15-740 Project Proposal: Instruction Prefetching and
Object-Oriented Programs

An-Cheng Huang Leejay Wu
<pach@cs.cmu.edu> <1lw2j@cs.cmu.edu>

October 12, 1999

1 Introduction

Object-oriented programming, or OOP, exhibits behavior that differs significantly from that of traditional
imperative non-object-oriented languages [4]; these differences range from shorter function lengths, to greater
use of indirect jumps.

It is therefore reasonable to expect that traditional architectures well-suited for traditional programming
may be non-optimal for programs written with such a dissimilar style.

One factor is that instruction cache misses occur significantly more often with OO-style programs [4]. This,
combined with more frequent function calls, suggests that hiding the latency may improve IPC moreso on
these programs than with more traditional C programs.

One approach is that of cooperative prefetching [7], an improvement over completely hardware-based methods
for instruction prefetching. These older methods include next- N-line-prefetching, target-line prefetching,
wrong-path prefetching, and Markov prefetching, ([14], [15], [9], [6], all cited respectively in [7])).

2 Objectives

e To assess the relative impact of these prefetching schemes on C and C++ programs.

e To consider possible optimizations for C++ programs, such as predicting virtual function call addresses
and prefetching appropriately [11], as time allows.

http://www.cs.cmu.edu/~pach/740/proj740.html



3 Logistics

3.1 Methodology

Our tests will be run on the SimpleScalar [1, 2, 3] simulator. For benchmarking purposes, the OOCSB suite
and possibly other publicly-available C and C++ programs should suffice, such as those comprising a recent

SPEC suite.

The first priority was ensuring that C++ compilation can actually be done with this simulator. We found
that SimpleScalar supports a superset of MIPS-IV, and with some minor bug-fixing and the addition of

libg++ is capable of supporting C++ development and testing [3].

3.2 Schedule

The following is only an estimated schedule.

Week Beginning

An-Cheng Leejay

Finish proposal.

October 10 Write web page.
Build OOCSB suite on SimpleScalar.
October 17 Run initial simulations.
October 24 Implement simple prefetching techniques.
October 31 Benchmark selected programs on modified system.

November 7

Analyze results. Attempt C+-+-targetted optimiza-
tions as appropriate.

November 14

Poster presentation.

November 21

Finishing touches on poster.

The entire path is critical, since it’s very linear. For this reason, we have not divided the tasks.




3.2.1 Milestone

We intend to have results showing that, I-cache prefetching improves C++ program performance to a greater
degree than C, due to the typically higher miss rates. We also intend to attempt prefetching based on virtual
function call prediction, followed by benchmarking.

3.3 Literature Search

In addition to papers cited above, various other papers were used to gain a brief overview of some of
the issues involved with object-oriented programming. Predicting the targets of indirect branches is one
approach [5, 11]. Another approach towards avoiding unneeded saves and restores was that of “dead” values
[8]. Prefetching methods have been examined for saving memory latency when dealing with linked data
structures [10, 13]. A variety of methods was considered in [12].

3.4 Resources

We need, and have the usage of, a big-endian machine on which to build SimpleScalar, along with libg++
and the cross-compiler.

We have a cross-compiled binary implementation of the SPEC95 suite.

We may need to forego sleep for prolonged periods of time.

3.5 Stuff So Far

We have obtained SimpleScalar, and built our development environment on a Solaris/SPARC server.

References

[1] Todd M. Austin. A user’s and hacker’s guide to the SimpleScalar architectural research tool set.
ftp://ftp.cs.wisc.edu/sohi/Code/simplescalar, January 1997.
[2] Todd M. Austin and Doug Burger. SimpleScalar tutorial. ftp://ftp.cs.wisc.edu/sohi/Code/simplescalar.

[3] Doug Burger and Todd M. Austin. The SimpleScalar tool set, version 2.0. Technical report, University
of Wisconsin-Madison, June 1997.

[4] Brad Calder, Dirk Grunwald, and Benjamin Zorn. Quantifying behavioral differences between ¢ and
c++ programs. Journal of Programming Languages, 2(4), 1994.

[5] Po-Yung Chang, Eric Hao, and Yale N. Patt. Target prediction for indirect jumps. Proceedings of the
24th International Symposium on Computer Architecture, 1997.

[6] Doug Joseph and Dirk Grunwald. Prefetching using markov predictors. Proceedings of the 24th Inter-
national Symposium on Computer architecture, June 1997.



[7] Chi-Keung Luk and Todd C. Mowry. Cooperative prefetching: Compiler and hardware support for
effective instruction prefetching in modern processors. Proceedings of Micro-31, December 1998.

[8] Milo M. Martin, Amir Roth, and Charles N. Fischer. Exploiting dead value information. Proceedings
of Micro-30, December 1997.

[9] Jim Pierce and Trevor Mudge. Wrong-path instruction prefetching. Proceedings of the 29th Annual
IEEE/ACM International Symposium on Microarchitecture, 1996.

[10] Amir Roth, Andreas Moshovos, and Gurindar S. Sohi. Dependence based prefetching for linked data
structures. Proceedings of ASPLOS-8, October 1998.

[11] Amir Roth, Andreas Moshovos, and Gurindar S. Sohi. Improving virtual function call target prediction
via dependence-based pre-computation. Proceedings of 1CS-99, June 1999.

[12] Amir Roth and Gurindar S. Sohi. New methods for exploiting program structure and behavior in
computer architecture. Proceedings of IWIA-98, October 1998.

[13] Amir Roth and Gurindar S. Sohi. Effective jump-pointer prefetching for linked data structures. Pro-
ceedings of the 26th International Symposium on Computer Architecture, May 1999.

[14] Alan J. Smith. Sequential program prefetching in memory hierarchies. IEEE Computer, 11(2), December
1978.

[15] J. E. Smith and W .-C. Hsu. Prefetching in supercomputer instruction caches. Supercomputing ’92, July
1992.



