
Available online at www.sciencedirect.com

Procedia Computer Science 00 (2019) 000–000
www.elsevier.com/locate/procedia

Postproceedings of the 9th Annual International Conference on Biologically Inspired Cognitive
Architectures, BICA 2018 (Ninth Annual Meeting of the BICA Society)

CogArch-ADL: Toward a Formal Description of a Reference
Architecture for the Common Model of Cognition

Oscar J. Romero∗

Carnegie Mellon University, Department of Machine Learning, USA

Abstract

As the Common Model of Cognition (CMC) is getting more supporters from research fields such as AI, cognitive science, neu-
roscience, and robotics in an effort to contribute to the understanding of minds, a new requirement becomes imperative: standard
modeling and specification mechanisms are needed to allow both developing new CMC-compliant computational frameworks and
validating existing ones. Thus, this paper aims at proposing an approach to formally describe cognitive architectures by extending
π-ADL, an Architecture Description Language based on π-Calculus. Four case studies illustrate the usefulness of our approach,
and future work outlines how it can be used as a vehicle to formally meet architectural requirements, validate structural/behavioral
equivalence among architectures, and model evolutionary cognitive systems.

c© 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 9th Annual International Conference on Biologically Inspired
Cognitive Architectures.

Keywords: Cognitive Architectures; Common Model of Cognition; Architecture Description Language; π-Calculus

1. Introduction

The Standard Model of Mind [8] (later renamed as Common Model of Cognition – CMC for short) captures a commu-
nity consensus over a coherent region of science, serving as accumulative reference point for the field that can provide
guidance for both research and applications, while also focusing efforts to extend or revise it. For the time being, the
CMC has been grounded in three main cognitive architectures (hypotheses about the fixed structure of the mind that
can be concretized into computational frameworks): ACT-R [1], SOAR [9], and SIGMA [17]. Both key assumptions
and constraints about the purpose of the structure of the model have been identified. Although the CMC reflects a
sound beginning upon which further integrative research can be conducted, some open issues become evident at this
point: in its current state, the CMC defines high-level assumptions reflecting a consensus on what must be included

∗ Corresponding Author: Oscar J. Romero
E-mail address: oromero@cmu.edu

1877-0509 c© 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 9th Annual International Conference on Biologically Inspired Cognitive Archi-
tectures.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

2 Oscar J. Romero / Procedia Computer Science 00 (2019) 000–000

port

Fig. 1. Architectural Concepts of π-ADL. Source: [4]

in a cognitive architecture (CA hereafter) in order to provide a human-like mind, but no formal description about how
CMC-compliant CAs should be modeled/implemented is provided yet. Thus, there is a gap between the theoretical
(abstract) assumptions set forth by the CMC and possible concretizations of those assumptions into appropriate com-
putational frameworks (which can be either new implementations or validation of existing computational models).
Quoting Bello and Bringsjord’s own words [3]: “The second problem [about CMC] is, put baldly, [its] perceived
alignment of boxes and arrows doesn’t constitute verifiable convergence. Yes, [it] perceive[s] a convergence between
SOAR, ACT-R, and SIGMA, but absent any rigorous demonstration of such there is no rational reason to attribute this
perception to underlying reality, rather than exuberance. Without (a) theorem(s) expressing that, at least with respect
to some mental phenomena, initial convergence is in place, it is wishful thinking to aspire to reach, for the mind, what
has been reached for the purely physical. Yet there is no such theorem, nor even an antecedent thereof (e.g., a rigorous
conjecture), to be had in the inaugural paper [8]...”

Therefore, the work presented in this paper is an attempt to partially bridge this gap by using and extending an Ar-
chitecture Definition Language (ADL). An ADL, from a runtime perspective, provides a formal specification of the ar-
chitecture in terms of components and connectors and how they are composed together. More specifically, we propose
CogArch-ADL, an extension of π-ADL [15], a formal, well-founded theoretically language based on the higher-order
typed π-Calculus. While most ADLs focus on describing software architectures from a structural viewpoint, π-ADL
focuses on formally describing architectures encompassing both the structural and behavioral viewpoints. CogArch-
ADL allows the CMC to be formalized in terms of: 1) a set of abstractions and architectural key elements identified
by the CMC; 2) a set of architectural constraints, including legal compositions and cognitively plausible constraints;
3) a set of additional analyses that can be performed on CA descriptions constructed in the architectural style; and 4)
formal validation of cognitive architectural models.

2. Concepts and Notation

2.1. Definitions

First of all, we need to introduce three concepts that we will use throughout the paper: Reference Model, Reference
Architecture, and Software Architecture. According to [10], a Reference Model is a division of functionality together
with data flow between the pieces, which defines a standard decomposition of a known problem into parts that co-
operatively solve the problem. A Reference Architecture is a Reference Model mapped onto a system decomposition
(software elements, and the data flows between them), which addresses the business rules, architectural styles that
satisfy quality attributes, best practices of software development, and the software elements that support the devel-
opment of systems for that domain. Finally, a Software Architecture is a particular characterization (concretization)
of a Reference Architecture. In that context, the CMC corresponds to a Reference Model, and this paper presents an
approach to the formal definition of a Reference Architecture for the CMC, more specifically, a Reference Cognitive
Architecture (RCA for short), which can be formally described through multiple levels of abstraction (as we will see in
the remaining sections of this paper). Thus, the RCA will help to: provide a common language for the various scientist
and developers in the field, provide consistency of implementation of new CAs, support the validation of existing CAs
against a proven RCA, and encourage adherence to common standards, specifications, and patterns by using formal
meta-modeling languages such as π-ADL.

Oscar J. Romero / Procedia Computer Science 00 (2019) 000–000 3

π-ADL is a language encompassing both structural and behavioral architecture-centric constructs, defined as a
domain-specific extension of the process algebra π-Calculus [12], that achieves Turing completeness (i.e., in π-
Calculus every computation is possible but not necessarily easy to express) and high architecture expressiveness
with a simple formal notation. In π-ADL, an architecture is described in terms of components, connectors, and their
composition. Figure 1 depicts its main constituents. Components are described in terms of external ports and an inter-
nal behavior. Their architectural role is to specify computational elements of a software system. Ports are described
in terms of connections between a component and its environment. Their role is to put together connections providing
an interface between the component and its environment. Protocols may be enforced by ports. Connections are basic
interaction points. Their role is to provide communication channels between two architectural elements. A component
can send or receive values via connections, which can be declared as output, input, or input-output. Connectors are
special-purpose components, described in terms of external ports and an internal behavior. However, their role is to
connect together components. Components and connectors can be composed to construct composite elements, which
in turn can be decomposed and recomposed in different ways in order to construct different compositions. Architec-
tures are composite elements representing systems, so an architecture can itself be a composite component in another
architecture, i.e. a sub-architecture. In π-ADL, architectures, components, and connectors are formally specified in
terms of typed abstractions over behaviors.

2.2. Formal System

The semantics of π-ADL can be formalized by means of typing and transition rules.
Typing Rules: it can be read “if the statements in the premises listed above the line are established, then the conclusion
below the line is derived” (see Figure 2). Thereby: if Premise1, ..., Premisen are well-typed then Conclusion is well-
typed. Rules with no premises are called axioms. Rules with one or more premises are called inference rules.

Fig. 2. Typing and Transition Rules. Source: [14]

Transition Rules: In a transition rule (see Figure 2), premises and conclusions are transition relations. Thereby, if
the transition relations labelled by α1...αn can fire, then the transition relation labelled by α can fire, i.e. if P1 can fire
α1 and become P′1... and Pn can fire αn and become P′n, then C can fire α and become C′. Side conditions can be
seen as preconditions on terms expressed in the premises and side effects as post-conditions on terms expressed in
the conclusion. This structural operational semantics represents behavior (and thereby computation) of the π-ADL by
means of a deductive system, expressed by the transition system. Following this approach, the π-ADL semantics are
completely formalized (see [14] for details).
Abstract Syntax: The abstract syntax of types for expressing typed behaviors is defined on Figure 3. Below, we briefly
describe some of the syntax constructs (however, a detailed description can be found in [15, 16]) and the proposed
extended types for CogArch-ADL:
choice: choose {behavior0} ... or {behaviorn} expresses the capability of a behavior to choose either the capability of
behavior0 or behaviorn. When one of the capabilities is exercised, the others are no longer available.
composition: compose {behavior0 ... and behaviorn} expresses the capability of a behavior to parallel compose the
capabilities of {behavior0 ... and behaviorn}.
prefixes: An output prefix via c send v expresses the capability to send a value v via the connection c. An input prefix
via c receive v expresses the capability to receive v via c. The silent prefix unobservable expresses the capability to
enact an action invisibly, i.e. internally.
CogArch-ADL types: we define an abstract construct called Buffer that servers to extend more specific types of
buffers (e.g., visual, verbal, etc.). Furthermore, specific units (chunks) of information are defined depending on the
kind of content to be stored (e.g., stimulus, percepts).
Structural Operational Semantics: every construct of the π-ADL expressed in its abstract syntax has its structural
operational semantics specified by a set of transition rules (Figure 4). The three labeled transition rules, i.e. Output,
Input, and Unobservable define the semantics of the π-ADL constructs expressing respectively the output action via

4 Oscar J. Romero / Procedia Computer Science 00 (2019) 000–000

Abstract syntax of

syntax of behaviors

behavior ::= type . behavior
 | value . behavior
 | prefix . behavior
 | if (boolean) then { behavior1 }

else { behavior2 }
 | choose { behavior0... or behaviorn }
 | compose {behavior0... and behaviorn }

 | decompose behavior
 | replicate behavior
 | abstraction (expression0..., expressionn)
 | constraint name1 is (constraint1)
 | heuristic name1 is (heuristic1)
 | check(constraint1 | heuristic1)

prefix ::= via connectionValue send value
 | via connectionValue receive variable : ValueType
 | unobservable
 | if boolean do prefix

connection ::= connection name1

behaviors and values

syntax of types and values
BaseType ::= Any | Natural | Integer | Real | Boolean | String

 | Behaviour
ConstructedType ::= tuple [ValueType1, ..., ValueTypen]

 | set [ValueType]
 | inout [ValueType] | in [ValueType]
 | out [ValueType]
 | ...

syntax of types in CogArch-ADL
Buffer | abstraction (expression0..., expressionn)
Stimuli | Real // internal or external stimuli
Percept | Any // units of perception
ProcCont | Any // units of procedural memory content
DecCont | Any // units of declarative memory content
WMCont | Any // units of working memory content
Action | Any // actions (procedural and motor modules)

Fig. 3. Abstract syntax of typed behaviors and values. Keywords are written in bold, non-terminals are written in regular, alternative choices are
separated by the symbol |. Extended from [14]

connection1 send value1, the input action via connection1 receive value1, and the internal action unobservable. It
means that in these three cases, we have three axioms that can always apply for firing atomic behaviors. A complete
description of the structural operational semantics for behaviors and constraints can be found in [16].

Fig. 4. Formal Semantics of π-ADL: labeled transition rules for actions. Source: [14]

3. Case Studies

In the following we present 4 use cases to illustrate how CogArch-ADLcan be used to formally describe RCAs.

3.1. Describing a High-Level RCA

On Figure 5 we present a black-box formal description of the RCA focusing on the interfaces (i.e. ports and their
connections) for components and connectors. In this first approach, we have described the five main cognitive modules
of the CMC (i.e., WorkMemMod, MotorMod, PercetionMod, DeclarativeMod, and ProceduralMod), a connector that
interfaces any two cognitive modules (i.e., ModuleCon), and the RCA-CMC architecture abstraction that provides
bindings for components (modules) and connectors. ModuleCon connector declares two ports: input that comprises

Oscar J. Romero / Procedia Computer Science 00 (2019) 000–000 5

component MotorMod is abstraction(){
connection fromWM is in (WMCont)
connection fromPer is in (Percept)
connection toPer is out (Action)
connection action is out (Action)
behavior is ...

}

component PerceptionMod is abstraction(){
connection fromEnv is in (Stimuli)
connection fromWM is in (WMCont)
connection fromMot is in (Action)
connection toWM is out (Percept)
connection toMot is out (Percept)
behavior is{

createPercept is function(s : Stimuli[],
WMCont[], Action[]) : Percept{

unobservable
}
choose{

via fromEnv receive s : Stimuli[]
p is Percept
p = createPercept(s)
via toWM send p
via toMot send p

} or {
via fromWM receive w : WMCont[]
via toMot send createPercept(w)

} or {
via fromMot receive a : Action[]
via toWM send createPercept(a)

}
behavior () //let’s repeat the process

} }

connector ModuleCon is abstraction(){
port input is {

 connection fromMod is in (Any)}.
 port output is {

 connection toMod is out (Any)}.
 behavior is {
 protocol is {(

 via input::fromMod receive s : Any.
 via output::toMod send s)}

 } }

component WorkMemMod is abstraction (){
connection fromPer is in (Percept)
connection fromPrc is in (ProcCont)
connection fromDec is in (DecCont)
connection toPer is out (WMCont)
connection toMot is out (WMCont)
... }

component ProceduralMod is abstraction(){
connection fromWM is in (WMCont)
connection toWM is out (ProcCont)
behavior is ... }

component DeclarativeMod is abstraction(){
connection fromWM is in (WMCont)
connection toWM is out (DecCont)
behavior is ...

}

architecture RCA-CMC is abstraction (){
behavior is {

compose{
prc is ProceduralMod()
and dec is DeclarativeMod()
and wm is WorkMemMod()
and per is PerceptionMod()
and mot is MotorMod()
//connects Perception with WM
and perToWm is ModuleCon()
//connects WM with Perception
and wmToPer is ModuleCon()
//...

} where {
//bind components and connectors
per::toWM unifies perToWm::input
perToWm::output unifies wm::fromPer
wm::toPer unifies wmToPer::input
wmToPer::output unifies per::fromWM
//...

}
} }

a)	

b)	

Declara've	
Long-Term	Memory	

Procedural	
Long-Term	Memory	 Working	Memory	

Percep'on	 Motor	

toWM	

fromDec	

fromWM	

toDec	
fromWM											toPrc					

toWM											fromPrc					

fromPer													toMot	
toPer	

fromWM																								 fromWM	
toWM	

toMot	 fromPer	

fromMot							toPer	

port	

Fig. 5. High-level (black-box) formal description of a RCA for the CMC. a) Structure of CMC [8]. b) Excerpt of the Architectural Description
using CogArch-ADL

the connection fromMod for receiving data from a specific module and output that comprises the connection toMod
for passing the data to another module. The protocol enforced by these two ports is that the data received by the
connector is automatically forwarded to the corresponding cognitive module. For the sake of simplicity, modules
WorkMemMod, MotorMod, ProceduralMod, and DeclarativeMod do not explicitly show the “port” syntax as we do
for ModuleCon, we abbreviate it and only present the “connection” syntax. Also, the behavior definition for these
modules is hidden. Now, for illustration purposes, we have described the behavior construct for the PerceptionMod.
This behavior is composed of two parts: 1) a function called createPercept that takes as input an array of type Stimuli,
WMCont, or Action, then processes it (i.e., it may perform feature detection, object recognition, categorization, etc.),
and returns a value of type Percept as a result; and 2) a construct that allows the behavior to repeatedly operate
while choosing between perceiving (external) signals from the environment and perceiving (internal) signals from
either the working memory (generated by proprioception or other internal processes) or the motor module (e.g., in
order to create sensory-motor automatisms). PerceptionMod defines multiple ports and connections (e.g., fromEnv,
fromWM, toWM, etc.) and then links them to the corresponding modules through the receive and send semantics,
e.g., when a new external stimuli is received by fromEnv connection, a new percept is sent to the corresponding
modules WorkMemMod and MotorMod through the connections toWM and toMot respectively. Finally, the RCA-
CMC abstraction declares a composition of components (i.e., cognitive modules) and connectors, and defines the
bindings for linking those elements through the formal construct unifies.

3.2. Describing a Cognitive Module

On Figure 5 we presented five modules as unitary components using a high-level (black-box) description, however,
these modules can be further decomposed into multiple modules or sub-modules, such as multiple perceptual and
motor modalities, multiple working memory buffers, semantic vs. episodic declarative memory, etc. In the following,
we describe the internal behavior of a single component (the WorkMemMod) and its connectors in a white-box de-
scription. It is worth noting that we are not adopting any particular position regarding how working memory (WM for
short) functions, we only want to exemplify how it could be structurally and behaviorally modeled using CogArch-
ADL focusing on the decomposition of components (sub-modules) and the definition of component behaviors, but a
consensus on which kind of sub-modules it is composed of is still necessary. For illustration purposes, we use the

6 Oscar J. Romero / Procedia Computer Science 00 (2019) 000–000

component Buffer is abstraction (){unobservable}
component VisualBuffer is Buffer(){unobservable}
component VerbalBuffer is Buffer(){unobservable}
component GoalBuffer is Buffer(){unobservable}
component RetrievalBuffer is Buffer(){unobservable}
component MotorBuffer is Buffer(){unobservable}
//other possible components: PhonologicalLoop, etc.

component WorkMemMod is abstraction (){
behavior aggregate() is { compose {

vb is VisualBuffer() and vbb is VerbalBuffer()
and gb is GoalBuffer() and mb is MotorBuffer()
and rb is RetrievalBuffer() //...

} where {//bindings...} }

//(global) component functions
getWMContents() : WMCont[] is function() {unobservable}
updateWM(content : Any) is function() {unobservable}

behavior retrieveFromLTM () is {
via fromPrc receive pc : ProcCont[] //sync
forall{ d in pc suchthat

(d.type = 'declarative') implies
via toDec send d
via fromDec receive dec : DecCont //sync
updateWM(dec) // ... } }

behavior initiateMotorAction () is {
via fromPrc receive pc : ProcCont[] //sync
forall{ m in pc suchthat (m.type = 'motor') implies

via toMot send content //sync
updateWM(content) // ... } }

behavior influencePerception () is {
via fromPrc receive pc : ProcCont[] //sync
forall{p in pc suchthat(p.type='perception') implies

via toPer send p //sync
updateWM(p) // ... } }

behavior propagateActivation () is {
spread(act : Real, contents : WMCont[]) is

function() {unobservable}
contents is WMCont[], contents = getWMContents()
forall{ wm in contents suchthat

(wm.isGoal = true) implies
spread(wm.activation, contents)

//... }
propagateActivation() }

behavior decay() is {
decayFx is function(wm : WMCont) : Real{unobservable}
removeFromWM is function (wm : WMCont) {unobservable}
contents is WMCont[], contents = getWMContents()
forall{ wm in contents suchthat

(wm.activation <> 0) implies
wm.activation = decayFx(wm)
if (wm.activation < threshold) then

removeFromWM(wm)
//... }

decay() }

Fig. 6. Simplified excerpt for the Working Memory module using CogArch-ADL

buffer decomposition proposed in ACTR [1]. Figure 6 depicts five modality-specific memory buffers that extend the
Buffer abstraction: VisualBuffer, VerbalBuffer, GoalBuffer, RetrievalBuffer and MotorBuffer, which together constitute
an aggregate WM (the behavior of each of these buffers can be further described in detail, but for simplicity we keep
them unobservable). The WM provides a temporary global workspace within which symbol structures can be dynam-
ically composed from the outputs of perception and long-term memories. This composition is reflected by the use of
the formal construct compose in the aggregate behavior, that way, WorkMemMod acts as the inter-component com-
munication buffer for components. Furthermore, the WorkMemMod is composed of multiple capabilities (behaviors)
that run in parallel performing multiple modifications on WM content as a consequence of a deliberate act initiated by
the ProceduralMod on a single cognitive cycle. These behaviors are: 1) retrieveFromLTM that initiates retrievals from
long-term declarative memories when a signal (fromPrc) coming from the ProceduralMod is received, then the results
are deposited back in WM through the function updateWM; 2) initiateMotorAction that processes signals from Proce-
duralMod and initializes motor actions and/or performs internal simulation of an action; 3) influencePerception which
performs perceptual acquisition and top-down influence to perception; 4) propagateActivation which spreads source
activation from the current goal(s) to related nodes in WM to maintain them in a more active state relative to the rest
of the memory (since it is not clear whether the goals should be generated by a separate module, e.g., an Intentional
module, we simply assume they are stored in the WM by some external mechanism); and 5) decay that reduces the
activation level of memory contents as time passes, and removes those contents that do not reach an activation thresh-
old. The latter two behaviors run indefinitely, that is the reason why they call themselves at the end of their definition.
Despite the fact of the significant parallelism that occurs across processes and behaviors in WorkMemMod, we have
defined specific synchronization points (e.g., via [port] send [data], and via [port] receive [data]) where concurrent
processes can talk to each other, providing support to the seriality necessary for coherent thought.

3.3. Describing Cognitive Constraints

In the previous case study we described a possible mechanism to model seriality constraints by synchronizing
parallel behaviors via connections. In the following case study we show how to model two cognitive limitations
imposed by the mind as architectural constraints that can be formally validated: duration of a cognitive cycle and WM
capacity. For the former constraint, let’s consider that a cognitive cycle operate at roughly 100 ms, corresponding
to the deliberate act level in Newell’s levels of cognition [13], assuming that a cognitive cycle is the sequence of

Oscar J. Romero / Procedia Computer Science 00 (2019) 000–000 7

sense → cognize → act; and for the latter constraint, let’s simply assume that WM has a limited capacity of 7 ± 2
chunks as proposed by [11]. Figure 7 depicts the architectural description of these two constraints.

architecture RCA-CMC is abstraction(){
type starts is tuple[Any, Time]
type ends is tuple[Any, Time]
behavior ...
// ...
constraint cogCycleDuration(id : Any,

prc : ProceduralMod) is {
assert (ends[id] – starts[id] <= 100)

when (prc.isActionSelected = true)
} }

component WorkMemMod is abstraction(){
type units is set[WMCont]
behavior decay is {

// ...
check MemoryCapacity()

}
heuristic memoryCapacity is {

assert (units.size >= 5
and units.size <= 9)

} }

Fig. 7. Modeling Cognitive Limitations as Constraints

Since the cognitive cycle’s duration constraint involves the interaction of multiple (if not all the) modules and
components, it should be defined at the architecture abstraction level (see cogCycleDuration). It is important to notice
that due to cascading cognitive cycles (i.e., multiple overlapping cycles iterating at an asynchronous rate) we need to
define at least two tuples (starts and ends) that map a cognitive cycle “id” (Any) with a Timestamp variable (Time),
that is, when the cognitive cycle starts, the corresponding module (e.g., PerceptionMod) will create a new entry with
metadata for the new cognitive cycle ([id, time]), and when the cycle finishes (e.g., when ProceduralMod selects and
action) then the constraint is validated using the id to retrieve both the start and end times of the cycle. Now, the
memory capacity constraint should be defined at the component abstraction level and should be considered a soft
constraint (heuristic) rather than a hard constraint, that can be relaxed since the number 7 ± 2 may vary (in humans)
depending on subject’s gender, age, race, etc. A Heuristic constraint is taken to be a rule that should be observed, but
may be selectively violated (see memoryCapacity). This constraint is intended to be satisfied at the very end of the
decay behavior.

3.4. Architectural Reduction

The purpose of Architectural Reduction is to build a system that is as smallest as possible (rewriting it to the
minimal), but meaningful for the analysis of its properties. This kind of approach may allow us to validate whether
two or more CAs are structurally/behaviorally equivalent (i.e., isomorphic in [3]’s words, and convergent in [8]’s
words), whether a CA is RCA-compliant, among others. In order to achieve this goal, π-Calculus provides a set
of reduction and labeled transition semantics based on concepts such as structural congruence (i.e., if no difference
between equivalent processes can be observed, then they can be considered behaviorally equivalent), bisimilarity
(i.e., binary relation between state transition systems associating systems that behave in the same way, so one system
simulates the other and vice versa), etc. Consider the following set of rules [18]:

P ≡ Q : structural congruence, where P and Q are processes (1)
P|Q ≡ Q|P : commutative relation, where | indicates parallel composition (2)

(P|Q)|R ≡ P|(Q|R) : associative relation (3)
if P→ Q, then also P|R→ Q|R : parallel composition does not inhibit computation (4)

if P ≡ P′ and P1→ Q′ and Q′ ≡ Q then P→ Q : structurally congruent processes have the same reductions (5)

Now, a hypothetical, simplified and minimalist example using the 5 rules described above will help illustrate
how the architectural reduction could be achieved. Suppose there are two CAs (CA1 and CA2) that use different
representational components (symbolic and subsymbolic, respectively) that need to be validated whether they are
isomorphic. Also assume both CAs can be defined by using these high-level processes: P: retrieve content from
episodic memory, Q: retrieve content from semantic memory, R: do action selection (procedural), S : do episodic

8 Oscar J. Romero / Procedia Computer Science 00 (2019) 000–000

learning, T : do semantic learning, and U: do procedural learning. Each process has two modalities, e.g., process R can
be either R1, a rule-based action selection, or R2, a neural network model. Both CAs are supposed to have a similar
operation: the procedural module selects an action (R), then content form declarative memories is retrieved (P and
Q), and finally some learning mechanisms are triggered to create new symbols and relations (S , T , U). One of the
main differences between both CAs is that CA2 assumes that procedural learning may occur at different stages of the
cognitive cycle. So, assume cognitive cycles of both CAs can be formally described (in a reductionist way) as follows:

CA1 ::= R1 → (P1|Q1)→ (S 1|T1)|U1

cA2 ::= (R2|U2)→ Q2|(U2|P2)→ (T2|U2)|S 2

Thus, the architectural reduction would be:

CA1 ≡ CA2 Rules :
R1 → (P1|Q1)→ (S 1|T1)|U1 ≡ U2|R2 → U2|(Q2|P2)→ (S 2|T2)|U2 (1, 2, 3)

R1 → P1|Q1 → S 1|T1|U1 ≡ R2 → Q2|P2 → S 2|T2|U2 (1, 3, 4)
R1 → P1|Q1 → S 1|T1|U1 ≡ R2 → P2|Q2 → S 2|T2|U2 (1, 2)

R1 → (S 1|T1|U1) ≡ R2 → (S 2|T2|U2) (1, 4, 5)
R1 → S 2|T2|U2 ≡ R2 → S 1|T1|U1 (1, 3)

... ≡ ...

After applying the reduction rules and rewriting both CAs to a “minimal” representation, they both seem to be
isomorphic, however, due to the internal complexity of each module and since this is still a high-level description,
further decomposition into processes and components should be done at such granularity level that atomic structural
and behavioral equivalences can be identified.

4. Related Work

According to the evidence, efforts in defining a CMC have been focused more on the theoretical side rather than
the practical, and do not provide a bridge between these two. One recent attempt to create a unified computational
framework was the work on a “generic architecture for human-like cognition” [7], which conceptually amalgamated
key ideas from the CogPrime, CogAff [19], LIDA [6], MicroPsi [2], and 4D/RCS architectures. A number of the
goals of that effort were similar to those identified for the CMC; however, the result was more of a pastiche than
a consensus assembling disparate pieces from across these architectures rather than identifying what is common
among them [8]. A less recent work on the definition of an “agnostic” computational framework is COGENT [5], a
computational modeling system that provides researchers with a flexible environment (using a box and arrow style
specification language) within which to develop and explore symbolic and hybrid models of cognitive processes.
The system provides a range of functions that allow scientists to explore their theories without commitment to a
particular architecture. However, COGENT does not provide formal mechanisms to validate the structural/behavioral
congruence of the cognitive models that can be created when using it.

5. Conclusions and Future Work

In this work we introduced CogArch-ADL, an approach to formally describe the structure and behavior of a Ref-
erence Architecture for the CMC. Some of the main benefits we envision when using CogArch-ADL are: 1) it will
establish a proper mechanism to communicate architectural assumptions between scientists, researchers, and develop-
ers; 2) it will provide formalized models that can be used to further refine a comprehensive theory of cognition; 3) it

Oscar J. Romero / Procedia Computer Science 00 (2019) 000–000 9

will serve as a vehicle to formally represent architectural commonalities among disparate CAs; 4) it will allow formal
validation of architectural decisions; 5) it will allow the creation of not only ad hoc models but also architectural meta-
models that can be described at several abstraction levels and will provide a basis for further implementation; and 6)
it will potentially serve as a mechanism to formally determine whether two or more CAs are structurally/behaviorally
equivalent with respect to the RCA. Future work is manifold: we need to deeply explore whether π-Calculus can be
used as a tool to perform reverse-engineering on existing CAs and validate both their structural and behavioral iso-
morphic level. Also, we need to seek for tools that help us move from abstract ADL models to auto-generated code,
through formal validation of π-Calculus semantic rules, in order to bridge the gap between abstract theoretical models
and concretization of computational models. Finally, we want to investigate mechanism that allow us to define a RCA
which modules and components are dynamic and evolve over time, that is, CAs that are RCA-complaint may support
reconfiguration capabilities such as (original)composition→decomposition→(new)compositions.

Acknowledgments

This research was supported by Yahoo! and Verizon through the CMU-Yahoo InMind project.

References

[1] John R Anderson, Daniel Bothell, Michael D Byrne, Scott Douglass, Christian Lebiere, and Yulin Qin. An Integrated Theory of the Mind.
Psychological review, 111(4):1036, 2004.

[2] J. Bach. Principles of Synthetic Intelligence. Oxford University Press, 2009.
[3] Paul Bello and Selmer Bringsjord. Two Problems Afflicting the Search for a Standard Model of the Mind. IAAA Technical Report FS-17-05,

U.S. Naval Research Laboratory, 2017.
[4] E. Cavalcante, T. Batista, and F. Oquendo. Supporting dynamic software architectures: From architectural description to implementation. In

IFIP CSA., pages 31–40, 2015.
[5] Richard P. Cooper, John Fox, and David W. Glasspool. Modeling High-Level Cognitive Processes. L. Erlbaum., NJ, USA, 2002.
[6] Stan Franklin and FG Patterson. The LIDA architecture: Adding new modes of learning to an intelligent, autonomous, software agent. pat,

703:764–1004, 2006.
[7] B. Goertzel, C. Pennachin, and N. Geisweiller. Engineering General Intelligence, Part 1: A Path to Advanced AGI via Embodied Learning and

Cognitive Synergy. Atlants, 2014.
[8] J. E. Laird, C. Lebiere, and P. S. Rosenbloom. A standard model of the mind: Toward a common computational framework across artificial

intelligence, cognitive science, neuroscience, and robotics. AI Magazine, 38:1–19, 2017.
[9] John Laird. The Soar cognitive architecture. MIT Press, 2012.

[10] P. Len Bass and R. Kazman. Software Architecture in Practice. Addison-Wesley, 1998.
[11] George A. Miller. The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological

Review, pages 81–97, 1956.
[12] Robin Milner. Communicating and Mobile Systems: The π-calculus. Cambridge University Press, 1999.
[13] Allen Newell. Unified theories of cognition. Harvard University Press, 1990.
[14] F. Oquendo and I. Alloui. The archware architecture description language: Abstract syntax and formal semantics. In ArchWare European RTD

Project, 2002.
[15] Flavio Oquendo. π-ADL: an Architecture Description Language based on the higher-order typed π-calculus for specifying dynamic and mobile.

SIGSOFT, pages 1–14, 2004.
[16] Flavio Oquendo. Formally describing the software architecture of Systems-of-Systems with SosADL. In SoSE, June 2016.
[17] Paul S. Rosenbloom, Abram Demski, and Volkan Ustun. The Sigma Cognitive Architecture and System: Towards Functionally Elegant Grand

Unification. AGI, July 2016.
[18] D. Sangiorgi and D. Walker. The Pi-Calculus: A Theory of Mobile Processes. Cambridge University Press, 2001.
[19] A. Sloman. Varieties of Affect and the CogAff Architecture Schema. In Emotion, Cog., and Affective Computing, 2001.

