of this paper, we present the QRCC
problem and challenges in Section II and describe how we
address the challenges in Sections III through V. Our eval-
uation methodology and results are presented in Sections VI
and VII. We then discuss the related work and conclude in
Sections VIII and IX.

II. PROBLEM DEFINITION AND CHALLENGES

A. Problem statement

Given a network with computational resources on the
network nodes, we are interested in the problem of finding
a path for an application flow that requires one intermedi-
ate processing step, for example, a transcoder for a video
streaming application. In addition, the path also needs to
satisfy the bandwidth constraint of the application. Given these
conditions, we define the QRCC problem as follows. Let the
graph G = (V,E) represent the network. V is the set of all
nodes, and E is the set of all links. Each node v ∈ V has
computational resource R(v), and each link (v, v′) ∈ E has
available bandwidth b(v, v′). When the application starts, it
issues a routing request that includes the sender node vs, the
receiver node vr, the computational resource constraint Cc,
and the bandwidth constraint Cb. Given this request, we need
to find a path p = 〈v0, v1, . . . , vn〉 that satisfies the following
three conditions: (1) v0 = vs and vn = vr. (2) ∃0 ≤ t ≤ n
such that R(vt) ≥ Cc. This vt is called the target server, i.e.,
the node that provides the computational resources needed by
the application flow. (3) ∀0 ≤ i ≤ (n − 1), b(vi, vi+1) ≥ Cb.

The QRCC problem can be solved by centralized algo-
rithms. For example, a centralized algorithm is proposed in [1]
to solve a similar problem. However, a centralized algorithm
must be applied to the global network state collected on a
single node, and this may be a scalability problem. Therefore,
our goal is to devise a distributed solution.

B. Challenges

(1) Distributed algorithm: We need a distributed routing
algorithm that can handle both the bandwidth and computa-
tional resource metrics. The computational resource metric is
a new type of routing metrics and is different from commonly
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used ones such as end-to-end delay. In addition, it is much
more difficult to use a distributed algorithm to handle the two
metrics in the QRCC problem than using a centralized one.

(2) Optimization: When an application sends a flow request
to a service provider, the provider needs to find a path that
is “good” for both the application and the provider. For the
application, the path should satisfy the application constraints
and/or achieve good user-perceived performance. For the ser-
vice provider, the goal is to achieve high resource efficiency.
For example, if the routing algorithm routes many flows
through one particular link, that link may become congested
and cause further flow requests to be rejected, while other
alternative links do not see much traffic. This leads to lower
resource efficiency for the service provider. Therefore, the
algorithm should be load-sensitive.

(3) Highly dynamic metrics: In the QRCC problem, the two
metrics are highly dynamic (they change with every flow).
Using these metrics in distributed load-sensitive routing may
cause many routing loops, resulting in many flows being
rejected.

In the next three sections, we will describe how we devise
a distributed algorithm, optimize the routing decisions, and
handle the dynamic metrics.

III. DEVISING A DISTRIBUTED ALGORITHM

To devise a distributed algorithm for the QRCC problem,
we leverage existing work on multi-constrained QoS routing.
Traditional QoS routing metrics are of two main types. (1)
Minimum additive metrics such as end-to-end delay: the sum
of the delay of all links along the path must be lower than
the application constraint. (2) Maximum concave metrics such
as bandwidth: the bandwidth on the bottleneck link (i.e., the
link with the lowest bandwidth) along the path must be higher
than the application constraint. We identify the computational
resource metric as maximum convex, i.e., the computational
resources on the “richest” node (i.e., the node with the most
resources) along the path must be higher than the application
constraint. Therefore, the QRCC problem becomes a QoS
routing problem with constraints on one maximum convex
metric (computational resource) and one maximum concave
metric (bandwidth).

It is much more difficult to use a distributed algorithm to
handle the two metrics in the QRCC problem than using a
centralized algorithm. The reason is that distributed routing
algorithms need to “precompute” routes for all possible flows.
The common technique is to precompute the optimal path,
for example, when end-to-end delay is used as the routing
metric, a distributed routing algorithm can precompute the
“shortest path” between two nodes, which can be used for
all flows between those nodes. However, with two metrics,
the number of potentially optimal paths between two nodes
can grow exponentially [2], [3]. Therefore, the technique of
precomputing the optimal path no longer works.

A. Our approach

We start with the basic distributed Bellman-Ford algo-
rithm [4], which is a shortest path algorithm and deals with

one minimum additive metric. Therefore, we need to extend
the algorithm to handle the maximum concave (available band-
width) and the maximum convex (computational resources)
metrics in the QRCC problem.

We first look at how previous studies deal with multiple
metrics in a centralized QoS routing algorithm. One heuristic
is to define precedence among the metrics, for example, the
shortest-widest path algorithm (presented in [2] as a distributed
algorithm, but used as a centralized one in other studies such
as [5]). Another heuristic is to use a function of different
metrics as the path cost function (PCF), and find the path with
the lowest cost. Examples include the approximate algorithm
in [6] and the shortest-distance algorithm in [5]. “Discretiza-
tion” (or “limited granularity” [3]) is another heuristic to re-
duce the complexity of problems with constraints on multiple
metrics. For example, the EDSP and EBF algorithms in [7]
discretize one metric and find the optimal paths based on the
second metric.

Leveraging these previous results, we combine two heuris-
tics in our precomputed/distributed approach to deal with the
QRCC problem. First, we define a PCF as a function of various
metrics such that a “better” path will have a lower cost (e.g.,
a path with higher available bandwidth should have a lower
cost). Given a source and a destination, the algorithm computes
the path with the lowest cost. Therefore, we need to choose a
PCF so that the cost of a path will reflect both the available
bandwidth and the computational resources along the path.
Section IV will describe how we choose such PCFs to optimize
the routing decisions. For simplicity, we will use the sum of
link costs as the PCF in the description of our algorithm. The
second heuristic is to discretize the computational resource
metric into k discrete levels. For each pair of source and
destination and each resource level i (0 ≤ i ≤ (k − 1)), the
algorithm computes the shortest path whose target server has
computational resource level i.

B. Extended Bellman-Ford algorithm

Now we present our extended Bellman-Ford algorithm.
The network is represented by a graph G = (V,E); V is
the set of all nodes, and E is the set of all links. R(v)
denotes the computational resources on node v ∈ V , and
the algorithm discretizes the computational resource metric
R into a number of discrete levels (0, 1, 2, . . . ,K) using a
discretization function D. Let S denotes the set of the discrete
levels (S = {0, 1, 2, . . . ,K}), and r(v) ∈ S denotes the
computational resource level at node v ∈ V . In other words,
for all v ∈ V , r(v) = D(R(v)). w(u, v) is the link cost of
(u, v) ∈ E (note that the link cost can be a function of different
metrics such as bandwidth, latency, etc.). For simplicity, in the
algorithm description, we use the sum of the link costs as the
PCF. Therefore, the shortest path computed by the algorithm
is the path with the lowest cost. Given the destination node
d ∈ V , for all v ∈ V (v �= d) and k ∈ S, we define the
following:

• n[v][k]: The next hop on the current shortest path p (from
v to d) that traverses a node with resource level k.
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INITIALIZE(d)
1 for each node v ∈ V
2 do {
3 for each resource level k ∈ S
4 do {
5 c[v][k] ← ∞
6 n[v][k] ← NIL
7 t[v][k] ← NIL
8 }
9 }
10 c[d][r(d)] ← 0
11 t[d][r(d)] ← d

RELAX(u, v, k)
1 if c[v][k] > c[u][k] + w(u, v)
2 then {
3 c[v][k] ← c[u][k] + w(u, v)
4 n[v][k] ← u
5 t[v][k] ← t[u][k]
6 }
7 if c[v][r(v)] ≥ c[u][k] + w(u, v)
8 then {
9 c[v][r(v)] ← c[u][k] + w(u, v)
10 n[v][r(v)] ← u
11 t[v][r(v)] ← v
12 }

EXTENDED-BELLMAN-FORD(d)
1 INITIALIZE(d)
2 for i ← 1 to 2(|V | − 1)
3 do {
4 for each edge (u, v) ∈ E
5 do {
6 for each resource level k ∈ S
7 do {
8 RELAX(u, v, k)
9 }
10 }
11 }

Fig. 1. The extended Bellman-Ford algorithm.

• c[v][k]: The estimated cost of the current shortest path p
(from v to d) that traverses a node with resource level k.

• t[v][k]: The node with resource level k on the current
shortest path p (from v to d) of level k. This is the target
server on path p.

The algorithm is shown in Figure 1. The path cost function
(PCF) it uses to compute the shortest path is the sum of the
link costs (w(u, v)) along the path. If we want to use a PCF
that involves more than the link costs (for example, a PCF that
involves the computational resources on the target server), we
need to modify the path cost calculation in the algorithm. We
will have a more detailed description of the PCFs when we
discuss optimizing the routing decisions in Section IV.

The main difference between this algorithm and the original
Bellman-Ford algorithm (see [8]) is the extra if statement in
RELAX() (lines 7 to 12). In addition, c[v][k] and n[v][k] have
an extra dimension in our algorithm, since it precomputes
the shortest path for each computational resource level. Our
algorithm also keeps track of the target server of a path
(t[v][k]), since we need to know which node can provide
the requested computational resources after a path is found
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Fig. 2. An example of non-simple paths.
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Fig. 3. Finding a path.

for a flow. Like the original Bellman-Ford algorithm, our
algorithm can be executed in a distributed and asynchronous
fashion by exchanging information between neighboring nodes
and executing the relaxations on different nodes in parallel
(see [4]).

After the routing tables (the n[v][k] entries) are computed,
the path for a flow can be found by following the appropriate
entries. Note that paths found by our algorithm may not be
“simple paths”. For example, in Figure 2, node x has sufficient
computational resources for a flow from source node a to
destination c. Our algorithm will find the path ”abxbc”, which
is not a simple path.

Let us use an example to illustrate how to find a path for
a request after the algorithm computes all the information.
Figure 3 shows a simple network in which nodes a and
b have no computational resources, node d has 5 units of
computational resources, and node c has 50 units. We use the
following discretization function:

r(v) = D(R(v)) =






0 if R(v) = 0
1 if 0 < R(v) < 10
2 if R(v) ≥ 10

Therefore, r(a) = r(b) = 0, r(d) = 1, and r(c) = 2.
Each node constructs its routing table using the information
computed by the algorithm above (for simplicity, most entries
are not shown, and the PCF in this example is the hop count).
Assume that a flow from node b to node a requires 9 units
of computational resources, which corresponds to level 1.
Therefore, we need to find a target server with computational
resource level 2. We can find the target server and the path as
depicted in Figure 3. Let rt[b][a][2] denotes node b’s routing
table entry for destination a and computational resource level
2. We start with rt[b][a][2], which is (c, 3, c), i.e., the next hop
is node c, the path cost is 3, and the target server is node
c. Therefore, we follow it to node c and look at rt[c][a][2],
which is (d, 2, c), so we follow it to node d. However, now
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that we have already traversed the target server, we will not
use rt[d][a][2]. Instead, we will look at rt[d][a][1]. The reason
is that since we have already traversed the target server, we
do not need to consider the computational resource constraint
any more. Since we know node d has computational resource
level 1, rt[d][a][1] implies the shortest path to the destination
node a. In other words, given destination x and computational
resource constraint level k, the path can be found by following
rt[v][x][k] for each node v “before” the target server and
then following rt[v′][x][r(v′)] for each node v′ “after” the
target server. This path-finding phase may be integrated with
the resource reservation mechanism so that resources can be
reserved along the path. If we reach a link that does not
have sufficient bandwidth, or if we reach the target server
and discover that it does not have sufficient computational
resources, then the flow is rejected.

IV. OPTIMIZING THE ROUTING DECISIONS

There are two goals for optimizing routing decisions. First,
the computed paths should satisfy the application constraints.
Since we are using a heuristic algorithm, the paths found
by the algorithm may not actually satisfy the application
constraints, so we want to maximize the likelihood that a path
found by the algorithm actually works. Second, the routing
decisions should result in high resource efficiency, so we want
the algorithm to avoid creating “hotspots”, for example, avoid
routing all flows through the same node/link. We approach
these goals by defining the path cost function (PCF) as a
function of various metrics such that a “better” path (according
to the above description) will have a lower cost. Therefore,
two simple heuristics are used in defining the PCF. First, a
link with higher available bandwidth should have a lower link
cost. Second, a path whose target server has more available
computational resources should have a lower cost. Based on
these two heuristics, we define a family of PCFs as follows.

Let p = 〈v0, v1, . . . , vn〉 be a path that goes from v0 to vn,
and vt is the “target server” on p. R(vt) is the computational
resource on the target server (note that this is the “real”
resource value, not the discrete level). We assume each link
(vi, vi+1)(0 ≤ i < n) has a link distance s(vi, vi+1) and
available bandwidth b(vi, vi+1). The family of PCFs is defined
as follows.

Cost(p, k,m) =

∑n−1
i=0

s(vi,vi+1)
b(vi,vi+1)k

R(vt)m

By changing k and m, we can adjust the impact of available
bandwidth and computational resources on the path cost. For
example, when we increase k, we reduce the costs of paths
with higher-bandwidth links. Similarly, when m is increased,
the costs of paths whose target servers have more computa-
tional resources become lower. When k and m are set to 0, if
s(u, v) is the delay on link (u, v), the PCF becomes the end-
to-end delay, and if s(u, v) = 1 for all links, the PCF is simply
the hop count. In this paper, we will consider the following
four PCFs: pcf0(p) = Cost(p, 0, 2), pcf1(p) = Cost(p, 0, 1),
pcf2(p) = Cost(p, 0.5, 2), and pcf3(p) = Cost(p, 0.5, 1).

Note that since these PCFs involve the computational re-
sources on the target server, R(vt), the algorithm in Figure 1
needs to be changed slightly so that when calculating the cu-
mulative path cost, it uses the correct computational resource
value. Specifically, at line 7 in the RELAX function, c[v][r(v)]
is the cost of the path whose target server is v, while c[u][k] is
the cost of the path whose target server is t[u][k]. Therefore,
we need to convert c[u][k] to a new cost based on the resources
on v so that we can do the comparison at line 7.

V. HANDLING HIGHLY DYNAMIC METRICS

Routing algorithms based on the distributed Bellman-Ford
algorithm have two inherent problems: “count-to-infinity”
(“bouncing effect”) [4], [9] and “routing-table loops” [9]. For
example, routing loops occur when the routing tables of two
or more nodes contain conflicting next hop information, e.g.,
node a points to b while b points to a. These problems get
worse in the QRCC problem because the metrics used in the
PCF described above are highly dynamic. Since each node
only exchanges network state with its neighboring nodes,
many nodes will be using stale network state to compute
the next hop information. Therefore, the routing tables may
include many routing loops, resulting in many flows being
rejected.

We observe that there is a trade-off between the optimality
of the routing decisions and how dynamic the PCF is. For
example, if we use a static PCF in the algorithm, routing
loops are eliminated since all nodes will always use the same
static network state to compute the paths, which in fact are
always the same. The problem is of course that the routing
decisions will be sub-optimal since the algorithm does not
consider the available bandwidth and computational resources,
i.e., not load-sensitive. On the other hand, using a dynamic
PCF produces better paths, but some flows will be rejected
due to routing loops.

Based on this observation, we enhance our algorithm with a
“fallback” mechanism: in addition to the routing table entries
computed using the dynamic PCFs in Section IV, the enhanced
algorithm also uses a “less dynamic” PCF to compute a
“fallback path” between each pair of source and destination,
i.e., there will be an extra column in each routing table in
Figure 3. This less dynamic PCF is called the “fallback PCF”
(FPCF). Since the FPCF is less dynamic, paths computed using
the FPCF will be less likely to contain routing loops. When
we try to find a path for an application flow, we first try to
use the path computed using the regular, more dynamic PCF.
This path is constructed by looking up the routing tables as
described in Section III-B, i.e., first look up the target server,
then construct the path segment from the source to the target
server, and finally construct the path segment from the target
server to the destination. If a loop is encountered when we
construct either segment, instead of rejecting the application
flow, we can use the fallback path computed using the FPCF.
Therefore, we are able to reduce the number of application
flows that are rejected due to routing loops.
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Fig. 4. Simulation topology.

In this paper, we use the static Cost(p, 0, 0) as the FPCF
in most of our simulations. As a result, the fallback paths are
static and contain no routing loops, In Section VII-E, we will
present some preliminary results on the effectiveness of using
FPCFs that are not static.

VI. EVALUATION

In this section, we evaluate the effectiveness of our heuris-
tics and the different PCFs and the efficiency of different
network resource provisioning schemes, and we also want to
compare our precomputed/distributed approach with an on-
demand source routing approach. We decide to use “rejection
rate” (connection blocking rate) as our performance metric:
from an application’s perspective, a lower rejection rate means
better service, and from a service provider’s perspective, given
the same amount of resources, an approach with a lower re-
jection rate achieves higher resource efficiency. We define two
types of rejections: “resource rejections” (our algorithm finds
a path that does not have sufficient computational resources
for a flow) and “bandwidth rejections” (our algorithm finds a
path that does not have sufficient bandwidth).

We designed and implemented an event-driven simulator
to evaluate the performance of our approach. Events such
as flow requests and routing updates trigger the simulator
to find a path for a flow and execute one iteration of the
distributed algorithm. In our simulations, we used the MCI
backbone topology (Figure 4). The link distance s(u, v) in
the cost function is generated with a continuous uniform
distribution between 0.5 and 2. The computational resource
constraint of a flow is either 1 unit or 2 units. We use 4
different levels of bandwidth load: 0.2/0.4 (i.e., flows with
computational constraint 1 have bandwidth constraint 0.2,
and flows with computational constraint 2 have bandwidth
constraint 0.4), 0.4/0.8, 0.6/1.2, and 0.8/1.6. In other words,
the bandwidth constraint of a flow is proportional to its
computational resource constraint. For convenience, we denote
these 4 bandwidth load levels using the average, i.e., average
bandwidth 0.3, 0.6, 0.9, and 1.2.

The duration of each flow is generated using a bounded
Pareto distribution (lower bound 0.2, upper bound 1000, and
α = 1.5). The inter-arrival time between flows is generated
using an exponential distribution, and we use 5 different aver-
age inter-arrival times from 0.0011 to 0.0018. The flow inter-
arrival time determines the computation load in the network,
for example, if the average inter-arrival time is 0.0011, and
all flows are admitted, on average 90% of all computational
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Fig. 5. Algorithm performance with different PCFs.

resources in the network are being used by application flows,
i.e., the computation load is 0.9. Therefore, we have 5 different
levels of computation load from 0.9 to 0.55.

We use three computational resource distributions: “3X300”
(three random nodes with 300 units on each), “6X150”, and
“9X100”. The nodes that have computational resources are
called “resource nodes”, and a link is called a “resource link”
if at least one of its two ends is a resource node. In most
of our simulations, we use one of two bandwidth capacity
allocation schemes. The “Flat” allocation scheme means that
every link has 100 units of bandwidth. The “Planned” scheme
means that every resource link has 150 units of bandwidth, and
every non-resource link has 50 units of bandwidth. Finally, we
use routing update intervals from 5 flows to 250 flows (average
number of flow requests between updates).

VII. SIMULATION RESULTS

A. Algorithm performance

In this set of simulations, the computational resource dis-
tribution is 6X150, the bandwidth capacity allocation is Flat,
and the routing update interval is 100 flows. Figure 5 shows
the rejection rates of the four different PCFs (Section IV) as a
function of the computation load in the network. The average
bandwidth is 0.6. We can see that the rejection rates of pcf2
and pcf3 are lower than those of pcf0 and pcf1, respectively.
This shows that using the available bandwidth metric in the
PCF (i.e., use k > 0 in Cost(p, k,m)) can help balance the
load and achieve lower rejection rates. In addition, pcf1 and
pcf3 perform better than pcf0 and pcf2, respectively. This
shows that if m is too high in the PCF, the computational
resource metric is over-emphasized, and too many flows will
be directed to the same node(s), causing worse load-balancing.

Next we look at the contributions of different types of
rejections. Figure 6 shows the contributions of bandwidth and
resource rejections with the four PCFs under computation load
0.822. When the average bandwidth is 0.6, almost all rejections
are “resource rejections”. When the average bandwidth is 0.9,
resource rejections are reduced dramatically with the use of
“better” PCFs, but bandwidth rejections remain fairly constant.
The reason is likely that we use a static FPCF to compute
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fallback paths, which are not sensitive to bandwidth load, as
described in Section V.

B. Effect of routing update interval

To evaluate the impact of the routing update interval, we
use the following configuration: the algorithm uses pcf3, the
average bandwidth is 0.9, the bandwidth capacity allocation
is Flat, and the computation load is 0.822. Figure 7 shows
the contributions of the two sources of rejections under two
different resource distributions, 6X150 and 9X100. Under
6X150, it is clear that the “bottleneck” is bandwidth, and
shortening the update interval does not reduce bandwidth
rejections very much. On the other hand, when the resource
distribution is 9X100, bandwidth rejections are insignificant,
and frequent updates can greatly reduce resource rejections.
Overall, the update interval does not have a significant effect
on bandwidth rejections. Again, this is probably due to the
use of the static FPCF.

C. Network resource provisioning

Next, we look at how the computational resource dis-
tribution affects the rejection rates of our algorithm. The
simulations use the following configuration: the algorithm uses
pcf3, the computation load is 0.822, the bandwidth capacity
allocation is Flat, and the routing update interval is 100 flows.
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We compared 3 computational resource distributions (3X300,
6X150, and 9X100) under 4 different average bandwidth (0.3,
0.6, 0.9, and 1.2). Figure 8(a) shows the result. We can see
that, as the bandwidth load increases, the overall rejection rates
of the three resource distributions increase at different speeds.
The rejection rate of 3X300 increases very quickly: at average
bandwidth 0.3 it is the lowest, but at 0.6 it becomes the highest.
6X150 increases more slowly, surpassing 9X100 at average
bandwidth 0.9, and 9X100 only increases slightly across the
graph. Now if we look at the sources of rejections, we see
that when the average bandwidth is 0.3, almost all rejections
are resource rejections, and 3X300 has the lowest rejection
rate. This suggests that when computational resources are the
main constraint, a more “concentrated” resource distribution is
better. When the average bandwidth becomes 0.6, for 3X300
the bandwidth rejections grow dramatically, while 6X150 and
9X100 remain roughly the same. Similarly, when the average
bandwidth is increased to 0.9, bandwidth rejections become
dominant for 6X150, and its overall rejection rate becomes
significantly higher than that of 9X100. The reason is that
with a more concentrated resource distribution like 3X300,
each resource node will need to “serve” more flows. As a
result, the resource links are overloaded more quickly when
the bandwidth load is increased. Therefore, a more “dispersed”
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Fig. 9. Effect of different bandwidth capacity allocation schemes.

resource distribution is more resilient to higher bandwidth
load.

Now let us compare the two bandwidth capacity allocation
schemes: Flat (shown in Figure 8(a)) and Planned (shown
in Figure 8(b)). We can see that in most cases the overall
rejection rate under Planned is better than that under Flat,
since bandwidth rejections are greatly decreased. This is what
we expected. However, there are two exceptions: with 9X100
distribution under bandwidth loads 0.9 and 1.2, the bandwidth
rejections under Planned are higher than Flat. This indicates
that, in both cases, the resource links are no longer the
bottleneck, and therefore using Planned allocation results in
more bandwidth rejections since it reduces the bandwidth
capacity of the non-resource links to 50.

These results suggest that allocating higher bandwidth ca-
pacity to the resource links helps, as long as the other links do
not become the bottleneck. Therefore, one interesting question
is how to find the “optimal” allocation of bandwidth capacity
(given a fixed total amount of bandwidth capacity in the
network). Intuitively, the optimal allocation will be the one
that balances the load on resource links and the load on
non-resource links. We conducted another set of simulations
under the following configuration: the algorithm uses pcf3, the
computation load is 0.822, the resource distribution is 6X150,
and the routing update interval is 100 flows. Each bandwidth
capacity allocation scheme is denoted by “X/Y ”, where X is
the bandwidth capacity assigned to every resource link, and Y
is the capacity assigned to every non-resource link. All alloca-
tion schemes have roughly the same amount of total bandwidth
capacity in the network. Figure 9 shows the rejection rates
of these schemes. We see that bandwidth rejections decrease
as we put more bandwidth on the resource links. However,
when the bandwidth on the other links becomes too low, they
become the bottleneck, and the rejection rate starts rising. The
result roughly matches our intuition.

D. Precomputed distributed vs. on-demand source routing

We compare our precomputed distributed routing (PD)
approach with an on-demand source routing (OS) approach
that uses a brute-force algorithm. The OS approach has two
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Fig. 10. Precomputed distributed (PD) vs. on-demand source routing (OS).

advantages. First, it explicitly considers the bandwidth con-
straints by pruning links that do not have sufficient bandwidth.
Second, it knows the computational resource constraint of a
flow and can pick a node that has sufficient resources.

We evaluated how the two approaches perform under rout-
ing update intervals 5 to 250 flows. We need to keep in
mind that “routing update” has different meanings for the
two approaches. For the PD approach, a routing update means
each node exchanges its “distance vector” with its neighboring
nodes (i.e., one iteration in the Bellman-Ford algorithm). For
the OS approach, a routing update means each node broad-
casts/floods its link state to all other nodes in the network. We
assume that both are completed before the next event in the
simulation.

Figure 10 shows the performance of the two approaches.
The PD approach uses pcf3, the average computation load
is 0.704, the average bandwidth is 0.9, and the bandwidth
capacity allocation is Planned. We can see that when the
routing update interval is short, the OS approach performs
better. However, as the routing update interval increases, the
rejection rate of the OS approach increases significantly, while
the rejection rate of the PD approach only goes up slightly.
The reason is likely that with the OS approach, all the nodes
have a consistent picture of the global network state. As a
result, all flows will be directed to use the nodes and links
that are “good” at the time of the previous routing update.
On the other hand, with the PD approach each node only
exchanges information with its neighbors. Therefore, the PD
approach introduces some randomness that helps balance the
computation and bandwidth loads.

E. Trade-off between optimality and stability

So far we have been using the static Cost(p, 0, 0) as the
fallback PCF (FPCF) to compute fallback paths. Of course,
these static fallback paths are far from optimal, e.g., they
may not have sufficient bandwidth, resulting in bandwidth
rejections. Therefore, we experimented with a slightly more
dynamic FPCF, Cost(p,0.5,0). By using this FPCF, the com-
puted fallback paths may contain loops, and therefore we can
no longer guarantee that we can always find a loop-free path
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for a flow. As a result, a new type of rejection, “loop rejection”,
is needed for this set of simulations. We use the following
simulation configuration: the algorithm uses pcf3, the resource
distribution is 6X150, the bandwidth capacity allocation is
Flat, the computation load is 0.704, and the average bandwidth
is 1.2. The result is shown in Figure 11. “Static” means the
FPCF is Cost(p, 0, 0), and “dynamic” means the FPCF is
Cost(p, 0.5, 0). We see that with the static FPCF, there are no
loop rejections. Using the dynamic FPCF does generate some
loop rejections, but it is very effective in reducing bandwidth
rejections. Overall, when the update interval is short, the
dynamic FPCF is much better than the static one. When the
update interval is long, although using the dynamic FPCF
results in some loop rejections, the overall rejection rate is still
very close to (or better than) using the static FPCF. Based on
this preliminary result, the approach of using a dynamic FPCF
looks promising.

VIII. RELATED WORK

The most relevant work to this paper was done by Choi et
al. [1]. They studied the problem of finding a feasible path for
an application session that requires computational resources.
Their approach is to transform the problem into a shortest
path problem by constructing a layered graph. This centralized
algorithm requires the global network state, and maintaining
the state on a central server or distributing the state to all nodes
may be a scalability problem.

It has been shown that multi-constrained routing problems
that involve constraints on two or more minimum additive
metrics are NP-hard [2], [10]. Many previous studies focus
on heuristic solutions to such problems [3], [6], [7], [11],
[12]. Other studies looked at routing problems that involve the
bandwidth constraint [2], [5]. Most of these previous studies
on QoS routing use a centralized algorithm and assume the
availability of accurate global network state. A probabilistic
approach was used in [13] to deal with inaccurate network
state. On the other hand, a number of studies presented
distributed algorithms [2], [6], [14], but they did not consider
problems such as routing-table loops caused by using highly
dynamic metrics in the algorithms [4], [9].

IX. CONCLUSION

This paper addresses the problem of finding a path that
satisfies both the computational and bandwidth constraints of
an application flow in a network that provides both types of
resources. We present a distributed load-sensitive routing al-
gorithm that produces precomputed routing information based
on these metrics. Our evaluation shows that our algorithm
is able to achieve a rejection rate of less than five percent
in many simulation configurations, and that using a function
of both computational resource and bandwidth metrics in
the algorithm can lead to better performance. On the ef-
fect of network resource provisioning, we demonstrate that
computation and bandwidth loads should be considered when
choosing a computational resource distribution, and that a
good bandwidth capacity allocation scheme should balance
the loads on resource links and non-resource links. When
comparing our precomputed distributed approach with an on-
demand source routing approach, our results indicate that,
although the centralized approach performs well under very
short routing update intervals (e.g., less than 50 flows), our
distributed approach is more resilient to stale information
caused by longer update intervals.
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