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1. Intr oduction

PDE-constained optimizationis a frontier problemin
computational science and engineering. All PDE-
constrainegroblemssharethe difficulty that PDE solu-
tion is just a subproblemassociatedvith optimization.
Thus, the optimization problemis often significantly
moredifficult to solve thanthe simulationproblem. We
areparticularlyinterestedn large-scalg@roblemghatre-
quire parallelcomputingto make themtractable.

To illustrate the main issues let’s considera model
problemof optimaldistributedcontrolof aNavier-Stokes
flow:

min F(u,p,b) =
l/(Vu+VuT):(VfquVuT)dQJrg/b-bdQ
2 [¢) 2 Q

subjectto:

—vV - (Vu+ Vul) + (Vu)u+Vp+b=0 in Q
V:u=0 in
u=0 on T

Here,u is thefluid velocity field, p the pressurdield, b

thebodyforcecontrolfunction,a aweightingparameter
andv theinverseof the Reynoldsnumber The objective

is to minimize the rate of dissipationof viscousenegy

anda costassociateavith a bodyforce controlfunction.
Theconstraint@arethestationaryincompressibl&avier-

Stokesequationswith Dirichlet boundaryconditions.

We canform a Lagrangiarfunctional,andrequireits
stationaritywith respecto the state(u,p) andoptimiza-
tion (b) variablesandthe Lagrangemultipliers. Taking
variationsandinvoking the appropriateGreenidentities,
we arrive at the following first-order necessarcondi-
tions:

Adjoint Equations:

—vV - (VAy + VAN + (Vu)" A, — (VA)u
+VXA, - V- (Vu+Vu')=0 in Q
V-2%=0 in Q

A=0 on T

StateEquations:

—vV - (Vu+Vu') + (Vu)u+Vp+b=0 in Q
V-u=0 in Q
u=0 on T

Control Equations:
pb+A, =0 in Q

The stateequationsare just the original Navier-Stoles
PDEs.Theadjointequationswhich resultfrom station-
arity with respecto statevariablesarethemselesPDEs,
andarelinearin theLagrangemultipliers A,, and,,. Fi-
nally, the contiol equationsare(in this case)algebraic.
Thuswe endup with alarge, coupled,unstructured
systemof optimality conditions(or atleastbigger more
coupledandlessstructuredhanseerby aNavier-Stokes
solvers).How to goaboutsolvingit? Theusualwayis to
eliminate statevariablesand Lagrangemultipliers and,
correspondinglythe state equationsand adjoint equa-
tions; to reducethe systemto a manageablenein just
thecontrol(i.e. decision)variablesh. Heres oneway to
dothis: givenb atsomeiteration,we solve thestateequa-
tionsfor the statevariablesu, p. Knowing the statevari-
ablesthenpermitsusto solwe the adjoint equationgor
the Lagrangemultipliers A,,, A,. Finally, with the states
and multipliers known, we canupdateb by iteratingon
thecontrolequation.Thewholeprocesss repeatedintil



convergence.This eliminationprocedurds termeda re-
ducedspacemethod,in contrastto a full spacemethod,
in which onesolvesfor the statescontrols,andmultipli-

erssimultaneously

Reducedpacemethodsareattractve for severalrea-
sons. Solving the subsetof equationsn sequencém-
parts some structureto the problem. State equation
solversbuild onyearsof developmenbf large-scalgar
allel PDE solvers. Adjoint PDE solvers dont exactly
grov on trees—Ioit the strongsimilarities betweenthe
stateandadjoint operatorsuggesthatan existing PDE
soler for the stateequationscan be modified easily to
handlethe adjoint system(at leaston a good day). Fi-
nally, the controlequationsareusuallyreasonablyame,
at leastto evaluate. Anotheradwantageof reductionis
thatthe full spacesystemis often very ill-conditioned,
whereaghe threesubsystemaretypically bettercondi-
tioned.

On the otherhand,the big disadwantageof reduced
methodss the needto solve the stateand adjointequa-
tions at ead iteration of the reducedsystem—adirect
consequencef the reductiononto the decisionvariable
spaceSoit’s naturalto go backto thefull spaceandask
if it'spossibleto solvetheentireoptimality systensimul-
taneously but retain the structure-inducinggcondition-
improving advantage®f reducedspacanethods—while
avoiding their disadwantages.

In this article, we presentsuch a method. The
key ideais to solvwe in the full spaceusinga Newton
method,but preconditionwith a quasi-N&ton reduced
spacemethod. The Karush-Kuhn-Tucker systemarising
at eachNewton iterationis solved usinga Krylov itera-
tive method,andit is this systemto which the precondi-
tioneris applied. We have foundthatthe reducedspace
preconditioneris very effective in reducinghenumberof
Krylov iterations,andapplyingit captureghe favorable
structureof reducedmethods.On the otherhand,since
the reductionis usedjust as a preconditionerwe can
cheatonthestateandadjointsolves,replacingthemwith
approximationsvhich could be their own precondition-
ers. Sowe arrive at a methodthat combinesrapid con-
vergencein the outer Newton iteration (typically mesh-
independent)with fastconvergenceof theinnerKrylov
iteration (which can be as good as mesh-independent).
We dont even needto computesecondderivatives—
sincea Krylov methodis usedto solve the KKT system,
we canapply the usualdirectionaldifferencingtrick to
approximatahe LagrangiarHessian—gctorproduct.
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Why thenamelLagrange-Nevton-Krylov-Sdwr? It is
commonin PDE-soler circlesto usethephraseNewton-
Krylov-X to referto Newton methodsfor solving PDEs
thatemplg Krylov linear solvers,with X asthe precon-
ditionerfor the Krylov method.SinceLagrange-Nevton
is sometimesisedo describea Newton methodfor solv-
ing the optimality system(a.k.a.an SQP method),and
sincea reducedspacemethodcanbe viewed asa Schur
complementmethodfor the KKT system,we arrive at
theconcatenatiohNKS It's amouthful,but it preseres
thetie to modernPDEsolvers,whoseuseof approximate
decompositionaspreconditionermspiredthisapproach
[6]. David Keyessuggesteda variationof) this namein
his plenarytalk at the 1999combinedSIAM Optimiza-
tion/Annualmeeting[5].

In the remainderof this article, we give a brief
overvien of the LNKS methodandsomesampleresults
for anoptimalflow controlproblemonaCray T3E. Fur
therdetailscanbe foundin [2], andmoreextensve dis-
cussionandresultsin forthcomingarticlesthatfocuson
theinnerKrylov iteration[3] andthe outerNewton iter-
ation[4]. We notefinally thatBattermanrandHeinken-
schlosshave presentec somevhatdifferentmethodfor
preconditioningkKT matricesthat also makes use of
stateandcontrolspacedecomposition§l].

2. ReducedSpaceMethods

In this sectionwe discussreducedspaceSQPmethods,
concentratingon the discreteform of a typical PDE-
constraineaptimizationproblem:

n’:lli:n f(x) subjectto ¢(x) =0,

wherez are the stateand decisionvariables, f is the
objective function and ¢ arethe discretizedstateequa-
tions. Using Lagrangemultipliers A, we candefinethe
Lagrangiarfunctionby

L(z,A) := f(x) + Ae(z).

Thefirst orderoptimality conditionsrequirethatthe La-
grangiangradientvanish:
} B 0’

{awc} {

g+ AT
c

L [
whereg is the gradientof the f and A is the Jacobian
matrix of the constraintsA Newton stepon the optimal-
ity conditions(which, in the absencef inequality con-
straints,is SequentialQuadraticProgramming)s given
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(x)--(2)

whereW is theHessiarof the Lagrangiarfunctionwith
respectto the optimizationvariables,p, is the search
directionin x, and A, is the updatedLagrangemulti-
plier. This systemis known asthe Karush-Kuhn-Tucker
(KKT) systemandits coeficientmatrixasthe KKT ma-
trix. To exploit the structureof the stateconstraintswe
partitiontheoptimizationvariablesgnto statevariablese
anddecisionvariablesz . The partitionedKKT system
becomes:

by:

Py

w A"
A

A O

MS Wsd AZ Ds gs
Wys Wag Al Py ¢ =—1 94 (0.1)
As Ad 0 A_|_ C

Thissystemis of dimensior2n +m, wheren is thenum-
berof statevariablesandm the numberof decisionvari-

3
WAL 0 I A, A; O
Wi A7l T ATA]T 0 W, o0
I 0 0 0o w,, Al
(0.2)

wherethereducedHessiammatrixis definedby

W, = ATA;TW,,A71A,
—ATATTW,y — Wy, AT Ay + Wy,

andthe“cross-Hessianby

%z = Wsd — MSA;IAd-

Note that thesefactorscan be permutedto block trian-
gular form, so we canthink of this asa block LU fac-
torization of the KKT matrix. It is clearthatthe only
linearsystemghatneedto be solved have eitherthe state
Jacobian4; orits transposeastheir coeficient matrix—
a “solved problem”—or else the reducedHessianW,,

ables. State-of-the-artlgorithmsfor PDE-constrained Which is denseand of dimensionof the decisionspace.

optimizationexploit two facts. First, nobodywantsto
computesecondderivatives—it’s hard enoughcorvinc-

ing the PDE solver community of the needfor first
derivatives. (No doubtthis difficulty will bemitigatedby
continuingadwancesin automaticdifferentiationtools.)
And second,everybodywantsto useexisting software
for “inverting” the stateJacobianSincethisis thekernel
stepin aNewton-basedPDE solver, thereis alarge body
of work to draw from. For example,for elliptic PDEs,
thereexist optimal or nearly-optimalparallelalgorithms
(e.g.domaindecompositiormethodsor multigrid) that
requirealgorithmicwork thatis linear or weakly super

linearin n, andscaleto thousandsf processorandmil-

lions of variables.

Oneway to exploit existing PDE-solersis to elim-
inate the stateand adjoint equationsand variables,and
thensolwe anunconstraine@ptimizationproblemin the
remainingdecisionspace(thisis similarto theagument
of the previous section,except herewe are linearizing
first, theneliminating,asopposedo vice versa.)We re-
fer to this asNewton reducedSQP(or N-RSQP),andit
canbederived by block eliminationonthe KKT system:
Givenp,, solve thelastblock of equationgthe statesys-
tem) for p,; thensolwe the first (the adjoint system)to
find A, andfinally solve the middle (the decisionsys-
tem)for p,. It is easyto verify thatthisblockelimination
is equivalentto the following block factorizationof the
KKT matrix:

Thus, reducedmethodsare particularly attractive when
thethedecisionvariablesaremuchfewer thanthe states.

But two problemsremain. First are the second
derivative terms. Second,and more problematic,is the
needfor m solutionsof the (linearized)stateequations
for constructionof A; 1A, in W,. Thisis particularly
troublesomefor large-scale3D problems,where (lin-
earized)PDE systemsareusuallysolvediteratively, and
solution costscannotbe amortizedover multiple right
handsas effectively aswith direct solvers. When the
simulationproblemis an overnightrun on a large par
allel machine this requirementffectively rulesout the
useof N-RSQP

A popularttechniquéhataddressethesewo difficul-
tiesis a quasi-N&vton RSQP (QN-RSQP)methodthat
replacegshe reducedHessianW, with a quasi-N&ton
approximationB,, anddiscardsall otherHessiarterms.
This correspondso the following approximationof the
KKT blockfactors:

00 I A; Ay O
0 1 ATA,T 0 B, 0 (0.3)
I o0 0 0 o AT

It is easyto verify that just two statesolves per itera-
tion arerequired(actually onelinearizedstate,and one
adjoint), as opposedto the m of N-RSQP And with
Hessiantermseither approximatecr dropped,no sec-
ond dervatives are needed. A measureof the success



of QN-RSQRis its applicationto numerousptimalcon-
trol, optimal design,andinverseproblemsgovernedby
PDEsfrom linear and nonlinearelasticity incompress-
ible andcompressibldlow, heatconductionandcorvec-
tion, phasechangesflow throughporousmedia,etc. Of
coursesomethindhasto give, andthatistheconemgence
rate: a reductionfrom quadraticin the Newton caseto
two-stepsuperlinearMoreover, the numberof iterations
taken by QN-RSQPdependson the conditioningof the
reducedHessian,and often increasess the numberof
decisionvariablegyrowns, renderingarge-scalgroblems
intractable.In thenext sectionwe proposea methocdthat
combineghefastcorvergenceof Newton's methodwith
thestructure-gploiting propertiesof reducednethods.

3. LNKS: Krylov solution of the KKT
systemwith approximate QN-RSQP
preconditioning

In this sectionwe presenamethodfor solvingthe KKT
system(0.1). For optimizationproblemsconstrainedy
3D PDEs,sparsdactorizationof the KKT matrix is not
anoption—suchmethodsarenotviablefor A, letalone
the entire matrix. Instead,we use a Krylov iterative
method specificallythe quasi-minimunresidual QMR)
method. However, the varying scalesbetweenHessian
andJacobiartermsin the KKT matrix, andits indefinite-
nessdemandaneffective preconditionerThis precondi-
tioner mustbe capableof exploiting the structureof the

SIAG/OPTViews-and-Ne/s

andeffective (resultingin iterationnumbershatarein-

dependenof, or increasevery slowly in, problemsize).
With (0.4) usedas a preconditionerthe precondi-

tionedKKT matrix endsup having thefollowing form:

I, O(E,) 0
WA, O(E,)+W,B;' O(E,)
WA, W,,B;! 1,
where
E, = A;l—As_l
I, = A,A,°"
ﬁ@z == Wsd_WssAs_lAd

For exact stateequationsolution,E; = 0 andI; = I,

andwe seethatthe QN-RSQPpreconditioneclusterghe
spectrunmof the KKT matrix, with all eigewvalueseither
unit or belongingto W, B;!. Therefore,when A, is

a good preconditioneffor the stateJacobianandwhen
B, is agoodapproximationof the reducedHessian(as
it shouldbe asymptotically),we might expectthe QN-

RSQPpreconditionef0.4)to beeffective in reducingthe
numberof Krylov iterations(but notethatthe precondi-
tionedKKT matrix is non-normalsoarigorousanalysis
requireswell-conditionedeigevectors).

How scalables the method with respecto increas-
ing problemsizeandnumberof processors®or scalabil-
ity, we requirethatthe work increasenearlinearly with
problemsize (algorithmic scalability) and that it paral-
lelizeswell (parallelscalability).Let usexaminethe ma-

stateconstraintyspecifically that good preconditioners jor components:

exist for A;), mustbe cheapto apply andmustbe ef-
fective in reducingthe numberof Krylov iterations.The
QN-RSQPmethoddescribedn the previous sectionfits
thebill. Applying the preconditioneamountdo solving
with the QN-RSQPfactorization(0.3), exceptthat state
Jacobiansrereplacedby their approximationsA:

0 0 I A, A; O

- —T
0 T ATA; 0 B, ~0T (0.4)
I 0 0 0 0 A,

ReplacingA; with A, is permissible since QN-RSQP
is beingusedasa preconditionerA goodchoicefor A,
is, in turn, oneof the availablepreconditionergor A,—
for mary PDE operators,there exist nearspectrally-
eguivalent preconditionerghat are both cheapto apply
(typically linear or weakly superlineaiin problemsize)

Formation of the KKT matrix—vector product. For
PDE-constraineaptimization, the Hessianof the La-
grangianfunctionandthe Jacobiarof the constraintsare
usuallysparsewith structuredictatedby the mesh(par
ticularly whenthe decisionvariablesare mesh-related).
Thus, formation of the matrix-vector product at each
QMR iterationis linear in both stateand decisionvari-
ables andparallelizesvell dueto ahigh computation-to-
communicatiomatioandminimalsequentiabottlenecks.
Application of the QN-RSQP preconditioner The
main work involved is applicationof the stateJacobian
preconditionetd; andits transposeand“inversion” of
thequasi-N&ton approximatiorto thereducedHessian,
B,. We canoftenmalke useof scalableparallelstateJa-
cobianpreconditionershatrequiresO(n) work to apply
(asin variousdomaindecompositiorpreconditionergor
elliptic problems).Furthermorewhen B, is basedon a
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limited-memoryquasi-N&ton update(asin our imple- arounda cylinder at subcriticalconditions,with controls
mentation),its work is alsolinear in the decisionvari- onthe downstreamside of the cylinder. Approximation

ables,and the vector operationsare easily parallelized
(or aseasilyasvectorinnerproductscanbe). Therefore,
we concludethatapplicationof the QN-RSQPprecondi-
tionerrequiredinearwork andparallelizeswell.

The Krylov (inner) iteration. As arguedabove, with

an “optimal” state preconditionerand a good B, ap-
proximation,we can anticipatethat the numberof in-

ner, Krylov iterationswill berelatively insensitve to the
problemsize.

The Lagrange-Newton(outer) iteration. The number
of outer Newton iterationsis oftenindependentf prob-
lem sizefor PDE-typeproblems,and the problemswe

have solved exhibit this type of behaior aswell.

This combinationof linear work per Krylov itera-
tion, weakdependencef Krylov iterationson problem
size, and independencef Lagrange-Neton iterations
on problemsize suggest methodthat scaleswell with
increasingoroblemsizeandnumberof processors.

How well doesthe LNKS methodwork in practice?
Here,we quotea setof representate resultsfrom mary
we have obtainedor upto 1.5million statevariablesand
50,000control variableson up to 256 processors.The
problemis optimal Navier-Stokes flow control, similar
to that of Sectionl, exceptthatthe controlsare bound-
aryvelocities. Thespecificproblemis controlof 3D flow

is by Galerkinfinite elementspothfor stateandcontrol
variables. We have implementedhe LNKS methodon

top of the PETSclibrary for parallelsolution of PDEs
from Argonne. The table shaws resultsfor 64 and 128
processorsf aCrayT3E for aroughlydoublingof prob-
lem size. Resultsfor the QN-RSQPand LNKS algo-
rithms are presented.In the table LNKS-EX refersto

exact solution of the linearizedNavier-Stokes equation
within the QN-RSQP preconditioner whereasLNKS-

PR refersto applicationof a block-Jacobi(with local

ILU(0)) approximationof the linearizedNavier-Stokes
operator LNKS-PR-TRusesatruncatedNewtonmethod
andavoidsfully converging the KKT systemfor iterates
thatarefar from a solution.

The resultsin the tablereflectthe independencef
Newtoniterationson problemsize,the mild dependence
of KKT iterationson problemsize,andtheresultingrea-
sonablescalabilityof themethod.lt isimportantto point
out herethatthe Navier-Stokes discreteoperatoris very
ill-conditioned,andthereis roomfor improvementof its
domain-decompositiopreconditionerThe performance
of the QN-RSQPKKT preconditionerwould improve
correspondingly A dramaticacceleratiorof the LNKS
algorithmis achiezedby truncatingtheKrylov iterations.

states preconditioning Newtoniter averageKKT iter time (hours)
controls

389,440 QN-RSQP 189 — 46.3
6,549 LNKS-EX 6 19 27.4
(64 procs) LNKS-PR 6 2,153 15.7
LNKS-PR-TR 13 238 3.8
615,981 QN-RSQP 204 — 53.1
8,901 LNKS-EX 7 20 33.8
(128procs) LNKS-PR 6 3,583 16.8
LNKS-PR-TR 12 379 4.1

More detailedresultsare givenin [2, 3, 4]. These
referencesalso discussthe importanttopics of global-
ization and the detailsof the inexactnessn solvingthe
KKT system,which were not mentionedherefor rea-
sonsof space. Anotherissueis additional inequality
constraintsye have recentlyimplementedvith Andreas
WachterandLarry Biegler a parallelversionof their in-
terior point methodfor treatingsuchconstraintswithin
the context of LNKS. Finally, this summerwe will be

releasinga publicly-available softwarelibrary for paral-
lel solution of PDE-constrainedptimizationproblems,
built on top of the PETScsystem,andincluding LNKS

andothermethods.
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