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Abstract

Approximating general distributions by phase-type (PH) distributions is a popular
technique in stochastic analysis, since the Markovian property of PH distributions
often allows analytical tractability. This paper proposes an algorithm for mapping
a general distribution, G, to a PH distribution, which matches the first three mo-
ments of GG. Efficiency of our algorithm hinges on narrowing the search space to
a particular subset of the PH distributions, which we refer to as EC distributions.
The class of EC distributions has a small number of parameters, and we provide
closed-form solutions for these. Our solution applies to any distribution whose first
three moments can be matched by a PH distribution. Also, our resulting EC dis-
tribution requires a nearly minimal number of phases, within one of the minimal
number of phases required by any acyclic PH distribution.
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1 Motivation

There is a large body of literature on the topic of approximating general distri-
butions by phase-type (PH) distributions, whose Markovian properties make
them far more analytically tractable. Much of this research has focused on the
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specific problem of finding an algorithm which maps a general distribution,
G, to a PH distribution, P, where P and G agree on the first three moments.
Throughout this paper we say that G is well-represented by P if P and G agree
on their first three moments. We choose to limit our discussion in this paper
to three-moment matching, because matching the first three moments of an
input distribution has been shown to be effective in predicting mean perfor-
mance for variety of computer system models [4,5,21,25,31]. Clearly, however,
three moments might not always suffice for every problem, and we leave the
problem of matching more moments to future work.

Moment matching algorithms can be evaluated along four different measures:
(i) The number of moments matched: In general matching more moments
is more desirable. (ii) The computational efficiency of the algorithm:
It is desirable that the algorithm have short running time. Ideally, one would
like a closed-form solution for the parameters of the matching PH distribution.
(iii) The generality of the solution: Ideally the algorithm should work for
as broad a class of distributions as possible. (iv) The minimality of the
number of phases: It is desirable that the matching PH distribution, P, have
a small number of phases. Recall that the goal is to find P which can replace
the input distribution GG in some stochastic process to model it as a Markov
chain. Since it is desirable that the state space of this resulting Markov chain
be kept small, we want to keep the number of phases in P low.

This paper proposes moment matching algorithms which perform very well
along all four of these measures. This constitutes the primary contribution
of the paper. Our solution matches three moments, provides a closed form
representation of the parameters of the matching PH distribution, applies to
all distributions which can be well-represented by a PH distribution, and is
nearly minimal in the number of phases required.

The general approach in designing moment matching algorithms in the litera-
ture is to start by defining a subset S of the PH distributions, and then match
each input distribution G to a distribution in §. The reason for limiting the
solution to a distribution in § is that this narrows the search space and thus
improves the computational efficiency of the algorithm. Observe that n-phase
PH distributions have ©(n?) free parameters [16] (see Figure 1), while S can
be defined to have far fewer free parameters. One has to be careful in defining
the subset S, however. If S is too small, it may limit the space of distributions
which can be well-represented. Also, if S is too small, it may exclude solutions
with a minimal number of phases.

In this paper we define a subset of PH distributions, which we call EC dis-
tributions. EC distributions have only six free parameters, which allows us
to derive a closed-form solution for these parameters in terms of the input
distribution. The set of EC distributions is general enough, however, that for



all distributions G that can be well-represented by a PH distribution, there
exists an EC distribution that well-represents G. Furthermore, the class of
EC distributions is broad enough such that for any distribution, GG, that is
well-represented by an n-phase acyclic PH distribution, there exists an EC
distribution, F, with at most n + 1 phases, such that G is well-represented
by E.

It is not clear whether restricting our search space to the set of acyclic PH
distributions (as is used throughout literature) is limiting. While it is theoret-
ically possible that minimum phase solution is cyclic, in practice we have not
been able to find a situation where minimal solution requires cycles, and this
question is left as an open problem. However, note that an acyclic PH distri-
bution has a computational advantage over a cyclic one, since the generator
matrix of the underlying Markov chain of an acyclic PH distribution is upper
triangular. Therefore, in some applications, one might prefer an acyclic PH
distribution with more phases to a cyclic PH distribution with less phases.
Thus, in this paper, we limit our focus to the set of acyclic PH distributions.

To prove that our moment matching algorithm results in a nearly minimal
number of phases, we need to know the minimal number of phases needed
to well-represent an input distribution by a PH distribution. Unfortunately,
the minimal number of phases is not known for general distributions. This
makes it difficult to evaluate the effectiveness of different algorithms and also
makes the design of moment matching algorithms open-ended. As a secondary
contribution, this paper provides a formal characterization of the set of dis-
tributions that are well-represented by an n-phase PH distribution, for each
n = 1,2,3,.... This characterization is used to prove the minimality of the
number of phases used in our moment matching algorithms.

2 Overview of key ideas and definitions

We start with some definitions that we use throughout the paper.

Definition 1 A PH distribution is the distribution of the absorption time
in a continuous time Markov chain. A PH distribution, F, is specified by a

generator matriz, TY, and an initial probability vector, 7F.

Figure 1 shows a three-phase PH distribution, F, with 7¥ = (71, 73, 73) and
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Fig. 1. The continuous time Markov chain underlying a three-phase PH distribution.

There are n = 3 internal states. With probability 7; we start in the ith state.
The absorption time is the sum of the times spent in each of the states before
reaching the absorption state.

An important subset of PH distributions is the set of acyclic PH distributions
and the set of Coxian PH distributions, which are defined as follows.

Definition 2 An acyclic PH distribution is a PH distribution with \;; = 0
for all i > j. An n-phase Coxian PH distribution is an n-phase acyclic PH
distribution with 7, = 0 for @ = 2,...,n and N\;j = 0 fori+1 < j < n. An
n-phase Coxian™ PH distribution is a n-phase Coxian distribution with 7 = 1.

Observe that an acyclic PH distribution, F, has upper triangular T¥. In pro-
viding a simple representation and analysis of our closed-form solution, it will
be very helpful to start by defining an alternative to the standard moments,
which we refer to as normalized moments.

Definition 3 Let ul be the k-th moment of a distribution F for k = 1,2, 3.

The normalized k-th moment m! of F for k = 2,3 is defined to be m% =

F P
M2 and mg — _H3

(uf)? oo

Notice the relationship between the normalized moments and the coefficient
of variability C'r and the skewness yr of F" mg = (C%+1 and mg = vpy/mb,

F F
where vp = (#gﬁ (vp and ~p are closely related, since yp = éﬁ% where

fif is the centralized k-th moment of F for k = 2,3.)

Definition 4 A distribution G is well-represented by a distribution F if F
and G agree on their first three moments.

Definition 5 PH3 refers to the set of distributions that are well-represented
by a PH distribution.

It is known that a distribution G is in P H 3 iff its normalized moments satisfy
m§ > m$ > 1[10]. Since any nonnegative distribution G satisfies m§ > m$ >

1 [13], PH3 contains almost all the nonnegative distributions.

Proposition 1 Almost all the nonnegative distributions are in PHs.



Definition 6 OPT(G) is defined to be the minimum number of phases in a
PH distribution that well-represents a distribution G.

2.1 Moment matching algorithms

Previous work on moment matching algorithms Prior work has con-
tributed a large number of moment matching algorithms. While all of these
algorithms excel with respect to some of the four measures mentioned earlier
(number of moments matched; generality of the solution; computational effi-
ciency of the algorithm; and minimality of the number of phases), they all are
deficient in at least one of these measures as explained below.

In cases where matching only two moments suffices, it is possible to achieve
solutions which perform very well along all the other three measures. Sauer
and Chandy [23]| provide a closed-form solution for matching two moments
of a general distribution in PH3. They use a two-branch hyper-exponential
distribution for matching distributions with squared coefficient of variability
C? > 1 and a generalized Erlang distribution for matching distributions with
C? < 1. Marie [15] provides a closed-form solution for matching two moments
of a general distribution in PH3. He uses a two-phase Coxiant PH distribu-
tion for distributions with C? > 1 and a generalized Erlang distribution for
distributions with C? < 1.

If one is willing to match only a subset of distributions, then again it is possible
to achieve solutions which perform very well along the remaining three mea-
sures. Whitt [30] and Altiok [2] focus on the set of distributions with C? > 1
and sufficiently high third moment. They obtain a closed-form solution for
matching three moments of any distribution in this set. Whitt matches to a
two-branch hyper-exponential distribution, and Altiok matches to a two-phase
Coxian® PH distribution. Telek and Heindl [27] focus on the set of distribu-
tions with C? > % and various constraints on the third moment. They obtain
a closed-form solution for matching three moments of any distribution in this
set, by using a two-phase Coxian* PH distribution.

Johnson and Taaffe [9,10] come closest to achieving all four measures. They
provide a closed-form solution for matching the first three moments of any
distribution G € PHj3. They use a mixed Erlang distribution with common
order. Unfortunately, this mixed Erlang distribution requires 20PT(G) + 2
phases in the worst case.

In complementary work, Johnson and Taaffe [11,12] again look at the problem
of matching the first three moments of any distribution G € PH 3, this time
using three types of PH distributions: a mixture of Erlang distributions, a
Coxian™ PH distribution, and a general PH distribution. Their solution is
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Fig. 2. The Markov chain underlying an n-phase EC distribution. The first box above
depicts the underlying continuous time Markov chain in an Erlang-N distribution,
where N = n—2, and the second box depicts the underlying continuous time Markov
chain in a two-phase Cozian™ PH distribution. Notice that the rates in the first box
are the same for all states.

nearly minimal in that it requires at most OPT(G) 4+ 2 phases. Unfortunately,
their algorithm requires solving a nonlinear programing problem and hence is
computationally inefficient, requiring time exponential in OPT(G).

Above we have described the prior work focusing on moment matching algo-
rithms, which is the focus of this paper. There is also a large body of work
focusing on fitting the shape of an input distribution using a PH distribution.
Of particular recent interest has been work on fitting heavy-tailed distribu-
tions to PH distributions [3,6,7,14,22,26]. There is also work which combines
the goals of moment matching with the goal of fitting the shape of the dis-
tribution [8,24]. The work above is clearly broader in its goals than simply
matching three moments. Unfortunately there’s a tradeoff: obtaining a more
precise fit requires more phases. Additionally it can sometimes be computa-
tionally inefficient [8,24].

The key idea behind our algorithm: The EC distribution In all the
prior work on computationally efficient moment matching algorithms, the ap-
proach is to match a general input distribution G' to some subset, S, of the PH
distributions. In this paper, we show that by using the set of EC distributions
as our subset S, we achieve a solution which excels in all four desirable mea-
sures mentioned earlier. We also use the EC distribution as a building block in
designing variants of our closed form solution. We define the EC distributions
as follows:

Definition 7 An n-phase EC (Erlang-Cozian) distribution is a convolution
of an (n — 2)-phase Erlang distribution and a 2-phase Cozian™t distribution
possibly with mass probability at zero.

Figure 2 shows the underlying Markov chain of an n-phase EC distribution.

We now provide some intuition behind the creation of the EC distribution.
Recall that a Coxiant PH distribution is very good for approximating a dis-
tribution with high variability. In particular, a two-phase Coxiant PH distri-
bution is known to well-represent any distribution that has high second and



third moments (any distribution G that satisfies m§’ > 2 and m§' > 3m§) [20].
However a Coxian™ PH distribution requires more phases for approximating
distributions with lower second and third moments. For example, a Coxian™
PH distribution requires at least n phases to well-represent a distribution G
with m§ < 25 for n > 1 (see Section 3). The large number of phases needed
implies that many free parameters must be determined, which implies that
any algorithm that tries to well-represent an arbitrary distribution using a
minimal number of phases is likely to suffer from computational inefficiency.

By contrast, an n-phase Erlang distribution has only two free parameters and
is also known to have the least normalized second moment among all the n-
phase PH distributions [1,17]. However the Erlang distribution is obviously
limited in the set of distributions which it can well-represent.

Our approach is therefore to combine the Erlang distribution with the two-
phase Coxiant PH distribution, allowing us to represent distributions with all
ranges of variability, while using only a small number of phases. Furthermore,
the fact that the EC distribution has a small number of parameters allows us
to obtain closed-from expressions for the parameters (n, p, Ay, Ax1, Ax2, Px)
of the EC distribution that well-represents any given distribution in PH 3.

2.2 Characterizing PH distributions

We now turn to our second goal of the paper, namely characterizing the set of
distributions that are well-represented by an n-phase acyclic PH distribution.

Definition 8 Let S™ denote the set of distributions that are well-represented
by an n-phase acyclic PH distribution for positive integer n.

All prior work on characterizing S™ has focused on characterizing S, where
S is the set of distributions which are well-represented by a 2-phase Coxian™
PH distribution. Observe S©" C S®). Altiok [2] showed a sufficient condition
for a distribution to be in S@". More recently, Telek and Heindl [27] expanded
Altiok’s condition and proved the necessary and sufficient condition for a dis-
tribution to be in S@°. While neither Altiok nor Telek and Heindl expressed
these conditions in terms of normalized moments, the results can be expressed
more simply with our normalized moments:

Theorem 1 (Telek, Heindl) G € S®" iff G satisfies evactly one of the
3
9m§—12+§n\§5(2—m§)2 G(fg—l) and% <

m§ <2, (it) m§ =3 and m§ =2, or (iii) 3m§ < m§ and 2 < m§.

< m§ <

following three conditions: (i)

In this paper, we will characterize S, for all integers n > 2.
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(a) Characterizing S™ via 7™ (b) Set 7™

Fig. 3. (a) Solid lines delineate S™ (which is irregular) and dashed lines delineate
7™ (which is regular — has a simple specification). Observe the nested structure
of 8™ and T : S0 < 7MW < S+ for all integers n > 2. (b) Set T is
depicted as a function of the normalized moments. T sets are delineated by solid
lines, which includes the border, and dashed lines, which does not include the border
(n = 2,3,32). Observe that all possible nonnegative distributions lie within the region
delineated by the two dotted lines: mg > 1 and ms > ms.

Our Characterization of PH distributions While our goal is to charac-
terize the set S, this characterization turns out to be ugly. One of the key
ideas is that there is a set 7™ > S which is very close to S™ in size, such
that 7 has a simple specification via normalized moments. Thus, much of
the proofs in our characterization revolve around 7.

Definition 9 For integers n > 2, let T™ denote the set of distributions, F,
that satisfy exactly one of the following two conditions: (i) m% > ”T“ and
mi > Z—ﬁmg, or (i) m§ = " and mf = "2,
The main contribution of our characterization of PH distributions is a deriva-
tion of the nested relationship between S™ and 7 for all n > 2. This
relationship is illustrated in Figure 3. Observe that S™ is a proper subset of
S and likewise 7™ is a proper subset of 7+ for all integers n > 2.
More importantly, the nested relationship between S™ and 7 is formally
characterized in the next theorem.

Theorem 2 For all integers n > 2, S c T c SO+,

The property S C 7 is important because it will allow us to prove that
the EC distribution produced by our moment matching algorithm uses a nearly
minimal number of phases. The property 7™ C S+ is important in com-
pleting our characterization of S™. This property will follow immediately
from our construction of a moment matching algorithm.



2.3 Outline of Paper

The first part of the paper will describe the characterization of S™. This is
covered primarily in Section 3, and will be used in the second part of the paper,
which involves the construction of moment matching algorithms (Section 4-6).

Our moment matching algorithms depend on properties of EC distributions,
which will be discussed in depth in Section 4 We find that for the purpose
of moment matching it suffices to narrow down the set of EC distributions
further from six free parameters to five free parameters, by optimally fixing
one of the parameters.

In Section 5-6, we present three variants of closed form solutions for the re-
maining free parameters of the EC distribution, each of which achieves slightly
different goals. The first closed-form solution provided, which we refer to as the
simple solution, (see Section 5) has the advantage of simplicity and readabil-
ity; however it does not work for all distributions in PH3 (although it works
for almost all). This solution requires at most OPT(G) 4 2 phases. The sec-
ond closed-form solution provided, which we refer to as the improved solution,
(see Section 6.1) is defined for all the input distributions in PH3 and uses at
most OPT(G) + 1 phases. The improved solution is only lacking in numerical
stability for a small subset of PH3. In practice, this is not a problem, since
distributions lying in the small subset can be perturbed to move out of the
subset. In [18,19], we also provide numerically stable solutions.

In the simple solution and the improved solution, the matching EC distribution
can have mass probability at zero (p < 1). In some applications, however,
it is desirable that the matching PH distribution has no mass probability
at zero. The third closed-form solution provided, which we refer to as the
positive solution, (see Section 6.2) has no mass probability at zero (p = 1).
This solution is defined for almost all distributions in PH s and uses at most
OPT(G) + 1 phases.

3 Characterizing PH distributions

Set 8™ is characterized by Theorem 2: S™ ¢ T < S®*+Y for all n > 2. In
this section we prove the first part of the theorem, i.e. the following lemma:
Lemma 1 For all integers n > 2, S™ c T™,

The second part, 7™ c S+ follows immediately from the construction of
a moment matching algorithm (see Corollary 3 in Section 6.1).



We begin by defining the ratio of the normalized moments.

Definition 10 The ratio of the normalized moments of a distribution F, r¥,
Fo_ my

1s defined as r —+ and 1s also referred to as the r-value of F'.
2

One of the nice properties of the r-value is that it is insensitive to the mass
probability at zero, as shown in the proposition below:

Proposition 2 Let Z(-) = pX(-) + (1 — p)O(-), where X is a nonnegative
distribution with u > 0 and O is the distribution of the degenerate random
variable V.= 0. Then, r? = r~.

" X X X\, X
Proof: By definition, 74 = (p’z;:g)ﬁl ) — (“(3#);?21 ) =X m

To shed light on the expression Z(-) = pX(-)+ (1 —p)O(-), consider a random

variables V; whose distribution is X, Then, random variable

V1 with probability p
2 =
0 with probability 1 — p.
has distribution Z, since Pr(Va < t) = pPr(V; <t)+ (1 — p).) Below, we use
the notation O repeatedly.

Definition 11 Let O denote the distribution of the degenerate random vari-
able V = 0.

Note that, using the normalized second moment and the r-value, 7™ can be
redefined as the set of distributions, F', that satisfy exactly one of the following
two conditions: (i) mi > 2 and r* > Z—ﬁ, or (ii) my" = = and ¥’ = Z—ﬁ
To show S™ c T, consider an arbitrary distribution, X € S™. Let P be
an n-phase acyclic PH distribution that well-represents X. Then X € 7™
iff P € T(™. Hence, it suffices to prove that all acyclic n-phase acyclic PH
distributions are in 7. This can be shown by proving the two properties of
the Erlang-n distribution: (i) the set of Erlang-n distributions is the unique
class of n-phase PH distributions with the least normalized second moment
among all the n-phase PH distributions and (ii) the Erlang-n distribution has
the least r-value among all the n-phase acyclic PH distributions. Note that an
Erlang-n distribution refers to the convolution of n i.i.d. exponential distri-
butions (the distribution of the sum of n i.i.d. exponential random variables).
Thus, the Erlang-n distribution, F,, has my™ = ”T“ and rfr = Z—ﬁ

Property (i) of the Erlang-n distribution immediately follows from the prior
work by Aldous and Shepp [1] and O’Cinneide [17], who prove that the set
of Erlang-n distributions is the unique class of n-phase PH distributions with

10



the least second moment among all the n-phase PH distributions with a fixed
mean. Thus, all that remain is to prove property (ii).

Our approach is different from Aldous and Shepp [1] and O’Cinneide [17].
Aldous and Shepp prove the least variability of the Erlang-n distribution via
quadratic variation (a property related to the second moment), and hence it
is unlikely that their approach can be applied to prove property (ii), which
relies on higher moments, in particular the r-value. O’Cinneide extends the
work by Aldous and Shepp, considering a convex function, f(-), applied to
a random variable with an n-phase PH distribution with a fixed mean. He
proves that the expectation of f(V') is minimized when the random variable
V has an Erlang distribution. Unfortunately, the r-value of a distribution, G,
is not an expectation of f(V'), where V' is a random variable with distribution
G, for a convex function f(-), and the theory of majorization does not directly
apply to the r-value.

Our proof makes use of recursive structure of PH distributions and shows that
an n-phase Erlang distribution has no greater r-value than any n-phase acyclic
PH distribution. The key idea in our proof is that any acyclic PH distribution,
P, can be seen as a mixture of convolutions of exponential distributions, and
one of the convolutions of exponential distributions has no greater r-value than
P. This allows us to related the minimal convolution to an Erlang distribution
when all the rates of the exponential distributions are the same. The following
lemma provides the key property of the r-value used in our proof.

Lemma 2 Let Z(-) = Y0 piXi(+), where n > 2 and X; are nonnegative
distributions with " > 0 fori=1,..n. Then, there exists i € [1,n] such that
Z~ X
re > ol

Proof: We prove the lemma by induction on n. Without loss of generality, we
let X1 >--- > X,.

X2 X2
Base case (n = 2): Let v = & and w = %~ Then,
Hq Ha

2..X X X5 w? 2. X5,,,2
7 X, DPITTt A Diper U 4 piper Tt S 4 portitw X,

re —rt?= -r
(p1 + paw)?
N (P2 + P1p2v + p1p2™s + piuw? — (p1 + paw)?) r*2
B (p1 + paw)?
)2, X2
_ pipa(w —0)°r >0,

v(p1 + paw)?

where the first inequality follows from r*t > ¥z,

11



Inductive case: Suppose that the lemma holds for n < k. Whenn=%k+1, Z

can be seen as a mixture of two distributions, Y () = 17;“1 F  piXi(-) and

Xpr1(+). When r¥k+1 < rZ the lemma holds for n = k + 1. When rX++1 < rZ,
we have ¥ < % by the base case. By the inductive hypothesis, there exist
i € [1,k] such that ¥ > r%i. Thus, the lemma holds for n = k + 1, which
completes the proof. m

We are now ready to prove that an m-phase Erlang distribution has no greater
r-value than any n-phase PH distribution. We prove the following lemma.

Lemma 3 The Erlang distribution has the least r-value among all the acyclic
PH distribution with a fired number of phases, m, for all m > 1. An Erlang
distribution, either mized with O or by itself, constitutes the unique class of
acyclic PH distributions with the least r-value.

Proof: We prove the lemma by induction on m.

Base case (m = 1): Any PH distribution with one phase is a mixture of O and
3
5.

an exponential distribution, and the r-value is always

Inductive case: Suppose that the lemma holds for m < k. We show that the
lemma holds for m = &k + 1 as well.

Consider any (k + 1)-phase acyclic PH distribution, GG, which is neither an
Erlang distribution nor a mixture of O and an Erlang distribution. We first
show that there exists a PH distribution, F}, with no greater r-value (i.e.
rft < r%) such that F} is a convolution of an exponential distribution, X, and
an k-phase PH distribution, H;. The key idea is to see any PH distribution as
a mixture of PH distributions whose 7 vectors defined in Section 2 are base
vectors. For example, the three-phase PH distribution, GG, in Figure 1, can be
seen as a mixture of O and the three 3-phase PH distribution, G; (i = 1, ..., 3),
where 791 = (1,0,0), 792 = (0,1,0), 79 = (0,0,1), and TG = ... = TG =
TS. Proposition 2 and Lemma 2 imply that there exists i € [1,3] such that
r& < r% Without loss of generality, let r® < % and let F} = G. Note that
Fy has no greater r-value than G (i.e. vt < r%), and F} is a convolution of
an exponential distribution, X, and an k-phase PH distribution, H.

Next we show that if F} is neither an Erlang distribution nor a mixture of O
and an Erlang distribution, then there exists a PH distribution, F5, with no
greater r-value (i.e. rf2 < rf1). Let Hy be a mixture of O and an Erlang-k
distribution, F, (i.e. Hy(-) = pO(-)+(1—p)Ex(-)), where p is chosen such that
i = p and mi? = m¥* . There always exists such an H», since the Erlang-
k distribution has the least my among all the PH distributions (in particular

12



By
my* < mi") and my is an increasing function of p (m4? = %) Also, observe
that by the inductive hypothesis 72 < 1. Let F}, be a convolution of X and

H
Hsy, ie. Fy(-) = X (-) * Hy(-). We prove that r> < rf1. Let y = ’Ll—xl Then,
1
by (PN 4 3mdy + 3mi"y? 4 e (my)?y?) (1 +y)
rit = 5
(m3" + 2y +m3"y?)

(P (m3)? + 3my + 3mi=y? + v (mi®)2) (1 +y)

=T s

D
(m§( + 2y + m§2y2)
where the inequality follows from pf? = 't mi2 = m and rf2 < i,

Finally, we show that a mixture of O and an Erlang distribution has the
least r-value. F, is a convolution of X and H,, and it can also be seen as a
mixture of X and a distribution, F3, where F3(-) = X(-) * E(-). Thus, by
Lemma 2, at least one of X < rf2 and r™ < rf2 holds. When r* < rf2,
we found an Erlang-1 distribution (exponential distribution), X, with r* <
rf2 < ¢t < 9P When 7% > rf2, 9 < r holds. Let Fy be the Erlang-
(k + 1) distribution. We prove that r#* < r3 which will complete the proof.

. e E X
It suffices to prove that r** is minimized when pf = ", Let y = 4.
Hq
(TEk (mQEk )Q—i-?wnZE’C y+6y2+6y3) (14+y)
f E
Then, rfs = B , where 7Pk = B2 and my* = &L
(m2 . +2y+2y2>
F; 2k(k+1)(6ky>+6ky+k—1 . Y
Therefore, 22 = (4 1) (6ky "+ 6hy th—1) (y — l) . Since k > 1, r'* is minimized
y (B +2y+2y2) k
-1
at y = 1. |

4 EC distribution: Motivation and properties

The purpose of this section is twofold: to provide a detailed characterization
of the EC distribution, and to discuss a narrowed-down subset of the EC
distributions with only five free parameters (\y is fixed) which we will use in
our moment matching algorithm. Both results are summarized in Theorem 3.

To motivate the theorem in this section, consider the following story. Suppose
one is trying to match the first three moments of a given distribution, G, to
a distribution, P, which is a convolution of exponential distributions (possi-
bly with different rates) and a two-phase Coxian™ PH distribution. If G has
sufficiently high second and third moments, then a two-phase PH Coxian™

13



distribution alone suffices and we need no exponential distributions. If the
variability of G is lower, however, we might try appending an exponential dis-
tribution to the two-phase PH Coxian™ distribution. If that doesn’t suffice,
we might append two exponential distributions to the two-phase Coxian™ PH
distribution. Thus, if G' has very low variability, we might be forced to use
many phases to get the variability of P to be low enough. Therefore, to mini-
mize the number of phases in P, it seems desirable to choose the rates of the
exponential distributions so that the overall variability of P is minimized.

Continuing with our story, one could express the appending of each exponen-
tial distribution as a “function” whose goal is to reduce the variability of P
yet further. We call this “function ¢.”

Definition 12 Let X be an arbitrary distribution. Function ¢ maps X to
d(X) such that ¢(X) =Y x X, where Y is an exponential distribution with
rate Ay independent of X, Y x X s the convolution of Y and X, and Ay 1is
chosen so that the normalized second moment of ¢(X) is minimized. Also,
A X) = (¢ =1 X)) refers to the distribution obtained by applying function ¢
to ¢'=H(X) for integers | > 1, where ¢°(X) = X.

Observe that, when X is a k-phase PH distribution, ¢(X) is a (k 4+ 1)-phase
PH distribution. In theory, function ¢ allows each successive exponential dis-
tribution which is appended to have a different first moment. Surprisingly,
however, the following theorem shows that if the exponential distribution Y
being appended by function ¢ is chosen so as to minimize the normalized sec-
ond moment of ¢(X) (as specified by the definition), then the first moment
of each successive Y is always the same and is defined by the simple formula
shown the theorem below, which also characterizes the normalized moments

of ¢'(X).

Theorem 3 Let ¢'(X) = Y, * ¢ =Y X), where Y] is an exponential distribution
with rate Ay, for | = 1,..,N. Then, Ay, = m forl =1,..,N. The

2 1
(m3F =) (N+1)+1 and

normalized moments of Zy = ¢V (X) are: mgy = GX DN
2

Zn _ m%fmgf
" T o — D D+ 1) ((md — DN+ 1)°
(m3" —1)N (3m% + (mg —1)(m3" +2)(N + 1) + (mg’ — 1)2(N +1)?)

((mF =N +1) +1) (mF = )N +1)°

Observe that, when X is a k-phase PH distribution, ¢™ (X) is a (k+ N)-phase
PH distribution. The remainder of this section will prove the above theorem
and a corollary.

14



Proof:[Theorem 3] We first characterize Z = ¢(X) =Y % X, where X is an

arbitrary distribution with a finite third moment and Y is an exponential

X 2
istri i i : +2y+2
distribution. The normalized second moment of Z is mzz = m2(1+§>+2 :

y = Z—i Observe that m7 is minimized when y = m2 — 1, namely when
1
pul = (m¥ — 1)u. Observe that when ;] is set at this value, the normalized
X_
1 m + 3(77:3)( n
2

, Where

moments of Z satisfies: m{ =2 — =« and m% = X @ XD
2 2 2

We next characterize Z; = ¢/(X) =Y, * ¢'71(X) for 2 <[ < N: By the above

expression on m#Z and mZ, the second part of the theorem on the normalized
moments of Zy follow from solving the following recurrence equations (where

we use b; to denote mfl(X) and B; to denote mfl(X)):
1 B 3(by — 1)
biy1 =2—— d B = .
m=emy ad B= e Tty

The solutions for these recurrence equations are

(b —Dl+1 and B, — biBi + (by — 1)(1 — 1) (3by + (b — 1)(b1 + 2)I + (b1 — 1)*1?)

b= (b1 —1)(I—1)+1 o (b1 —DI+1D) (b — ) —1)+1)

for all [ > 1. These solutions can be verified by substitution. This completes
the proof of the second part of the theorem.

The first part of the theorem on My, is proved by induction. When [ =
Ay, = W follows from the expression p = (ms — 1)uy* derived above.
2 1

Assume that Ay, = —x~—~ holds when [ = 1,....t. Let Z; = ¢'(X). By the

(mg(fl)ﬂl
second part of the theorem, which is proved above, m#7* = # Thus,

Y;
by i} = (mg — Dp, '™ = (md* — Dpit = (mgf = Dpf. =

Corollary 1 Let Zy = ¢ (X). If X is in set {F |2 < mQF}, then Zy is in

set {F | 2 <mb < %}
Corollary 1 suggests the number, N, of times that function ¢ must be applied
to X to bring mZ" into the desired range, given the value of ma.

Proof:[Corollary 1] By Theorem 3, mZ" is a continuous and monotonically
increasing function of m2 Thus, the infimum and the supremum of m3™ are

glven by evaluating mZ~ at the infimum and the supremum, respectively, of

Z Z
X. When ms* — 2, msV — 2 When my — oo, ms "V — %

N1l u
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Fig. 4. A classification of distributions. The dotted lines delineate the set of all
nonnegative distributions G (m3G > mQG >1).

5 A simple closed form solution

Theorem 3 implies that the parameter Ay of the EC distribution can be fixed
without excluding the distributions of lowest variability from the set of EC
distributions. In the rest of the paper, we constrain Ay as follows:

1
Ay = 1
T @

and derive closed form representations of the remaining free parameters (n,
P, Ax1, Ax2, Px), where these free parameters will determine m3 and pf,
which in turn gives Ay by (1). Obviously, at least three degrees of freedom are
necessary to match three moments. As we will see, the additional degrees of
freedom allow us to accept all input distributions in PH3 and use a smaller
number of phases.

Set 7 which is used to characterize set S, gives us a sense of how many
phases are necessary to well-represent a given distribution. It turns out that
it is useful to divide set 7™ into smaller subsets to describe the closed form
solutions compactly. Roughly speaking, we divide the set 7 \ 7(=1 into
three subsets, U,,—1, M,,_1, and L,_; (see Figure 4). More formally,

Definition 13 We define U;, M;, and L; as follows:

Fm§>2andm§>2m§—1},

i+2 a i+l
“ <m2<
1+ 1

Fm§>2cmdm§:2m§—1},

andm§>2m§—1},

‘z’—i—2 F<z'+1

F F
i+1<m2 (mdm3:2m2—1},

16



3
Loz{F‘2m§<m§<2m§—1},

43 L+ 2
Ei:{F‘ZJF mb < mf < zi—lmg and m¥ <2m5—1},
for nonnegative integers i. Also, let UT = U2 U;, MT = U2, M,;, LT =
U;ﬁlﬁi, U= Z/{(] UZ/{+, M = Mo UM+, and L = £0 U £+.

The next theorem provides the intuition behind the sets U, M, and £; namely,
for any distribution X, X and ¢(X) are in the same classification region
(Figure 4).

Lemma 4 Let Zy = ¢™(X) for integers N > 1. If X € U (respectively,
X eM, X € L) then Zy € U (respectively, Zy € M, Zy € L) for all
N > 1.

Proof: We prove the case when N = 1. The theorem then follows by induction.
Let Z = ¢(X). By Theorem 3, my = -—, and

—_mZ>
2—m3

2ma — 1 +3m§—1
m¥@Emy —1) 7wy

— (respectively, <, and >) 2mZ —1,

mZ = (respectively, <, and >)

where the last equality follows from m3’ = 5—=—. =
2

By Corollary 1 and Lemma 4, it follows that:

Corollary 2 Let Zy = ¢™(X) for N > 0. If X € Uy (respectively, X € M,),
then Zn € Uy (respectively, Zn € My ).

The corollary implies that for any G € Uy U My, G can be well-represented
by an (N +2)-phase EC distribution with no mass probability at zero (p = 1),
because, for any F € Uy U My, F' can be well-represented by a two-phase
Coxian™ PH distribution, and Zy = ¢™(X) can be well-represented by a
(2 + N)-phase EC distribution. It will also be shown that for any G € Ly,
G can be well-represented by an (/N + 2)-phase EC distribution with positive
mass probability at zero (p < 1).

From these properties of ¢V (X), it is relatively easy to provide a closed form
solution for the parameters (n, p, Ax1, Ax2, px) of an EC distribution, Z,
so that a given distribution is well-represented by Z. Essentially, one just
needs to find an appropriate N and solve Z = ¢™(X) for X in terms of
normalized moments, which is immediate since N is given by Corollary 1
and the normalized moments of X can be obtained from Theorem 3. A little
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more effort is necessary to minimize the number of phases and to construct a
solution with no mass probability at zero.

In this section, we give a simple solution, which assumes the following condi-
tion on the input distribution G: G € PH; , where PH; = UUMUL. Observe
PH3 includes almost all distributions in PH3. Only the borders between the
U;’s are not included. We also analyze the number of necessary phases and
prove the following theorem:

Theorem 4 Under the simple solution, the number of phases used to well-
represent any distribution G by an EC distribution is at most OPT(G) + 2.

The Closed Form Solution: The solution differs according to the clas-
sification of the input distribution G. When G € Uy, U My, a two-phase
Coxian™ PH distribution suffices to match the first three moments. When
G e UT UM, G is well-represented by an EC distribution with p = 1. When
G € L, G is well-represented by an EC distribution with p < 1. For all cases,
the parameters (n, p, Ax1, Axa, px) are given by simple closed formulas.

(i) If G € Uy U My, then a two-phase Coxiant PH distribution suffices to
match the first three moments, i.e., p = 1 and n = 2 (N = 0). The pa-
rameters (Ax1, Ax2, px) of the two-phase Coxian™ PH distribution are chosen
as follows [27,20]: Ax; = 7”\2/?, Axp = Y10 and py = Ao Qi 1)

20§ Ax1p§ ’

6—2m§ 12—6m§
30 aa aNd U = —g o
mg —2mg mg (3mg —2mg’)

where © =

(i) f G e UT U M™, Corollary 1 specifies the number of phases needed:

k G
n:min{k‘m§>k 1}:{ ng 1+1J, (2)
— m§ —

(N = {mnégil — 1J ). Next, we find the two-phase Coxian™ PH distribution X €
2
Uy U M such that G is well-represented by Z, where Z(-) = Y ™=2*(.) x X (-)

and Y is an exponential distribution with rate given by (1), Y ™"~2* is the
(n — 2)-th convolution of Y, and Y™ 2* x X is the convolution of Y (=2
—3)mC —(n—
and X.2 By Theorem 3, this can be achieved by setting mz = %,
%
(n—2)m¥ —(n—3)"

mX _ ﬂmg—a
3 my

and uf = where

2 To shed light on this expression, consider i.i.d. random variables V71, ... V;, whose
distributions are Y and a random variable Vj,;. Then random variable f;“ll Vi
has distribution Z.
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maf

1 2 M 1 2 My 1 2 My
Q) (i (i)

Fig. 5. A graphical representation of the simple solution. Let G be the input dis-
tribution. (i) If G € Uy U Mg, G is well-represented by a two-phase Coxian™ PH
distribution X. (ii) If G € UT U M™, G is well-represented by ¢~ (X), where X is
a two-phase Cozian™ PH distribution. (iii) If G € L, G is well-represented by Z,
where Z is W = ¢V (X) with probability p and 0 with probability 1 —p and X is a
two-phase Cozian™ PH distribution.

a=(n—-2)(m§¥ —1) (n(n—1)(m3)* —n(2n - 5)mg + (n—1)(n —3))
B=((n—1)my — (n—2)) (n—2)m¥ — (n—3))*.

Thus, we set p = 1, and the parameters (Axi, Axe, px) of X are given by

case (i), using ma, mg, and ps*, specified above.

G
(111) If G S E, then let P = W, mgv = pmg, mgV = p?’]’),g7 and /1114/ — %

G is then well-represented by distribution Z, where Z(-) = pW (-)+(1—p)O(-).

Observe that p satisfies 0 < p < 1 and W satisfies W € M. It W € M, the

parameters of W are provided by case (i), using my’, m’, and p}", specified
above. If W € M™, the parameters of W are provided by case (ii), using m",

mY , and u}”, specified above.

Figure 5 shows a graphical representation of the simple solution.

Analyzing the number of phases required The proof of Theorem 4
relies on Lemma 1.

Proof:[Theorem 4] We will show that (i) if a distribution G € 7®' N (U U M),
then at most [ + 1 phases are used, and (ii) if a distribution G € TWN L, then
at most [+ 2 phases are used. Since SU C T by Lemma 1, this will complete
the proof. (i) Suppose G € UUM. If G € T®, then by (2) the EC distribution

provided by the simple solution has at most [ + 1 phases. (ii) Suppose G € L.
G

IfGeT®, then ml =72+ > éi—f By (2), the EC distribution provided

2 3

by the simple solution has at most [ 4+ 2 phases. =
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6 Variants of closed form solutions

In this section, we present two refinements of the simple solution (Section 5),
which we refer to as the improved solution and the positive solution.

6.1 An improved closed form solution

The improved solution is defined for all the input distributions G € PH 3 and
uses a smaller number of phases than the simple solution. Specifically, we prove
that the number of phases required in the improved solution is characterized
by the following theorem:

Theorem 5 Under the improved solution, the number of phases used to well-
represent any distribution G by an EC distribution is at most OPT(G) + 1.

Figure 6 is an implementation of the improved solution. In this section, we first
elaborate on the improved solution. Then, we prove Theorem 5. In fact, the
improved solution can be improved upon yet further for many distributions
(see [19] for details), but it does not improve the worst case performance.

Consider an arbitrary distribution G € PHj3. Our approach consists of two
steps, the first of which involves constructing a baseline EC distribution, and
the second of which involves reducing the number of phases in this baseline
solution. If G € PH;, then the baseline solution used is simply given by the
simple solution (Section 5). If G ¢ PH, then to obtain the baseline EC
distributing we first find a distribution W € PHjy such that v = r¢ and
mY < m§ and then set p such that G is well-represented by distribution Z,
where Z(-) = pW () + (1 — p)O(-). The parameters of the EC distribution
that well-represents W are then obtained by the simple solution (Section 5).

Next, we describe an idea to reduce the number of phases used in the baseline
EC distribution. The simple solution (Section 5) is based on the fact that
a distribution X is well-represented by a two-phase Coxian™ PH distribution
when X € UyUM,. In fact, a wider range of distributions are well-represented
by the set of two-phase Coxiant PH distributions. In particular, if X is in set
{F‘% <my <2and mg =2my — 1}, then X is well-represented by a two-
phase Coxian™ PH distribution.

The above ideas lead to the following solution:

(i) If G e U NPH—, then the simple solution (Section 5) provides the param-
eters (n, p, px1, fx2, Px)-
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(n7 D, )\Y7 )\Xla >\X27 pX) = Improved(,u?, lug7 M?)
Input: the first three moments of a distribution G: u§, uS, and u§.

Output: parameters of the EC distribution, (n, p, Ay, Ax1, Ax2, Px)

G G
1.m§ = L2 m§ = L.
2 7 W 3 7 ufu§
(m§)2+2mF—1 . Iel G 1 . .
e it m§ > 2m3 — 1, and g1 18 an integer,
_ 1 e G G
2p— W lfm3 <2m2_1,
1 otherwise.
G
w o uf. W _ G w_ .G
3. py =0 My’ =pmyy mg = pmg.
w
\\mn‘;/glJ if mY =2m —1, and m}’ <2
4.n = o
m. .
{ P + 1J otherwise.
my’ —1

X _ (n=3)ymy¥—(n-2)  x ny
5.my = n—2)my —(n-1)° M = mymF—(n-3)
6. = (n—2)(mg —1) (n(n—1)(m¥)* = n(2n — 5)m3 + (n — 1)(n — 3)).
2
7. 8= ((n — 1)m§( —(n— 2)) ((n - 2)m§( —(n— 3)) .
8. my = ﬂn:;#
2

1 if 3my = 2my’ 0 if 3my = 2my’

9.u= 6—2mX . U= 12—6mX .
W otherwise W otherwise

_ u+Vu2—4v. _ u—Vu?—4v. _A p¥ (Axipf —1) _ 1

10. Ay = 5 " Axa = I Px = T AY T G qyx

Fig. 6. An implementation of the improved closed form solution.

(i) If G e U N (PH™)", where (PH ™) denotes the complement of PH ~, then

_2m§-1 W _ 1 (n=1_ _n wo_ m§ W w _ uf
let n = mo—1 M2 —§(m+m),m3 —m—ng,and o= ok where

pw = Z—QZ G is then well-represented by Z, where Z(-) = pywW(-) + (1 —
2

pw)O(+), where W is an EC distribution with normalized moments m}’ and

mgv and mean p‘{v. The parameters (n, pxi, ftx2, px) of W are provided

by the simple solution (Section 5). Also, set p = pw, since W has no mass

probability at zero.

(iii) If G € M U L, then the simple solution (Section 5) provides the parame-
ters (n, p, ix1, fhx2, Px), except that if the number n of phases calculated by
(2) is n > 2, then n is decremented by one. The next theorem (Theorem 6)
guarantees that parameters obtained with the reduced n are still feasible.

Theorem 6 Let Z = A"(X). If X € {F|%§mZF§2 andm?szZF—l},
thenZE{F|"T+1§m§§% andm§:2m§—1}.
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Proof: By Theorem 3, m7 is a continuous and monotonically increasing func-
tion of my, Thus, = < m# < - follows by simply evaluating m# at the
lower and upper bound of mz . mZ = 2mZ — 1 follows from Theorem 4. m

Now we prove Theorem 5.

Proof:[Theorem 5] Since S™ C 7™ (Lemma 1), it suffices to prove that if
a distribution G € 7™, then at most n + 1 phases are needed. (i) Suppose
G €U. If G € T™, then the simple solution (Section 5) is used and at most
n + 1 phases are used. (ii) Suppose G € M. If G € T™ NPH™, then the
number of phases used in the improved solution is one less than the simple
solution. Therefore, at most n phases are used. If G € T N (PH™)¢, then
exactly n phases are used. (iii) Suppose G € £. If G € 7™, then the number
of phases used in the improved solution is one less than the simple solution.
Therefore, at most n + 1 phases are used. =

Theorem 5 implies that any distribution in S is well-represented by an EC
distribution of n + 1 phases. In the proof, we prove a stronger property that
any distribution in 7, which is a superset of S| is well-represented by an
EC distribution of n 4 1 phases, which implies the following corollary:

Corollary 3 For all integers n > 2, T™ c S+,

6.2 A positive closed form solution

The simple solution and the improved solution can have a mass probability at
zero (i.e. p < 1). In some applications, mass probability at zero is not an issue.
Such applications include approximating busy period distributions in queueing
system analysis [5,21] and approximating shortfall distributions in inventory
system analysis [28,29]. However, there are also applications where a mass
probability at zero increases the computational complexity or even makes the
analysis intractable. For example, a PH/PH/1/FCFS queue can be analyzed
efficiently via the matrix analytic method when the PH distributions have no
pass probability at zero; however, no simple analytical solution is known when
the PH distributions have nonzero mass probability at zero.

The positive closed form solution is a variant of the improved solution, and
it does not have mass probability at zero. The key idea in the design of the
positive solution is to match the input distribution by a mixture of an EC dis-
tribution (with no mass probability at zero) and an exponential distribution.
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Fig. 7. The Markov chain underlying an (n + 1)-phase extended EC distribution.

The use of this type of extended EC distribution makes intuitive sense, since
it can approximate the EC distribution with mass probability at zero arbi-
trarily closely by letting the mean of the exponential distributions approach
zero. It turns out, however, that it is not always easy (or even possible) to
find a closed form expression for the parameters of the EC distribution and
the exponential distribution. We find that in such cases a convolution of an
EC distribution and an exponential distribution leads to tractability, and we
can find the closed form expression for the parameter of the EC distribution
and the exponential distribution. Therefore, in this section, we extend the
definition of the EC distribution and use the extended EC distribution to
well-represent the input distribution.

Definition 14 An exstended EC distribution has a distribution function Z(-)*
(X()+ (1 —=p)W (")), where Z and W are exponential distributions, and X
is an EC distribution with no mass probability at zero. (See Figure 7 for the
underlying Markov chain of an extended EC distribution.)

Note that the parameter n in an extended EC distribution denotes the number
of phases in the EC portion of the extended EC distribution. Note also that in
the positive solution exactly one of Ay, and Az is set oo, i.e. the distribution
function of the extended EC distribution is F(-) = Z(-) * X(:) or F(-) =
pX(-)+ (1 —p)W(-). Therefore, the total number of phases in an extended EC
distribution is n + 1.

Figure 8 shows an implementation of the positive solution. The extended EC
distribution given by the positive solution has no mass probability at zero.
The positive solution is defined for almost all the input distributions P H3; in
particular it is defined for all distributions in

3
Uu{F’m{;:ng—l}U{F‘mgF#img andm§<2m2F—1}.

The number of phases required is characterized by the following theorem:

Theorem 7 Under the positive solution, the number of phases used to well-
represent any distribution G by an extended EC distribution is < OPT(G)+1.

23



(n7 D, /\Y7 )\Xla )\X27 Px, /\Wa )\Z) = POSitiVG(/L?, :ug: :ug)
If Geuu{F|mf=2ml -1} u{F|m{ <2mi —1and mf > 2 and r¥ > 3},

use Improved. Otherwise,

1. m§ = (:ITQG)Q; m§ = H?i”i?; ré = Z—;g; k= L%%mn?j
If m3G > (k+1)27(r;§:£)(k+4) g;’
_mG G2

2. w= 4(2%%2(;); p= (2—m§)2(-2+4$73110—1—m?); ma = 2w;

my = 2my — 1; u{(:%; )‘W:ﬁ; Az =00; go to 3.
Ier<%i;)(k+4) and m§ = 2,

k+3

2. 2= 7m§:i’§_12; mE =21 +2); m¥ = EEmd; ¥ =

)‘Z:ﬁ5 Ay = o0;  go to 3.
If m§ < %#mg and m$ # 2,

mg ((m§~3)~25 (m§ ~2))-+m§ | /(m§ -8)2+8 15 (m ~2)(§ 1)

2.z = 2EE (G —2)2 ;

G
m§:(1+z)(m§(1+z)—2>; m?zi—igmf; u{(:%.
)‘Z:ﬁ5 Aw = 00;  go to 3.
. py =my (0 )% pg =my i s

4. (n, p, Ay, Ax1, Axa, px) = Improved(pi, 13, p3)

Fig. 8. An implementation of the positive closed form solution.

Closed form solution

When the input distribution is in

3
UU{F\mgF:ng—l}U{F]m§<2m§—1andm§>2andrF>§},

the EC distribution produced by the improved solution does not have a mass
probability at zero. Below, we focus on input distributions G € £+ with an

additional assumption that r¢ # %

We first consider the first approach of using a mixture of an EC distribution
(with no mass probability at zero) and an exponential distribution (i.e. Az =
o). Given a distribution G € L;, (see Definition 13), we seek ma, ms, 0 <

w
p <1, and w > 0, where w = %, such that
1
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k+2 y k+1 ¢ pms +2(1—pw?

PRSI 3 T T - pw)? (5)
my =2my — 1 (4) g — pm¥mg +6(1 — p)uw’ ©)

(p+ (1= pw)(pm3 +2(1 - pjw?)

Note that G is then well-represented by a distribution with pX (+)4(1—p)W (-),
where X is an EC distribution with no mass probability at zero and W is an
exponential distribution.

The following lemma characterizes the parameters of distributions, X and W.

Lemma 5 Suppose G € L; and % < rf < % for k > 1. Let

_ _2-m§ (2-m§)? X _ X o X
w = NE=EE P = o —iomg) Me = 2w, and mg = 2my — 1. Then,

w>0,0<p<1, and conditions (3)-(6) are satisfied.

Proof: It is easy to check, by substitution, that conditions (4)-(6) are satisfied.
It is easy to see 0 < p < 1, since m§ < 2m§ — 1. Also, my > 2 implies

k+1
w > 0. Thus, it suffices to prove that condition (3) is satisfied.

We first consider the first inequality of condition (3). The assumption on r¢

. . k+1)mS +(k+4 2—
in the lemma gives 3 — r¢ < 3 _ (tlmy +(hH) _ kil m2

. Therefore, since

2(k+2) T k2
3 G X _ _2=mf 1 k42
5 > 17, it follows that my = 2w = ~—; 7,0 > e

We next consider the second inequality of condition (3). We begin by bounding
the range of m§ for G considered in the lemma. Condltlon G € L implies

m§ > Zﬁ Also, if m§ > 2, then by the assumption on r¢ in lemma,

oo ktDmf+(k+4) 2k+D+(k+4) 3
i 2k +2) ST 2kyy 2

This contradicts r¢ < 3. Thus, m§ < 2. So far, we derived the range of m$

k+2
as <m§ < 2.

We prove mj < £ in two cases: (i) ©1 < m§ < 2 and (i) ££2 < m§ < EH.

k k1 k
—_m G
Note that ms :2(2777%) (i) When & k“ <m§ <2,
5
2 — kil k41
m§(< k T

3 k+2) k
2(5*1«%1)

The inequality follows from m§ < #t! and r¢ < iﬁ (ii) When ]Zﬁ <m§ <
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2 —m§ k+1
X 2 _ G
"G ) T
2 m,f,;
G G_ .
The inequality follows from r¢ = 24 < 222-1 which follows from G € L.
m. m.

2 2

This completes the proof. =

The key idea behind Lemma 5 is to fix some of the parameters so that the
set of equations becomes simpler and yet there exists a unique solution. The
difficulty in finding closed form solutions is that we are given a system of
nonlinear equations with high degree, and the solutions are not unique. By
fixing some of the parameters, the system of equations can be reduced to
have a unique solution; however, the system of equations is not necessarily
simplified enough to provide simple closed form solutions. We find that w
given by Lemma 5 has nice characteristics. First, ms leads to a very simple

expression: ma = 2w. Second, with this expression of m3, r¢ is significantly

simplified: r¢ = W. Now, finding p and w is a relatively easy task.
Although Lemma 5 allows us to find a simple closed form solution, the set
of input distributions defined for Lemma 5 is rather small. This necessitates
the second approach of using a convolution of an EC distribution and an
exponential distribution. Note that the second approach alone does not suffice,
either. Applying the first approach to a small set of input distributions and
applying the second approach to the lest of the input distribution, in fact, lead

to simpler closed form expressions for solutions by both approaches.

Next, we consider the second approach of using a convolution of an EC dis-

tribution (with mass probability at zero) and an exponential distribution (i.e.

G
A = 00). Given a distribution G € L) (we assume Z—Z@ # 3), we seek my,

X i
mg , and z > 0, Wherez:u}( such that
1
k+2 ma + 2z + 222
X G 2
> 7 =_=2 =7 7
k+3 X, X X 2 3
X X m4 ms + 3mg z 4+ 62° 4 62
My = ———m 8 G _ "2 1% 2 10
k202 ® 3 (mg + 2z +222)(1 + 2) (10)

Note that G is then well-represented by a distribution with X (-) % Z(-), where
X is an EC distribution and Z is an exponential distribution.

The following lemma characterizes the parameters of distributions, X and Z.

Lemma 6 Suppose G € L, 7% < %, and 16 < EHUmG+GE+D) for k > 1. If

2(k-+2)
G m§—-2 X X _ k30X
— — + — —
mg = 2, we choose z = Somg 0 M = 2(1 + z), and mz = ;=5my . If
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§ # 2, we choose my = (1+z) (mg(l +z) — 22) and m3 = Zj’rng , where

- G
s ((m —3) — 2250n — 2)) +m\ [~ 32 + 833 —2) (3 - 25)

258 (m§ — 2)2

Then, z > 0 and conditions (7)-(10) are satisfied.

Proof: For each case, it is easy to check, by substitution, that conditions
(8)-(10) are satisfied. Below, we prove condition (7) and z > 0.

We begin with the first case, where m$ = 2. It is easy to see (7) is true if

~ X ot k+3 G
z > 0, since mj :2(1—|—z) > 2 > kil However, z > 0 if 25755 < m§ < 3,

which is true by G € Ly, ¢ < 5, and m§ = 2.

Below, we consider the second case, where m$ # 2. We first prove z > 0
by showing that z is the larger solution of the two solutions of a quadratic
equation that has a unique positive solution. Observe that

m$ (my 422 4 223)(1 4 2) = m¥mi +3m¥ 2+ 622+ 623 (by (10))
%2@@2 +32(mY +2:+22%)  (by (8) and (9))
k+3
k+2

k+3(

k42

= m?mg(l + 2)3 =

= mim§(1+2)°=-——(1+2)>(mF1+2)— 22)2 +32(1+2)*m§  (by (9))

— mfm§(1+2) = m§(1+z)f2z)2+3zm§

Thus, z is a solution of the following quadratic equation: f(z) = 0, where

k k k
F(2) = oo (m§ — 92— m (<m§ ~3)- 2k—i‘;’<m§ - 2)) 2= (mg)? (TG P 3)

Since the coefficient of the leading term, Zig’ (m§ —2)2, is positive and f(0) <

0, there exists a unique positive solution of f(z) = 0.

Second, we show ma < ]Z—ﬁ We consider two cases: (i) m§ > 2 and (ii)

m$ < 2. Case (i) is easy to show. Suppose m$ > 2. Observe that by (9),
my =z ((m§ — )z +2(m§ — 1)) +m§. Thus, if m§ > 2, then mg > m§ >

==, Below, we consider case (ii).

k1
Suppose m$ < 2. Observe that ms = —(2 —m$)22 +2(m§ — 1)z +m§, again
by (9). Thus, mz > ]Iz—ﬁ iff (0 < 2) < z*, where z* is a larger solution, z, of

the following quadratic equation: x(z) = 0, where

k+2

- _(2— G\ ,.2 9 G—l G__.
x() (2 —mg)z” +2(my )z +ms E 1

27



—1+ [k 2mG k+3
That is, 2* = 5 k:g "’ Thus, it suffices to show f(z*) > 0. Since
2

2(m§71)z*+m2 Zi%

x(z*) = 0, we get (2*)? as a linear function of z*: (2*)? =

277ng‘v
By substituting this (z*)? into the expression for f(z*), we get
fey = B3 o oy (2mE Z D=4 mE -
T k42 2 2 —m§
k+3 k+3
—m§ <2k——|—2(2_ 9y — (3—m§;)> z— (m§)? (’I"G k—|—2> 0
k+3 E+3 kE+3
(smggm@mg) mgm3> ol g K ) mgmg
k+3 k+1m2+k+4)
—2 %9 iy *
~ (3 P < 20k +2) ))Z
[ —
™ TR me) — () (k+2)
2 —m§

C(k+1)m§ = (k+2)

20k + 1) (k + 2) ((k+1)(m§)? + (2k + 6)mg’ — 4(k + 3))

where the inequality follows from the assumption on 7% in the lemma. By sub-
G_ 14, [/kt2,,G_kt3

stituting z* = 5 k;blg “L into the last expression, we obtain f(z*) =
2
k+2)mS —(k+3 _ (k1 k—3) (k+2)m§ —4(k+3
g(m§) + h(mS) ( )k-zi-l( ) , where g(m$) = (k+1)*(m )2(;+1)2](€+2)) 3 —4(k+3)
_ (k41 +3(k+2)m§ —4(k+3)
and h(m§) = ED 2 (§c+2)) 2 A Gince

g (mS) =2(k+1)> < §M>+(k+2)(k+5)>0

E+1
for :—ﬁ < m§ < 2, g(m§) and h(m§) are increasing functions of m§ in
k2 2 k2
the range of 35 < m§ < 2. Since 9(k+1) = ey > 0 and h(35) =

> 0, we have g(m§) > 0 and h(m§) > 0 for all 22 < m§ < 2. This

2
k2+3k+2 k+1

implies f(z*) > 0. This completes the proof. =

Finally, we prove Theorem 7.

Proof:[Theorem 7] When an input distribution, G, satisfies m§ > 2m§ — 1,
the positive solution is the same as the improved solution (Section 6.1), and
hence requires the same number of phases, which is at most OPT(G) + 1.
When G satisfies m§ < 2m§ — 1, it is immediate, from the construction of
the solution, that the positive solution requires at most one more phase than
the improved solution. For this G, the improved solution requires OPT(G)
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phases, and hence the positive solution requires OPT(G) + 1 phases. =

7 Conclusion

In this paper, we propose a closed form solution for the parameters of a PH
distribution, P, that well-represents a given distribution G'. Our solution is
the first that achieves all of the following goals: (i) the first three moments
of G and P agree, (ii) any distribution G that is well-represented by a PH
distribution (i.e., G € PH3) can be well-represented by P, (iii) the number of
phases used in P is at most OPT(G) + ¢, where c is a small constant, (iv) the
solution is expressed in closed form.

The key idea is the definition and use of EC distributions, a subset of PH distri-
butions. The set of EC distributions is defined so that it includes minimal PH
distributions, in the sense that for any distribution, GG, that is well-represented
by n-phase acyclic PH distribution, there exists an EC distribution, F, with
at most n + 1 phases such that G is well-represented by E. This property of
the set of EC distributions is the key to achieving the above goals (i), (ii), and
(iii). Also, the EC distribution is defined so that it has a small number (six) of
free parameters. This property of the EC distribution is the key to achieving
the above goal (iv).

We provide a complete characterization of the EC distribution with respect
to the normalized moments; the characterization is enabled by the simple
definition of the EC distribution. The analysis is an elegant induction based on
the recursive definition of the EC distribution; the inductive analysis is enabled
by a solution to a nontrivial recursive formula. Based on the characterization,
we provide three variants of closed form solutions for the parameters of the
EC distribution that well-represents the input distribution.

One take-home lesson from this paper is that the moment-matching problem
is better solved with respect to the above four goals by sewing together two
or more types of distributions, so that one can gain the best properties of
both. The EC distribution sews the two-phase Coxian PH distribution and the
Erlang distribution. The point is that these two distributions provide several
different and complementary desirable properties.

The second contribution is a characterization of the set, S of distributions
that are well-represented by an n-phase acyclic PH distribution. We intro-
duce two ideas that help in creating a simple formulation of S™. The first
is the concept of normalized moments and their ratio, r-value. The second is
the notion of 7, which is a superset of S™, is close to S™ in size, and
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has a simple characterization via normalized moments. The characterization
of S is used to prove the minimality of the number of phases used in our
moment matching solutions. This characterization also has practical use in its
own right, as it allows algorithm designers to determine how close their PH
distribution is to the minimal PH distribution, and provides intuition for com-
ing up with improved algorithms. We have ourselves benefitted from exactly
this point in this paper. Another benefit of characterizing S™ is that some
existing moment matching algorithms, such as Johnson and Taaffe’s nonlin-
ear programming approach [12], require knowing the number of phases, n, in
the minimal PH distribution. The current approach involves simply iterating
over all choices for n [12], whereas our characterization would immediately
specify n.

The closed form solutions proposed in this paper have been largely imple-
mented and tested. Latest implementation of the solutions is available at an
online code repository, http://www.cs.cmu.edu/~osogami/code/.
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