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Abstract. We formulate the problem of designing the low-loss cavity for the International
Linear Collider (ILC) as an electromagnetic shape optimization problem involving a Maxwell
eigenvalue problem. The objective is to maximize the stored energy of a trapped mode in the
end cell while maintaining a specified frequency corresponding to the accelerating mode. A
continuous adjoint method is presented for computation of the design gradient of the objective
and constraint. The gradients are used within a nonlinear optimization scheme to compute the
optimal shape for a simplified model of the ILC in a small multiple of the cost of solving the
Maxwell eigenvalue problem.

1. Introduction

The International Linear Collider (ILC) is a proposed international particle accelerator for high
energy physics research. The ILC will create high-energy particle collisions between electrons
and positrons, their antimatter counterparts. It will allows scientists to address fundamental
questions about dark matter, dark energy, extra dimensions and the nature of matter, energy,
space and time. The multi-billion dollar facility is to be designed, funded, managed and
operated as an international project involving physicists and engineers from Asia, Europe, and
the Americas.

A critical issue in the design of the ILC is the presence of high-order dipole modes (HOMs)
that are excited by the transiting beam in the accelerator cavity [1]. HOMs can interact
strongly with the beam and lead to a deterioration of beam quality. One of the design goals
is to optimize the shape of accelerator cavity to damp these HOMs as much as possible while
maintaining a specified cavity accelerating frequency. This gives rise to a shape optimization
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problem governed by a large-scale electromagnetic eigenvalue problem. A prototype ILC shape
optimization problem will be formulated in the next section.

The large design space, considerable cost of solving the electromagnetic eigenvalue problem,
and high accuracy requirements of the frequency constraint dictate the use of gradient-based
methods to solve the optimization problem. These methods require the computation of the
derivative of the objective function and constrains with respect to the design variables (typically
CAD parameters) that describe the accelerator cavity shape. Since the shape is parameterized
by as many as hundreds of design variables, a standard differencing approach to computing these
derivatives would require several hundred electromagnetic eigenvalue solves per design iteration
— an intractable proposition. Moreover, due to the iterative nature of the eigenvalue problem
and the stringent accuracy requirements for eigenvalues, accurate numerical gradients would
be difficult to obtain. On the other hand, while automatic differentiation (AD) methods have
enjoyed many successes, the need to differentiate through complex, coupled meshing, CAD,
eigenvalue solver, and adaptivity routines precludes their use here. Alternatively, whereas
computing analytical derivatives via direct sensitivity methods avoids the numerical differencing
problems, intractability associated with the large number of eigenvalue solves remains —
mitigated only by the need now to solve just linearized eigenvalue problems. Furthermore,
differentiating the mesh movement scheme (with respect to design variables) is still required.

Ultimately, the best approach to computing gradients for such large, complex eigenvalue
shape optimization problems is provided by continuous adjoint methods. Like direct sensitivity
methods, they avoid numerical differencing difficulties, but unlike direct methods, they scale
only with the number of active constraints (which are usually many fewer than the number
of design variables). Moreover, continuous adjoint methods avoid differentiating through the
mesher for most functions of interest. This is significant, since unstructured mesh movement
schemes usually incorporate discrete decisions and are thus non-differentiable.

Despite their compelling advantages over other gradient computation methods, a number of
challenges must be addressed before continuous adjoints can be used for accelerator cavity shape
optimization.

(i) Although differentiating the volume mesh motion is avoided, computing the gradient still
requires the derivative of the surface mesh with respect to the design variables, the so-called
design velocity field.

(ii) This in turn requires differentiating the CAD surface representation with respect to the
design variables.

(iii) Computation of the gradient of the objective and constraints requires solution of an
additional system of partial differential equations — an adjoint eigenvalue problem
— for each function(al) of interest, which has somewhat different structure from the
original Maxwell eigenvalue problem and may require different discretizations, solvers, and
preconditioners.

(iv) The gradient expressions require evaluation of surface integrals that involve higher
derivatives of the magnetic field and adjoint magnetic field eigenvectors. These integrals
must be computed with care to avoid excessive loss of accuracy.

(v) Since the problems we consider involve millions of variables, all components described above
must run in parallel and scale to large numbers of processors.

The challenges described above are manifold: they involve such areas as accelerator
physics; computational electromagnetics; high-order finite element discretizations; large scale
eigensolvers, linear solvers, and preconditioners; mesh generation, movement, and adaptivity;
solid modeling; continuous adjoint methods; and large-scale optimization, among others. Clearly,
these challenges cannot be addressed from the vantage of any one discipline. To this end,
and under the auspices of the Department of Energy’s Scientific Discovery through Advanced
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Computing (SciDAC) program, a collaboration among three SciDAC centers — the centers
for Accelerator Science and Technology (AST), Terascale Optimal PDE Simulations (TOPS),
and Terascale Simulation Tools and Technology (TSTT) — has been formed to tackle the grand
challenge of accelerator design optimization. This collaboration merges expertise in parallel finite
element electromagnetics codes [1]; parallel mesh generation [2], smoothing [3], and adaptivity
[4]; advanced eigensolvers [5, 6]; and large-scale PDE-constrained optimization [7, 8].

In this article, we focus on the third and fourth issues itemized above, i.e. those related to
adjoint-based gradient computation. Subsequent articles will describe all of the components
of the end-to-end system. Section 2 presents a formulation of a design problem for the low-
loss cavity of the ILC aimed at detuning the trapped mode while maintaining the accelerating
frequency. Computation of the design gradient of the objective is discussed in Section 3, and
that of the constraint in Section 4. Section 5 concludes with solution of a low-loss cavity shape
optimization problem for an ILC-like geometry. The example demonstrates that through the
use of continuous adjoints, the optimum can be computed at the cost of just a handful of
electromagnetic eigenvalue solves.

2. A shape optimization problem for the ILC low-loss cavity

Figure 1 shows a model of the Low-Loss (LL) cavity for the ILC. It consists of 7 identical interior
cells and 2 possibly different end cells connected to 3 coax couplers. Figure 2 shows the field
pattern of a well-trapped dipole mode, which is localized to the middle 7 cells. A design problem
can be formulated to optimize the shape of the end cells to damp the trapped modes (we regard
the geometry of the interior cells as fixed). This can be approached by finding the shape of
the end cells that maximizes the stored energy of the trapped modes in these cells, where the
couplers will be able to leak greater energy. For simplicity of presentation, we shall formulate
the optimization problem for a single trapped mode, which we seek to de-tune by optimizing
its shape (the procedure is similar whenever multiple trapped modes are present). At the same
time, the shape must be constrained so that it generates a desired accelerating frequency; in the
case of the LL cavity model, this frequency is specified as 1.3 GHz, and the accelerating mode
corresponds to the 9th mode. Shape optimization will be effected via modification of design
variables describing the shape of an end cell, for example those displayed in Figure 3.

Figure 2. Field pattern of a well-trapped dipole mode.

The shape optimization problem for this design problem can be formulated using the following
notation. Let ¢ = {q1,42,...,¢,} denote the vector of design variables, for example the



438

IT‘OIJ ° rat Imz

Za

Figure 3. The dimensions of the end cell and its connected beam pipes.

variables shown in Figure 3. Let H; and A; represent the magnetic field eigenvector and
eigenvalue, respectively, corresponding to the trapped mode. The eigenvalue is given in terms
of the frequency w by A = “0’—22, where ¢ is the speed of light. We denote by H, and A, the
eigenvector and eigenvalue of the accelerating mode. Let A* represent the target eigenvalue
(which here corresponds to a frequency of 1.3 GHz) for the accelerating mode. The constants
€ and p represent the relative permittivity and relative permeability. Finally, let € represent
the entire cavity, €2, the end cell cavity, I'j; the portion of the boundary on which magnetic
field boundary conditions are prescribed, I'g the portion of the boundary on which electric field
boundary conditions are prescribed, and n the outward unit normal to a surface. We assume
that T'g U Ty = 09, the entire boundary of €.

The eigenpairs (Hy, A\;) and (H,, \,) satisfy the the magnetic form of the Maxwell eigenvalue
problem for each mode, i.e. for i € {¢,a},

1
VX(EVXHl)—)\/LHZ = OIHQ((]),
V-H;, = 0inQ(q),

nx H; = 0onTy(q), (1)
1
nX(gVXHi) = O0onTg(g),
1 1
/ pH;-H;jde = -,
2 Jog) 2

where the dependence of the domain and boundary on the design variables is explicitly
noted. We refer to the Maxwell eigenvalue problem as the state eigenvalue problem and the
eigenpairs (H;, \;),i € {t,a} as the state eigenvectors/eigenvalues to distinguish them from
their adjoint counterparts, to be introduced shortly. Note that we must explicitly write the
orthonormalization condition on the magnetic eigenvector H;, which is enforced through the
last equation in (1). Otherwise, it would not be revealed to the optimization problem. The factor
of one-half on each side of the constraint is needed to produce a symmetric adjoint operator, as
will be seen below.

The design problem is to maximize the stored energy of the trapped modes in an end cell, or
equivalently, minimize the negative of the stored energy

T(g) % - /Q ) Hilg) da (2)

subject to a constraint that the cavity shape generates a desired accelerating frequency, i.e.

Clg) = Aalg) = A" =0. 3)
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The stored energy objective J depends on the design variables g explicitly through the
dependence of the domain integral on g and implicitly through the dependence of the eigenvector
H on q via solution of the eigenvalue problem (1) for the trapped mode. On the other hand, the
accelerating frequency constraint residual C depends on the design variables g only implicitly,
through solution of the eigenvalue problem (1) for the accelerating mode. In summary, the
shape optimization problem is to minimize (2) subject to (3), with the relation between the
state eigenpairs and the design variables given implicitly by (1).

In the next two sections, we derive expressions for the gradient of the trapped energy objective
function [J(q) and the accelerating frequency constraint C(q) with respect to the design variable
vector q. Highly-efficient optimization methods such as Sequential Quadratic Programming
(SQP) require such gradient information to solve the optimization problem.

3. Design gradient of the trapped mode stored energy objective

To derive an expression for the gradient of the objective [J with respect to the design variables, we
follow classical optimal control theory [9], and in particular its elaboration for shape optimization
problems [10]. The dependence of the solution of the state eigenvalue problem (1) on the design
variables g can be enforced by constructing a Lagrangian functional £ 7 that augments J with
inner products (formally, duality pairings) of so-called adjoint variables T;, A, AE,, &, (also
known as Lagrange multipliers) with residuals of the the state eigenvalue equations corresponding
to the trapped-mode eigenpair (Hy, \¢):

1 1
‘Cj(Hta)\taanJ7AMtaAEt7§.7) = _2/QMHt tha:—i_/g;TJ <VX€VXHt_)\tMHt> dx

1
+ [ Ar, - (nx Hy)ds + AEt'<nXVXHt> d8+§j(/ th~th$—1>7 (4)
F]u l_‘E € 2 Q

in which the dependence of €2 and I' on q has been suppressed for simplicity of presentation, and
the dependence of the state eigenpair (H¢, A¢) on g has been removed since the state eigenvalue
problem (1) is now enforced in the Lagrangian £ explicitly via Lagrange multipliers. The
first term in (4) corresponds to the end-cell trapped energy, the second term corresponds to the
domain equation of the state eigenvalue problem (1), the third term corresponds to the magnetic
boundary condition, the fourth term corresponds to the electric boundary condition, and the
fifth term corresponds to the orthonormalization constraint on H;. Accordingly, T'; represents
the adjoint magnetic eigenvector in 2, Ay, the adjoint magnetic eigenvector on I'ys,, Ag, the
adjoint magnetic eigenvector on I'g, and £, the adjoint eigenvalue. Note that there is no need to
enforce the gauge condition on H; the modes of interest in the optimization problem correspond
to nonzero eigenvalues, and thus are automatically divergence-free. The use of Nédélec edge
elements guarantees that this property is inherited by the discretized problem [11]. In fact, this
is not the full story; we must guarantee that the adjoint eigenvector is also divergence-free, and
this remains to be shown below. We next derive the adjoint eigenvalue problem whose solution
yields the adjoint variables T';, Apys,, AE,,£7, and then proceed to derive expressions for the
design gradient of 7 that can be evaluated once the state and adjoint eigenvalue problems have
been solved.

3.1. Adjoint eigenvalue problem
First define the space of three-dimensional vector functions with curl in L? by

H(curl; Q) = {v € (L*(Q))*| Vxv € (L*(Q))*}
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To obtain the adjoint system, we take the variation of the Lagrangian (4) with respect to Hy,
and require that it vanish for all admissible H:

. 1 . . .
—/ ,th-tha:—}—/Tj~ (ngVth—)\tth> dx + AMt-(ant) ds
Qe Q

Tar

1 - - N
+ AEt‘<n>< sVXHt> ds+€j/,th-thm:0 VH, € H(curl; Q)
I'e Q

Integration by parts twice with the integral identity
/ [(Vxa) - (Vxb) —a- - (VxVxb)dx = /(a x (Vxb)) -nds (5)
Q r
yields

N N 1
—/ ,U,Ht'thiB—f‘/Ht'<VX€VXTJ—)\tuTj> dx
Qe Q

+/F1(ﬁthij—zjVxﬁt)-nds—i— AMt‘<n><ﬁt)ds

€ Ty

1 - N .
+ AEt'<nX€VXHt) d8+§j/th~th:c:0 VH, € H(curl; ).
I'e Q

Since H, is arbitrary, we set it to zero on 92 to obtain
1 .
VX(EVXTJ)_)‘tMTJ+£JMHt_XeHHt:O in

where the Heaviside function y. is equal to 1 inside §2. and zero otherwise. We then choose H t
such that it vanishes in €2, leaving

1. . .
/8 (Ht X VT, — Ty x Vth) nds+ [ A, - (n X Ht) ds
I

IS,

1 A N
+ [ Apg, - <n><€V><Ht> ds=0 VH, € H(curl;Q).
T'e

Next, setting n x %Vxﬁt = 0, we obtain

1. N N
/gHt x (VxT;) -nds+ [ Ay, - (n X Ht) ds=0 VH, € H(curl;Q),
r

1N,

which implies
1
AMt = _EVXTJ on FM
1
nx-VxT, = 0 on I'g.
€

The remaining terms give

1 N 1 . .
—/ETJX(Vth)-nds—i— Ag, - (anVth> ds =0 VH, € H(curl;Q),
r I'e
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which implies that Ag = =T, on 'g and n x T, = 0 on ;.
Finally, the derivative of the Lagrangian with respect to \; yields

/MTJ-tha;:o.
Q

In summary, the (strong form of the) adjoint eigenvalue problem for the objective is given by:

1 .
Vx(ngTj)—)\tuTj—i-,u{JHt = —xepnH; in Q
nxT;, = 0 on I'y (6)
1
nx-VxT; = 0 on I'p
€

/MTJ'thm =0
Q

The adjoint eigenvalue problem inherits (homogeneous) electric and magnetic boundary
conditions from the state eigenvalue problem. Note that the adjoint eigenvalue problem is a
linear self-adjoint system in the adjoint eigenvector/eigenvalue pair (T';,£;). That is, given a
design g, the state eigenvalue problem (1) is solved for the state eigenpair (Hy¢, \;), and the
result substituted into the adjoint eigenvalue problem, yielding a linear system for (7';,&).
This is in contrast to the state eigenvalue problem, which is nonlinear in (Hy, A¢). In fact, the
operator for the adjoint eigenvalue problem is the adjoint of the linearized state operator (which
is in turn self-adjoint). Note also that: enforcement of the orthonormalization condition on H
(the last equation in (1)) has resulted in an orthogonality condition between T and H; the
adjoint eigenvalue £, is a Lagrange multiplier for this orthogonality condition; and the adjoint
eigenvalue problem is a saddle point system in (T';,&,).

The saddle point system corresponding to the adjoint eigenvalue problem is nonsingular
provided the state eigenvalues corresponding to the trapped modes are distinct. This can be seen
by recognizing that when ); is a distinct eigenvalue, the null space of the (1,1) adjoint operator
(V x %Vx — A\¢1t) contains a single vector, given by the state eigenvector H;. The orthogonality
condition fQ uT; - Hydx = 0 then insures that T lies in the range space of the (1,1) operator
and therefore the saddle point system is nonsingular. When )\; is a repeated eigenvalue, the null
space of the (1,1) operator is of the dimension of the multiplicity of the repeated eigenvalue,
and the system is no longer singular. In fact the gradient is no longer defined at a repeated
eigenvalue, and the objective is only directionally differentiable, which may cause problems for
a smooth optimization method. Fortunately, the frequencies corresponding to trapped modes in
accelerator cavities are expected to be well-separated, and discontinuity of the gradient is not
an issue for practical problems.

We comment finally on the role of the gauge condition V - H; = 0. Recall that we did not
enforce this condition in the Lagrangian (4), in part because eigenvectors H; corresponding to
trapped modes (and hence nonzero eigenvalues) are guaranteed to be divergence-free. However,
had we included the condition in the Lagrangian, the adjoint eigenvalue problem (6) would have
ended up with a similar gauge condition on the adjoint eigenvector, i.e. V-1, = 0. The adjoint
eigenvalue problem would then have involved a Lagrange multiplier — a scalar potential-like
field variable — to enforce the gauge condition. In general, we do need to enforce the gauge
condition in the adjoint eigenvalue problem, even when V - H; = 0. However, for our particular
objective function (2), it turns out that this is not necessary. This can be seen by taking the
divergence of the first equation in (6); since V - H; = 0 and since the right side involves Hy,
we arrive at \yV - T; = 0, and therefore T'; is automatically divergence-free for nonzero ;.
Were a different objective chosen so that the right-hand side of the first equation of (6) was
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not divergence-free, then the divergence of the adjoint eigenvector would be nonzero, and the
gauge condition would have to be enforced. Again, use of Nédélec elements guarantees that
these properties of the continuous problem carry over to the discrete one.

3.2. Design gradient of J

The gradient of the stored energy objective J with respect to the design variables g is found by
taking partial derivatives of the Lagrangian (4) with respect to the g;. Substituting into (4) the
relations Ag, = =T, on I'g and Ay, = %VXTJ on I'j; we obtain

1 1
ﬁj(Ht,)\t,Tj,gj):—2/Q/LH15'th$—|—/QTJ' <VX€VXHt—)\tMHt) dx

1 1 1
—/ (VxTJ)-(ant)ds—/Tj-(nxVth> ds+ &7 </ ,th-tha:—1>.
Ty € I's € 2 Q

Using the integral identity (5),
1 1
Lg(He, i, T7,85) = —2/MHt -Hidx +/ [5 (VXHy)  (VxHy) = \pTy - Ht} dx
Qe Q

1 1 1
—|—/TJ- <n>< V><Ht> ds—/ (VXTJ)-(ant)ds—/TJ- <n>< V><Ht> ds
r € MY, €

g I'g
1
+5&s (/ ,UHt'thiE—1> ;
2 Q

and simplifying, we obtain

2

+/ [Tj' (nx 1V><Ht> + H,;- <n>< 1V><Tj>] ds—l—}ﬁj (/ ,th~tha:—1>.
Ty 3 g 2 0

The gradient of the objective J with respect to the design variables can now be obtained (under
suitable smoothness conditions) by taking the partial derivatives of the £ with respect to the
design variables. Since the domain and boundary depend on the design variables, the material
derivative of volume and surface integrals is needed [10]. Thus, the i** component of the gradient
of J is given by

1 1
Lg(Hy, M\, T7,65) = _/MHt : th$+/ L (VxHy) - (VxTyz) — MpTy - Ht:| dz
Q. Q

DT aef OL 7 1
Lo - —— [ uH, H,(V,-n)d
Dg; 9q; 2/” ¢ Hi(Vi-m) ds

e

4 /F [i (VxH,) - (VXT;) — \pT, - H; + %Ewﬂt : Ht] (Vi-n) ds (7)

1 1
+ / (Vi-n)(n-V+V.n) [TJ- <n><€V><Ht> +H;- <n><€V><T3>] ds.
r

M

Here, V -n is the mean curvature and the normal derivative n-V operates on the term in square
brackets. ', denotes the boundary of the end cell, and V; is the so-called design velocity field,
that is, the derivative of the boundary coordinate with respect to the " design variable,

Oz

Vi(z) = o0
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This is computed by differentiating the surface model with respect to the design variables, i.e. at
the discrete level by differentiating the CAD model (typically done by numerical differentiation
or AD). The state eigenpair (Hy, \¢) is found by solving the state eigenvalue problem (1),
and the adjoint eigenpair (T;,&,) by solving the adjoint eigenvalue problem (6). Once the
V,; and the state and adjoint eigenpairs have been found, the surface integrals in (7) are
evaluated to determine the objective gradient. One difficulty in computing the surface integrals
(by numerical quadrature) is the need evaluate derivatives of the computed state and adjoint
fields on the surface. The second term on the right side of (7) involves curls of the state and
adjoint eigenvectors; more problematic is the third term, which involves the normal derivative
of the tangential component of curls of these fields. A loss of accuracy will generally occur
in numerically differentiating the computed field, and this can be severe enough to render
the gradient insufficiently accurate for optimization purposes. There are a number of ways
to mitigate this difficulty; our choice is to use high order Nédélec bases [11] to approximate the
state and adjoint eigenvectors. Note however that the third integral in (7) is defined only on
the magnetic boundary I'js. Since the magnetic boundary is usually a symmetry plane, V - n is
typically zero on this boundary, and the third integral vanishes. Thus, only a single derivative
of the state and adjoint eigenvector fields is usually needed. Care must also be taken at edges
and corners of the domain that appear in (7), where the surface normal n is discontinuous. The
mean curvature term then provides additional delta function contributions at these points.

4. Design gradient of the accelerating mode frequency constraint

The procedure for deriving an expression for the design gradient of the constraint C follows that
for the design gradient of the objective J in Section 3. In this case the Lagrangian resembles
(4), except the objective functional (2) is replaced by the constraint function (3), and the state
eigenvalue problem (1) is written for (H,, \,), the eigenpair corresponding to the accelerating
mode,

L (Haohas @ Tey Mg Ag s €e) = Mg — A +/

1
T - (ngVxHa—)\auHa> dx
Q

1
+ [ Ay, - (nx H,)ds+ AEC'<TLXVXHa>dS+§C(/HHa'Hadm—1>a(8)
1N, e € 2 @

where (T;, Ay, AR, &) are adjoint variables for the constraint C. Taking variations with respect
to the state eigenpair (H,, \,) and integrating by parts, we arrive at the adjoint eigenvalue
problem for the constraint,

1
VX(EVXTC)*)\Q/LTc“F,LLcha = 0 in Q

nxT. = 0 on 'y 9)
1
nx-VxT, = 0 on I'g
€
/MTC~Hadw = -1
Q

The operator for this adjoint problem is the same as that for the objective adjoint eigenvalue
problem (6). The right-hand side however is different; it vanishes for the first equation,
and is nonzero for the last. This special structure permits us to write the solution directly.
First, by taking the inner product of the left-hand side of the first equation in (9) with
H ,, integrating by parts using (5), and invoking the state and adjoint eigenvector boundary
conditions n x H, =n xT, =0 on I'j; and n x %VXHG =nx %VXTC = 0 on I'g we obtain

1
/TC. <V><€V><Ha)\a,uHa> d:c+/u§CHa.Had:1::0.
Q Q
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The first integral is zero because the eigenpair (H,, \,) satisfies the state eigenvalue problem
(1). Therefore the adjoint eigenvalue for the constraint, &, is zero. Substituting this result into
the first equation of (9), we see that T, must satisfy the state eigenvalue problem (1) for the
accelerating mode; i.e. when )\, is a simple eigenvalue, we must have T, = aH, for some a.
Substituting this result into the last equation of (9) and making use of the orthonormalization
condition in (1), we obtain & = —1. Therefore, the adjoint eigenvector for the constraint T,
is just the negative of the state eigenvector for the accelerating mode H,. Thus, there is no
need to solve the adjoint eigenvalue problem for the constraint, (9) — and this is true in general
whenever we seek the gradient of a function that depends only on the state eigenvalue. Making
use of this solution for (T,&) in the Lagrangian for the constraint (8), taking the partial
derivative with respect to the i*" design variable, and invoking the magnetic boundary condition
for the accelerating mode n x H, = 0, we arrive at the expression for the i** component of the
constraint gradient:

DC 4ot OL 1
Da def aq,-c :_/FL (VxH;) - (VxH;) — \MpH; - H;| (V;-n) ds (10)

5. Numerical example

We briefly present a simple example of optimizing an ILC-like structure in which the shape of the
end cells is optimized according to the optimization problem (2)—(3). The surfaces of the cells
are represented by analytic expressions, which permits readily-computed design velocity fields
V ;. Four variables are chosen to parameterize the shape. Implementation of full mesh movement
is currently under way; as a temporary solution just the outer layer of elements is permitted to
move with the changing surface. We bound the design variable change to keep the mesh from
distorting. At each optimization iteration, the state eigenvalue problem (1) is solved by the
Omega3P finite element electromagnetics code [1], and trapped-mode and accelerating mode
eigenpairs are identified automatically. The adjoint eigenvalue problem for the objective (6) is
solved by an adjoint extension to Omega3dP, using the same elements, mesh, and many of the
same numerical components used in the state eigenproblem solver. The objective (2), constraint
(3), objective gradient (7), and constraint gradient (10) expressions involving boundary and
domain integrals are also computed using an extension to Omega3P. At each iteration, the
function and gradient information, along with bounds on the design variables, are passed to
the sequential quadratic programming code fSQP [12], which solves a quadratic programming
subproblem to generate a search direction, performs a line search, and returns a new design
vector. The updated design variables generate a new surface, the mesh is deformed to its new
location, and the process repeated until convergence.

We defer a detailed evaluation of the computational complexity, parallel implementation,
and scalability to a subsequent article. Here, we give a brief discussion of the relative costs of
a typical iteration. The dominant cost of a design iteration is in solving the Maxwell (state)
eigenvalue problem for frequencies and mode shapes of interest, which overwhelms the costs of
solving the linear adjoint eigenvalue problem and remeshing. The latter two in turn dominate
the cost of evaluating the boundary integrals to compute the objective and constraint gradients,
and the cost of differencing the geometric model to obtain the design velocity field, both of
which depend on surface rather than volume computations.

Figure 4 shows a cross-section through the mesh corresponding to the initial shape (blue)
and final shape (red, the change in which has been amplified for clarity). Convergence to the
optimum occurs in 5 iterations, for which the value of the objective — the trapped energy in
the end cell — is improved by 58%. Moreoever, the initial design is not even feasible — it
violates the accelerating frequency constraint by 17%. However, after 5 iterations, the optimum
shape’s accelerating frequency is brought to within 0.15% of the desired frequency of 1.3 GHz.
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Figure 4. Meshes for initial and optimized designs of end cell.

Since each iteration is dominated by the (state) eigenvalue solve, the optimum is found in a
small multiple of the cost of the simulation. While this example is relatively small, it serves
to demonstrate the power of (adjoint-based) shape optimization: one is able to move beyond
merely evaluating the performance of a proposed design, to actually optimizing it. Already this
points to a revolution in the way accelerator structures will be designed.
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