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Abstract. For earthquake simulations to play an important role in the reduction of seismic risk, they must be
capable of high resolution and high fidelity. We have developed algorithms and tools for earthquake simulation
based on multiresolution hexahedral meshes. We have used this capability to carry out 1 Hz simulations of the
1994 Northridge earthquake in the LA Basin using 100 million grid points. Our wave propagation solver sustains
1.21 teraflop/s for 4 hours on 3000 AlphaServer processors at 80% parallel efficiency. Because of uncertainties in
characterizing earthquake source and basin material properties, a critical remaining challenge is to invert for source
and material parameter fields for complex 3D basins from records of past earthquakes. Towards this end, we present
results for material and source inversion of high-resolution models of basins undergoing antiplane motion using
parallel scalable inversion algorithms that overcome many of the difficulties particular to inverse heterogeneous
wave propagation problems.

1. Introduction. The main objective of our research is to develop the capability for gen-
erating realistic inversion-based models of complex basin geology and earthquake sources,
and to use this capability to model and forecast strong ground motion during earthquakes
in such large basins as Los Angeles. This problem is of great importance to hazard mitiga-
tion, because assessing the ground motion to which structures will be exposed during their
lifetimes is an essential first step in designing earthquake-resistant facilities and retrofitting
existing structures. Thus, ground motion modeling and forecasting are necessary precur-
sors of the design process. The Los Angeles region is a particularly critical and appropriate
basin to study, because it is the most highly populated seismic region in the U.S., it has well-
characterized geological structures (including a varied fault system), and extensive records of
past earthquakes are available.

Modeling and forecasting earthquake ground motion in large basins is a challenging and
complex task. The complexity arises from several sources. First, multiple spatial scales char-
acterize the earthquake source and basin response: the shortest wavelengths are measured in
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tens of meters, whereas the longest measure in kilometers; basin dimensions are on the order
of tens of kilometers, and earthquake sources up to hundreds of kilometers. Second, temporal
scales vary from the hundredths of a second necessary to resolve the highest frequencies of
the earthquake source up to as much as several minutes of shaking within the basin. Third,
many basins have highly irregular geometry. Fourth, the soils’ material properties are highly
heterogeneous. And fifth, geology and source parameters are observable only indirectly, and
thus introduce uncertainty into the modeling process. Because of its modeling and compu-
tational complexity and its importance to hazard mitigation, earthquake simulation has been
recognized in several U.S. Federal agency reports as one of the computational Grand Chal-
lenges.

In this paper we present recent work that extends our earlier capabilities for large-scale
forward modeling of earthquake ground motion [7] to larger basins, with softer soils, and
for higher resolved frequencies, all of which add significant computational complexity, yet
are crucial for practical applications. The key components that have enabled these capa-
bilities include an octree-based out-of-core mesh generator that can generate unstructured
wavelength-tailored hexahedral meshes of sizes limited only by available disk space, and an
unstructured hexahedral mesh parallel elastic wave propagation solver that uses very little
memory and scales to thousands of processors with high parallel efficiency and good node
performance, despite the highly irregular meshes needed to capture efficiently the wide range
of spatial and temporal scales that characterize heterogeneous basin response.

We have used these tools to simulate the 1994 Northridge earthquake in the Greater LA
Basin at 1 Hz maximum frequency resolution and 100 m/s minimum shear wave velocity.
The resulting unstructured mesh contains over 100 million grid points and 80 million hexa-
hedral finite elements, which places it among the largest unstructured mesh simulations ever
conducted.1 These are the most highly resolved simulations of the Northridge earthquake
carried out to date; they are made possible by the multiresolution octree-based meshes we
use (a uniform grid would have required over 1000 times more grid points to resolve the
same frequencies), as well as the low memory required by the hexahedral data structures.
The simulation code exhibits nearly 90% parallel efficiency in scaling from 1 to 2048 pro-
cessors on LeMieux, the HP AlphaServer system at the Pittsburgh Supercomputing Center; it
sustains nearly a teraflop/s over 12 hours in solving the 300 million wave propagation ODEs
that result upon spatial discretization; and executes at 25% of the peak floating point rate on
the 2 Gflops/s Alpha processors—excellent figures considering the highly irregular, multires-
olution meshes that we use.2

These levels of performance are due in part to effective use of LeMieux’s fast Quadrics
network, and in part due to the design of our hexahedral code’s data structures and algorithms
so that they eschew sparse matrix-vector products in favor of more cache-friendly local dense
matrix-vector products. Most importantly, we now have in place a mesh generation and wave
propagation framework that will enable us to scale efficiently up to the 2–4 Hz frequencies
that are of critical interest to design engineers.3 Results from a 2 Hz simulation—which
involves 1.2 billion unstructured grid points—will be presented at SC2003. Because of the
low memory required by our hexahedral solver, there is sufficient capacity on the current
AlphaServer system to accommodate the 2 Hz simulation. Because of the finer granularity,

1Model elasticity problem with up to 700 million grid points have been solved on the Earth Simulator, but
although the code employs an unstructured finite element data structure, the tests were conducted on regular cubic
grids [28, 29].

2The 25% of peak figure compares favorably with single processor efficiencies of about 33% that are beginning
to be reported for the Earth Simulator supercomputer for unstructured meshes [28, 29].

3Each doubling of frequency leads to a factor of 8 increase in grid size and factor of 16 increase in work, for a
given material model.
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we expect that parallel performance will be even better than that reported here for the 1 Hz
simulations.

Such high resolution simulations have been able to reproduce observed ground motion
from past earthquakes at some locations that could not be captured by lower resolution sim-
ulations. Observations at other sites, however, have not been reproduced well by high res-
olution ground motion simulations. This discrepancy is likely the result of uncertainties in
both the source and the geological model. Thus, we are led to an inverse problem: we wish
to estimate the soil property distribution that results in a predicted response that most closely
matches observed records of past earthquakes. This inverse problem requires knowledge of
the earthquake source, which means we must invert for the source model in the process of
inverting for the material model.

We have developed a capability for earthquake inversion for both material and source
properties. In this paper we describe the methodology and provide typical results for a 2D
earthquake model; results from 3D inversion will be presented at SC2003. The inverse prob-
lem is significantly more difficult to solve than the associated forward wave propagation prob-
lem. Even when the forward problem is well-posed, possesses a unique and continuous solu-
tion, can be evolved in time to obtain a solution, and is characterized by sparse operators—the
inverse problem is ill-posed and characterized by multiple solutions that are discontinuous,
and has an operator that is dense and couples the entire time-history of response. Specialized
algorithms are therefore required, and these are described below.

The capability to invert for the source and for the crustal and basin structures permits us
to generate improved earthquake source models and improved basin material models. This,
in turn, permits us to model an ensemble of potential rupture scenarios, which improves our
ability to forecast strong ground motion during future earthquakes, an essential first step in
assessing the earthquake hazard and reducing the seismic risk. The ingredients necessary to
achieve this goal are a forward earthquake simulation capability that scales to highly-resolved
geologic models and frequencies of engineering interest on terascale supercomputers; and an
inversion capability that addresses all of the fundamental challenges of inverse wave propa-
gation while also scaling to large problem sizes, high resolution, and large numbers of pro-
cessors.

Below we describe our efforts to create these capabilities. Section 2 describes the earth-
quake elastic wave propagation model, finite element approximation, and explicit wave prop-
agation solution, and presents verification, performance, and scalability data. The inverse
model and algorithm are presented in Section 3, and used to solve an inverse shear wave
propagation problem for unknown earthquake source and basin structure.

2. Forward earthquake modeling. The Quake group has been working on modeling
earthquakes in large basins on parallel supercomputers for over a decade. Over the years our
forward earthquake modeling codes have run on the TMC CM-2, Intel iWarp and Paragon,
SGI Origin, Cray T3D and T3E, and most recently the HP AlphaServer cluster. Each gen-
eration of architecture has prompted evolutionary changes to our algorithms and software
implementations. Our simulations are based on multiresolution mesh algorithms, which over-
come many of the obstacles related to the wide range of length and time scales characteriz-
ing basin earthquake response. We have pursued these methods despite the challenges they
pose for obtaining good node performance and parallel scalability on highly parallel cache-
based systems. In heterogeneous geological structures such as sedimentary basins, where
material properties vary significantly throughout the domain, multiresolution meshes allow a
tremendous reduction in the number of grid points (compared to uniform meshes), because
element sizes can adapt locally to the highly-variable wavelengths of propagating seismic
waves. Furthermore, a mesh tailored to local wavelengths permits much longer time steps
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without suffering instability, since the Courant stability limit is on the order of that required
for accuracy. Details on our computational methodology and underlying algorithms may be
found in [6,7,10–12,25,32,40]. Our codes have been used to used to model earthquake ground
motion in the San Fernando Valley of Southern California [7], the Osaka basin in Japan [22],
the Kirovakan Valley in Armenia [12], and the Wellington Valley in New Zealand [2]; to
model the response of dams during earthquakes [31]; to model nonlinear elastoplastic ground
motion [39]; and to assess three-dimensional local site effects in sedimentary basins [9].

Our earlier earthquake codes were based on linear tetrahedral finite elements. Recently,
we have designed a new code that includes octree-based trilinear hexahedral elements and
local dense element-based data structures [24] with several important advantages:

• The hexahedra provide somewhat greater accuracy per grid point (the asymptotic
convergence rate is unchanged, but the constant is typically improved over tetrahe-
dral approximation).

• The element-based data structure produces much better cache utilization by relegat-
ing the work that requires indirect addressing (and is memory bandwidth-limited)
to vector operations, and recasting the majority of the work of the matrix-vector
product as local element-wise dense matrix computations. The result is a significant
boost in performance.

• The hexahedral meshes stem from wavelength-adapted octrees, which are more
easily generated than general unstructured tetrahedral meshes, particularly when
the number of elements increases above 50 million. We have developed an ef-
ficient out-of-core octree-based hexahedral mesh generator [37] that can generate
meshes of sizes that are limited only by available disk space. (Since each basin is
meshed just once for a given resolution of interest—but subjected to many earth-
quake scenarios—mesh generation can be done off-line.)

• The hexahedra all have the same element stiffness matrices, modulo element size
and material properties (which are stored as vectors), and thus no matrix storage is
required at all. This results in a substantial decrease in required memory—about an
order of magnitude, compared to our grid-point-based tetrahedral code.

These features permit earthquake simulations to substantially greater resolutions than hereto-
fore possible. The subsections below describe the wave propagation solution and mesh gen-
eration methods, assess performance and scalability on PSC’s HP AlphaServer system, and
provide some typical verification data.

2.1. Wave propagation model, discretization, and solver. We model seismic wave
propagation in the earth via Navier’s equation of linear elastodynamics. Let u represent the
vector field of the three displacement components, λ and µ the Laḿe moduli and ρ the density
distribution, b a time-dependent body force representing the seismic source, and L

AB a linear
differential operator that vanishes on the free surface, and applies an appropriate absorbing
boundary condition on truncation boundaries. Let Ω be an open bounded domain in R

3. The
initial–boundary value problem is then written as:

ρ ü−∇ ·
[

µ
(

∇u+ ∇u
T
)

+ λ(∇ · u)I
]

= b in Ω× (0, T ] ,
[

µ
(

∇u+ ∇u
T
)

+ λ(∇ · u)I
]

n = L
AB

u on ∂Ω× [0, T ] , (2.1)

u = 0 on Ω× {t = 0} ,
u̇ = 0 on Ω× {t = 0} ,

where n represents the outward unit normal to the boundary. With this model, longitudinal
waves propagate with velocity vp =

√

(λ+ 2µ)/ρ, and shear waves with velocity vs =
√

µ/ρ. The continuous form above does not include material attenuation, which we introduce
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at the discrete level via a Rayleigh damping model. The vector b comprises a set of body
forces that equilibrate an induced displacement dislocation on a fault plane, providing an
effective representation of earthquake rupture on the plane. Explicit expressions for such a
body force will be given below in the case of antiplane shear.

On a face with a unit normal n and two tangential vectors τ 1 and τ 2, such that the three
vectors form a right-handed orthogonal coordinate system, the absorbing boundary condition
(Stacey’s formulation) takes the form

Sn =





−d1 ∂
∂t

c1
∂

∂τ1
c1

∂
∂τ2

−c1 ∂
∂τ1

−d2 ∂
∂t

0

−c1 ∂
∂τ2

0 −d2 ∂
∂t











un
uτ1
uτ2







≡ L
AB

u

where S is the stress tensor and

c1 = −2µ+
√

µ(λ+ 2µ),

d1 =
√

ρ(λ+ 2µ),

d2 =
√
ρµ.

Even though Stacey’s absorbing boundary is not exact, it is local in both space and time,
which is particularly important for large-scale parallel implementation.

2.2. Spatial and temporal approximation. We apply standard Galerkin finite element
approximation in space to the appropriate weak form of the initial-boundary value problem
(2.1). Let U be the space of admissible solutions (which depends on the regularity of b), Uh

be a finite element subspace of U , and vh be a test function from that subspace. Then the
weak form is written as follows.
Find uh ∈ Uh such that
∫

Ω

{

ρüh · vh +
µ

2

(

∇uh + ∇u
T

h

)

·
(

∇vh + ∇v
T

h

)

+ λ(∇ · uh)(∇ · vh)− b · vh

}

dΩ =

∫

∂Ω

(LAB
uh) · vh dA, ∀vh ∈ Uh. (2.2)

Finite element approximation is effected via piecewise trilinear basis functions and associated
trilinear hexahedral elements on an octree mesh. This strikes a balance between simplicity,
low memory (since all element stiffness matrices are the same modulo scale factors), and
reasonable accuracy.4

Upon spatial discretization, we obtain a system of ordinary differential equations of the
form

M ü +
(

C
AB + αM + βK

)

u̇ +
(

K +K
AB

)

u = b, (2.3)

where M and K are mass and stiffness matrices, arising from the terms involving ρ and
(µ, λ) in (2.2), respectively; b is a body force vector resulting from a discretization of the
seismic source model; and damping matrices C

AB and K
AB are contributions of the ab-

sorbing boundaries to the mass and stiffness matrices, respectively. We have also introduced
damping matrices in the form of the Rayleigh material model αM+βK to simulate the effect
of energy dissipation and resulting wave attenuation due to anelastic material behavior. The
constants α and β are determined locally (elementwise) so that the resulting damping ratio

4The output quantities of greatest interest are displacements and velocities, as opposed to stresses.
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is as close as possible to a constant value dictated by the local soil type, over a band of fre-
quencies. Since Rayleigh damping increases both linearly and inversely with frequency, we
seek a least squares solution to this optimization problem over each element. This provides a
reasonable damping model for many soils, although very low and very high frequencies are
overdamped.

The time dimension is discretized using central differences. The algorithm is made ex-

plicit using a diagonalization scheme that lumps the mass matrix—and possibly C
AB

—and
splits the diagonal and off-diagonal portions of the stiffness and absorbing boundary damping
matrix. The resulting update for the displacement field at time step k + 1 is given by
[(

1 + α
∆t

2

)

M + β
∆t

2
K

diag
+

∆t

2
C

AB

diag

]

uk+1 = (2.4)
[

2M −∆t2
(

K +K
AB

)

− β
∆t

2
K

off
− ∆t

2
C

AB

off

]

uk

+

[(

α
∆t

2
− 1

)

M + β
∆t

2
K +

∆t

2
C

AB

]

uk−1 +∆t2bk.

The time increment ∆t must satisfy a local CFL condition for stability. Space is discretized
over an octree mesh (each leaf corresponds to a hexahedral element) that resolves local seis-
mic wavelengths: given a (typically highly-heterogeneous) material property distribution and
highest resolved frequency of interest, a local mesh size is chosen to produce p grid points
per shortest wavelength (we typically take p = 10 for trilinear hexahedra). This insures
that the CFL-limited time step is of the order of that needed for accuracy, and that excessive
dispersion errors do not arise due to over-refined meshes.

Spatial discretization via refinement of an octree produces a non-conforming mesh, re-
sulting in a discontinuous displacement approximation. Whenever a refined hexahedron
neighbors an unrefined one, “hanging” grid points, which belong to refined elements but not
to unrefined neighbors, are produced. In such cases, we restore continuity of the displacement
field by imposing algebraic constraints that require the displacements at hanging grid points
to be consistent with non-hanging neighbors. For linear hexahedra and provided 2-to-1 re-
finement is enforced between neighbors, these constraints state simply that hanging midside
values must be the average of the two non-hanging edge neighbors, and hanging mid-face
values must be the average of the four non-hanging vertex neighbors. We can express these
discrete continuity constraints in the form

u = Bū,

where ū denotes the displacements at the independent non-hanging grid points, and B is a
sparse constraint matrix. In particular, Bij = 1

4
if (dependent) hanging grid point i is a face

neighbor of (independent) non-hanging point j and 1

2
if it is an edge neighbor, Bij = 1

simply identifies a non-hanging grid point, and Bij = 0 otherwise. Rewriting the linear
system (2.4) as

Auk+1 = b(uk),

we can impose the continuity constraints via the projection

B
T
ABū = B

T
b(uk). (2.5)

The constrained update (2.5) remains explicit, since the projected matrix B
T
AB preserves

the diagonality of A. The work involved in enforcing the constraints is proportional to the
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number of hanging grid points, which can be a sizeable fraction of the overall number of
grid points for a highly irregular octree, but is at most of O(N). Therefore, the per-iteration
complexity of the update (2.5) remains linear in the number of grid points.

The combination of an octree-based wavelength-adaptive mesh, piecewise trilinear Ga-
lerkin finite elements in space, explicit central differences in time, constraints that enforce
continuity of the displacement approximation, and local-in-space-and-time absorbing bound-
aries yields a second-order-accurate in time and space method that is capable of scaling up
to the very large problem sizes that are required for high resolution earthquake modeling. In
the next subsection we discuss our techniques for generating large octree-based wavelength-
adaptive hexahedral meshes, and in the section that follows we demonstrate parallel scalabil-
ity of our implementation to large parallel systems and problem sizes. The final subsection
provides sample evidence of the correctness and validity of our simulations.

2.3. Etree method for large octree-based hexahedral mesh generation. Generating
very large meshes, of order 108 elements and up, remains a major challenge. We have de-
veloped a new database-oriented method called etree [37] to generate large octree-based hex-
ahedral meshes out of core. With the etree method, the limit on the largest mesh size that
can be generated is extended to the available disk space, instead of the size of the memory.
Any desktop computer with enough disk storage can be used to generate large octree-based
meshes required for LA basin models with hundreds of millions of hexahedra.

We use the well-known linear octree [19] technique to assign each octant a unique key
that encodes its location and size, and we store the octants in a B-tree [8,17,20,33], the most
commonly used primary key indexing structure in database systems. In addition, we have
developed two new techniques, which we refer to as auto-navigation and local balancing,
that address the special needs of octree mesh generation.

All of these components (linear octrees, B-trees, auto-navigation, and local balancing)
are implemented in a C library called the etree library. An application uses the functions
defined in the etree library to manipulate an octree mesh stored on disk. The etree library
automatically performs extensive optimization to improve running time and reduce disk I/O.

Figure 2.1 shows the process of generating a mesh using the etree method. In the con-
struct step, an octree is constructed in the same way as in an in-core algorithm, except that it is
built and stored on disk. The decompositions of the octants are dependent on the geometry or
physics being modeled. For earthquake simulations in heterogeneous basins, the shear wave
velocity and maximum resolved frequency determine the local element size.5 The result is an
unbalanced octree. Next, the balance step recursively decomposes all the (large) octants that
violate the 2-to-1 constraint until no illegal conditions exist. Finally, in the transform step,
mesh-specific information such as the element-node relationship and the node coordinates are
derived from the balanced octree and stored in two databases, one for the mesh elements, the
other for the mesh nodes.

We use the linear octree technique to linearize an octree so that we can store the octants
in a B-tree. In particular, we assign keys to octants using a variant of the Morton code [27].
A Morton code maps a d-dimensional point to a one-dimensional scalar. The mapping can
be computed quickly by interleaving the bits of the binary representation of the coordinate of
a d-dimensional point. To identify uniquely an octant, we construct its key by appending its
level in the octree to the Morton code for its left-lower corner. The result is a binary bit string
that can be used as a key for the B-tree indexing.

5Shear waves are the slowest waves and thus have the shortest wavelengths. Given a local shear wave velocity
(vs), highest response frequency we wish to resolve (fmax ), and number of grid points per wavelength deemed
sufficient (Nλ, usually 10), we determine a local element size from h = vs/(Nλfmax ).
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FIG. 2.1. The etree method of generating octree meshes.

The linear octree nicely solves the problem of how to address individual octants. How-
ever, it does not provide a programming model for octree construction. Although it is possible
for an application to construct an octree by repeatedly inserting and deleting octants from the
database, the application program would have to keep records of which octants have been
decomposed and which have not. Worse, many insertions are in fact unnecessary because
those octants are later decomposed and removed from the database.

To address this problem, we designed a higher-level abstraction to support automatic
octree construction. The underlying technique is called auto-navigation. The idea of auto-
navigation is based on a simple insight: since the ordering of expanding an octree under
construction is independent of the correctness of the result, the octree traversal logic can be
decoupled from the application’s logic and incorporated into the etree library.

An octree obtained after the construction step must be balanced to conform to the 2-to-1
constraint. The etree library provides another high-level abstraction to isolate the applications
from the details of enforcing the 2-to-1 constraint. To speed up the balance operation, we
have designed a new technique called local balancing, which consists of three steps. First,
we partition the whole domain into equal-size blocks. Next, we conduct internal balancing to
enforce the 2-to-1 constraint within each block. Finally, we do boundary balancing to resolve
interactions between adjacent blocks. Our results show that local balancing can achieve a
speed-up ranging from 8 to 28 depending on the size of the meshes being balanced.

For example, a mesh of the LA Basin with 110,185,484 elements, 19,543,510 hang-
ing grid points, and 129,019,552 total grid points required about 100 Gb of disk space and
42 hours of wall-clock time on an Intel PIII 1 GHz machine with 3 Gb of memory. This
time is inconsequential, since the same mesh is used repeatedly to simulate numerous earth-
quakes corresponding to different fault rupture scenarios. Finally, at the time of writing, we
have obtained preliminary data on the generation of a mesh with 1,184,517,967 elements
and 1,219,193,420 grid points. This required an estimated 1 Tb of disk space and 9 days to
generate, on an Intel Xeon 2.2 GHz with 1 Gb of memory.

In summary, the etree method is a useful and effective way of generating very large
octree-based meshes that adapt to local seismic wavelengths. The maximum mesh size that
can be generated is limited only by available disk space.

2.4. Performance of the wave propagation solver. In this section we provide data that
demonstrate the excellent parallel performance and scalability of our octree-based multires-
olution wave propagation code. We focus on parallel efficiency as measured by the degrada-
tion in megaflops/s sustained performance per processor as the the number of processors and
problem size increase. The other ingredient for scalability is algorithmic efficiency, which in
general requires a work-optimal algorithm. This is typically achieved by an algorithm whose
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TABLE 2.1
Parallel scalability of unstructured octree-based earthquake code on PSC HP AlphaServer. PEs is number of

processors; model identifies the LA Basin model and associated minimum period resolved; grid pts is the number
of grid points in the model; pts/PE is grid points per processor; Gflops is the total gigaflops/s sustained over the
duration of the earthquake simulation, exclusive of I/O; Mflops/PE is the corresponding megaflops/s per processor;
and efficiency is the parallel efficiency measured by degradation in Mflops/PE relative to a single processor.

PEs model grids pts pts/PE Gflops Mflops/PE efficiency
1 LA10S 134,500 134,500 0.505 505 1.00

16 LA5S 618,672 38,667 7.85 491 0.972
128 LA2S 14,792,064 115,563 60.0 469 0.929
512 LA1HA 47,556,096 92,883 231 451 0.893

1024 LA1HB 101,940,152 99,551 460 450 0.891
2048 LA1HB 101,940,152 49,775 907 443 0.874
3000 LA1HB 101,940,152 33,980 1,210 403 0.800

per-iteration cost is linear in problem size, and iteration count is constant or polylogarithmic
in problem size.

For 3D wave propagation problems in which the grid size is adapted to the local wave-
length of propagating waves, an optimal solver has complexity O(N

4

3 ), where N
1

3 is the
number of grid point in each direction. This results from the fact that simply writing the so-
lution requires O(N

4

3 ) complexity, since O(N) grid points are required for accurate spatial
resolution, and O(N

1

3 ) time steps for accurate temporal resolution, which is of the order of
that dictated by the CFL stability condition. Thus, the explicit wave propagation solver de-
scribed in Section 2.1 is asymptotically optimal, and our only concern in the present section
is to evaluate parallel efficiency.

Table 2.1 presents sample scalability results for a series of 1994 Northridge earthquake
simulations in the LA Basin with highest resolved frequencies ranging from 0.1 Hz to 1 Hz,
corresponding to a range of problem sizes from 134,500 to over 100 million grid points, on a
number of processors ranging from 1 to 3000 on PSC’s HP AlphaServer system. Due to the
unstructured mesh (and target frequencies of interest) the number of grid points per processor
varies from a low of 33,980 for the 3000 processor simulation to a high of 134,500 on a
single processor6. Overall performance increases from 505 megaflops/s on one processor
(25% of the Alpha EV68’s peak) to 1.21 teraflops/s on 3000 processors. The code exhibits
outstanding performance, particularly for such a highly irregular problem. It maintains 87%
parallel efficiency while scaling from 1 to 2048 processors. The largest simulation, consisting
of over 300 million ODEs discretized over 60,000 time steps, sustains 1.21 teraflops/s over 4
hours of wall-clock time for the wave propagation solution7 to simulate 60s of the Northridge
earthquake. For this 3000 processor simulation, parallel efficiency drops to 80%, due in part
to the lower granularity. To our knowledge, this represents the largest unstructured mesh PDE
simulation ever conducted. Most importantly, had this problem been solved with a regular
grid code, it would have required 2 × 1011 grid points, i.e. a factor of 2000 greater than
that used by our multiresolution code. Thus, we could have improved our flop rate by using
a regular grid data structure, but we would have needed at least 2 years of 3000-processor
LeMieux time to solve the same problem—assuming it would still fit in memory (actually it
would not).

In conclusion, our hexahedral code is more cache-friendly and faster, a factor of ten more

6This range of granularity is typical for our production simulations.
7We exclude time for I/O, which has not been optimized.
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memory-efficient, and more scalable to large problem sizes (due to the octree-based mesh
generator) than our tetrahedral code. Indeed, this version combines the best of structured
and unstructured mesh methods: the low memory per grid point characteristic of regular grid
codes, along with the local adaptivity and multiresolution capability of unstructured codes.

2.5. Verification. Our hexahedral forward earthquake simulation code has been verified
against closed-form solutions and against our earlier tetrahedral code in ground motion sim-
ulations in the Los Angeles region. Figure 2.2 shows volume renderings of velocities from a
simulation for which such a closed-form solution is available. The figure depicts snapshots at
different times of the wave propagation in a layer over a halfspace due to an idealized earth-
quake generated over an extended strike-slip fault. Agreement between the finite element
simulation and the Green’s function solution is excellent.

FIG. 2.2. Visualization of wave propagation in a layer over a halfspace due to an earthquake generated over
an extended vertical strike-slip fault. Figure shows volume-rendered distribution of the fault parallel component of
the horizontal velocity at different times following the onset of the excitation.

In order to assess the accuracy of our hexahedral code for problems for which closed-
form solutions do not exist, we compare against ground motion computed using our tetra-
hedral wave propagation code. The tetrahedral code has been verified against four different
finite difference codes from the earthquake modeling community, and thus serves as a good
benchmark. That comparison showed that all five codes produce similar results [18]. To
carry out the simulation, we use the same Southern California Earthquake Center (SCEC)
Community Velocity Model and an idealized model of the 1994 Northridge earthquake that
was used in the study. Figure 2.3a shows a plan view and a cross-section of the shear wave
velocity distribution in the LA Basin model. Figure 2.3b shows an unstructured hexahedral
mesh used to resolve frequencies up to 0.2 Hz, while 2.3c displays a closeup view of a portion
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FIG. 2.3. LA Basin model. (a) Plan view and cross-section of distribution of shear wave velocity, along with
projection of fault plane on free surface. (b) Corresponding unstructured octree-based hexahedral mesh that resolves
seismic wavelengths to 0.2 Hz maximum frequency for illustrative purposes. (c) Portion of hexahedral mesh near free
surface, illustrating octree mesh structure and 2-to-1 refinement constraints. (d) Element partition for 64 processors.

of the mesh near the free surface, illustrating the 2-to-1 refinement constraint on the underly-
ing octree. Finally, Figure 2.3d depicts a 64-processor partitioning. We use the parallel graph
partitioning code ParMETIS [23].

Figure 2.4 shows a comparison between our tetrahedral and hexahedral codes for two
different frequencies. This hexahedral simulation was performed for a maximum frequency
of 1.0 Hz, with a 100 million-grid point finite element mesh on 1024 processors of the Al-
phaServer system. The benchmark tetrahedral simulation was limited to 0.5 Hz maximum
frequency due to difficulties in generating the required half-billion-tetrahedra mesh. Our
hexahedral-based approach has made it possible, for the first time, to perform an earthquake
simulation to 1 Hz maximum frequency for realistic properties of the entire Los Angeles
Basin. Until now, the maximum frequency considered for the LA Basin had been 0.5 Hz.
The results show very good agreement for the lower frequency. As expected, significant dif-
ferences are observed for 1.0 Hz because our tetrahedral model cannot represent the ground
motion at this higher frequency. Notice the higher amplitude of the ground motion at 1.0
Hz and the higher frequency content of the synthetics, which is not captured by the coarser
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FIG. 2.4. Comparison between the results of our tetrahedral (red) and hexahedral (blue) codes for the ground
motion velocity in two horizontal directions and the vertical directions at two locations, identified on the upper
left frame; one set of results has been low pass filtered to 0.5 Hz, and the other to 1.0 Hz. The lower frequency
corresponds to the maximum frequency modeled by our tetrahedral simulation; the higher, to that of our hexahedral
simulation.

tetrahedral model. For design purposes, structural engineers are interested in even higher fre-
quencies, up to 2–4 Hz. Even with an adaptive mesh, a 4 Hz simulation will require about
10 billion elements—underscoring the critical importance of scalability of meshing and wave
propagation algorithms.

To illustrate the spatial variation of the ground motion, Figure 2.5 presents snapshots at
different times of an animation of the wave propagation throughout the basin. Notice the
directivity of the ground motion along strike from the epicenter and the concentration of
motion near the fault corners. This pattern was also observed during the actual earthquake.8

Strong ground motion was also observed in the southeast portion of the San Fernando Valley
(Sherman Oaks), in the Santa Monica area, and La Cienega area (in the middle of the Los
Angeles Basin proper). These observations are not reproduced in the simulations depicted in
the figure. This discrepancy is due, in part, to the simplified nature of the source, but also
because the current SCEC model does not yet provide the necessary fidelity. This underscores
the importance of developing the capability to invert for both source and material models from
records of past earthquakes.

3. Inverse earthquake modeling. As noted in the previous section, while current sim-
ulations (ours and others’) provide much useful information, in many cases they are not ca-
pable of adequately reproducing observed seismograms. The reason for this is that these
models are based on a number of restrictive assumptions. Some, such as limiting the high-
est resolved frequency and the lowest value of the shallow soil layers are made largely to
reduce the computational effort, while others are necessitated by our limited knowledge of
the earthquake source and of the material properties of the geological structure on the length
scale of a seismic wavelength. All of these have a profound impact on our ability to predict
earthquake ground motion. Thus there is a critical need to perform seismic inversion of the
seismic source and the material properties of the geological model using high resolution 3D
elastodynamic wave propagation models.

The recent advances described in the previous section on forward simulation of ground
motion by octree-based multiresolution mesh methods provide an excellent opportunity for
developing more accurate inversion-based models of the entire earthquake process, from its

8see USGS map at http://pasadena.wr.usgs.gov/north/.
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FIG. 2.5. Snapshots of propagating waves from simulation of 1994 Northridge earthquake.

inception at the source, through the wave propagation path, to basin and local site effects.
What makes such an effort even more timely and warranted are recent cooperative seismic
networks such as TriNet and the USArray of Earthscope, which feature hundreds of broad-
band and strong-motion sensors. They will add immensely to the collection of earthquake
records, and will make it possible for inverse methods to yield accurate results.

However, solution of inverse wave propagation problems presents numerous difficulties,
including severe nonlinearity, ill-posedness, multiple solutions, space-time coupling, discon-
tinuous solutions, and dense ill-conditioned operators—despite the fact that the forward wave
propagation problem is linear, well-posed, has a unique solution whose computation can be
time-marched, and possesses a sparse well-conditioned operator. We have previously de-
veloped a parallel scalable method that addresses these difficulties, and demonstrated it for
inverse acoustic wave propagation problems [3]. This section presents its application to the
solution of seismic inverse problems, We report here on results for separate material and
source inversion for a 2D sedimentary basin undergoing antiplane motion.
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3.1. Nonlinear optimization formulation and inversion algorithm. In this section we
state a nonlinear optimization formulation of the inverse wave propagation problem and de-
velop first order necessary conditions for optimality [36]. For simplicity of the presentation,
we consider a simplification of the 3D elastodynamic wave propagation model of the previous
section to a shear wave propagation model. Let Ω be an open bounded domain in R

2, repre-
senting a vertical section through a basin, and let Σ represent a fault plane within Ω. The free
surface is denoted as ΓFS , and absorbing boundary conditions are imposed on the remaining
boundaries, denoted ΓAB , to limit reflections from outgoing waves. For illustrative purposes,
here we employ a simple first-order absorbing boundary condition. Let u(x, t) represent the
transverse displacement, and ρ(x) and µ(x) the density and shear modulus of the soil. The
seismic source appears in strong form as a dipole along the fault; it is parameterized by a de-
lay time T (Σ), a rise time t0(Σ), and a dislocation magnitude u0(Σ). The normal to the fault
is taken as nΣ. Every point along the fault has a dislocation function g(t), that depends on
the delay time, rise time, and dislocation magnitude, as shown in Figure 3.1. The dislocation
function is such that its time derivative is a hat function, as depicted in the figure.

FIG. 3.1. Seismic source model.

The nonlinear least squares formulation of the inverse problem can be posed as follows:
find the material property distribution µ(x) and earthquake source parameters T (Σ), t0(Σ),
and u0(Σ), so that the L2 norm error between predicted and observed displacements is min-
imized, subject to satisfaction of the shear wave propagation equation. The error norm is
continuous in time and pointwise in space, corresponding to the locations of the receivers.
This problem is ill-posed in the sense that highly-oscillatory components of the material
field are poorly determined by the observations; thus, some form of regularization to ren-
der the problem well-posed is required. In the following formulation, we employ a mixture
of Tikhonov regularization for the source parameters, and total variation regularization [1,38]
for the material field:
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Minimize w.r.t. µ, u0, t0, T

1

2

Nr
∑

j=1

∫

Ω

∫ T

0

(u− u∗)2δ(x− xj)dt dΩ

+
β1
2

∫

Ω

|∇µ| dΩ+
β2
2

∫

Ω

|∇u0|2 dΩ+
β3
2

∫

Ω

t|∇t0|2 dΩ+
β4
2

∫

Ω

|∇T |2 dΩ

subject to:

ρü−∇ · µ∇u = −∇ · (µu0g(t0, T )δ(Σ)nΣ) in Ω× (0, T ] (3.1)

µ∇u · n = 0 on ΓFS × (0, T ]

µ∇u · n =
√
ρµu̇ on ΓAB × (0, T ]

u = u̇ = 0 in Ω× {t = 0}

The Tikhonov regularization terms penalize oscillations (along the fault) in the source pa-
rameters, while the total variation regularizer also inhibits oscillations but in addition avoids
smoothing of discontinuities in the material field, thereby preserving sharp interfaces preva-
lent in layered geologic media [3].

First-order necessary conditions can be derived from the optimization problem (3.1) in
strong form, to yield the following.
State wave equation:

ρü−∇ · µ∇u = −∇ · (µu0g(t0, T )δ(Σ)nΣ) in Ω× (0, T ]

µ∇u · n = 0 on ΓFS × (0, T ] (3.2)

µ∇u · n =
√
ρµu̇ on ΓAB × (0, T ]

u = u̇ = 0 in Ω× {t = 0}

Adjoint wave equation:

ρλ̈−∇ · µ∇λ =

Nr
∑

j=1

(u∗ − u)δ(x− xj) in Ω× (0, T ]

µ∇λ · n = 0 on ΓFS × (0, T ] (3.3)

µ∇λ · n = −√ρµλ̇ on ΓAB × (0, T ]

λ = λ̇ = 0 in Ω× {t = T}

Material equation:

−β1∇ · ∇µ

|∇µ| +
∫ T

0

(∇λ ·∇u+ u0g(t0, T )δ(Σ)∇λ · nΣ)dt = 0 in Ω

∇µ · n = 0 on ΓFS (3.4)

1

|∇µ|∇µ · n− 1

2

∫ T

0

√

ρ

µ
λu̇ dt = 0 on ΓAB

Dislocation amplitude equation:

−β2∆u0 +

∫ T

0

µg(t0, T )∇λ · nΣdt = 0 on Σ (3.5)
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Rise time equation:

−β3∆t0 +

∫ T

0

µu0
dg

dt0
∇λ · nΣdt = 0 on Σ (3.6)

Delay time equation:

−β4∆T +

∫ T

0

µu0
dg

dT
∇λ · nΣdt = 0 on Σ (3.7)

Equations (3.2)–(3.7) constitute a system of coupled nonlinear integro-partial differential
equations including the initial-boundary value state wave equation (3.2), the final-boundary
value adjoint wave equation (3.3), the material boundary value equation (3.4), and the dislo-
cation amplitude, rise time, and delay time equations (3.5)–(3.7) that are posed on Σ. These
are to be solved for the displacement u, the adjoint variable λ, the shear modulus µ, the
dislocation amplitude u0, the rise time t0, and the delay time T .

We discretize the system (3.2)–(3.7) by Galerkin finite elements in space, and explicit
central differences in time (in particular the discretizations for the state wave equation and
adjoint wave equation are the same as described in the previous section). We solve the
discretized system using the multiscale Gauss-Newton-conjugate gradient method described
in [3] and briefly reviewed here. Our solver is built from components of the PETSc library [5].
At every CG iteration, the state wave equation is solved forward in time for given material and
fault properties and their Newton increments, and the adjoint wave equation is solved back-
ward in time using the computed states and state increments, with optional use of algorithmic
checkpointing [21]. A CG iteration on the Gauss-Newton linearization of the reduced system
of material, dislocation amplitude, rise time, and delay time equations then yields CG updates
to the Newton increments. The coefficient matrix of the latter system is guaranteed to be pos-
itive definite with appropriate regularization, and an Armijo-type backtracking line search
assures global convergence [30]. The Gauss-Newton approximation provides quadratic con-
vergence for exact fit problems, and in general is rapid for small residual problems.

Since each CG iteration requires one forward and one adjoint wave propagation solu-
tion, it is essential to have a good preconditioner. We use the reduced Hessian precondi-
tioner introduced in [13, 14] and implemented in the Veltisto package, which is based on a
limited memory BFGS update [26] that has been initialized with several Frankel two-step
stationary iterations [4] on the reduced system. For large material contrasts, occasionally
the Newton method strays into negative material property territory, which destabilizes the
wave propagation solution. This is prevented through a logarithmic barrier method to enforce
non-negativity constraints [30] (which we know are non-active at the solution). One of the ne-
farious properties of the nonlinear optimization formulation of the inverse wave propagation
problem is the existence of numerous local minima, possessing a radius of Newton conver-
gence proportional to the wavelength of propagating waves. The algorithm described above is
prone to entrapment in local minima [34], and several remedies have been proposed [16, 35].
Here we appeal to multiscale grid and frequency continuation [3,15], which in our experience
circumvents the problem by keeping successively finer scale inversion estimates within the
radius of the ball of convergence.

Since the majority of the work in this algorithm involves repeated solution of forward
or backward wave equations, and since parallel scalability of the forward wave propagation
solver has already been demonstrated in Section 2.4, the crucial remaining issue is algorith-
mic scalability of the inversion algorithm. Our main interest is that the number of both linear
and nonlinear iterations grows at most weakly with problem size. Table 3.1 provides evi-
dence in the case of material field inversion that our inversion algorithm is scaling well. In
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TABLE 3.1
Algorithmic scalability of inversion algorithm for scalar 3D wave equation case. Number of nonlinear itera-

tions, total number of linear iterations, and average number of linear iterations per nonlinear iteration are shown
as a function of the number of inversion parameters, which correspond to material grid points. The wave propaga-
tion grid is fixed at 274,625 unknowns, partitioned on 64 processors of the PSC HP AlphaServer, for all material
grid sizes up to 274,625. For the 2,146,689 grid case, both wave propagation and material grids coincide, and are
partitioned onto 256 processors. Results show essentially mesh independence of nonlinear and linear iterations.

material grid nonlinear iter total linear iter avg linear iter
125 17 144 8.5
729 12 249 21.0

4,913 12 396 33.0
35,937 25 439 17.6

274,625 19 370 19.5
2,146,689 22 436 19.8

fact the number of iterations is observed to be independent of problem size, once the mesh is
sufficiently fine.

3.2. Application to antiplane ground motion inversion. In this section we illustrate
the application of the inversion algorithm to a portion of the vertical cross-section of the
Los Angeles basin in Figure 2.3, as shown at the bottom right frame in Figure 3.2a (the one
labeled Target). The vertical line in the middle bottom of the target image represents the
trace of a strike-slip fault running perpendicular to the valley, and the solid dot on it denotes
the hypocenter of an idealized earthquake source. We regard the material properties of this
cross-section and this source as the target model. In our numerical experiments, we use
waveforms synthesized from the target model on the free surface as pseudo-observed data.
First, we assume that the source is known and invert for the shear wave velocity distribution
of the geological structure. We have assumed that the material is lossless and that the density
distribution is known. The source is defined by its rupture velocity and slip function. The
rupture velocity is taken to be constant (with T , the time it takes to arrive from the hypocenter
to an arbitrary point on the fault), and the slip velocity is defined by an isosceles triangle,
with duration t0, and amplitude u0. Five percent random noise has been added artificially to
examine the effect of noise.

Figure 3.2a shows a sequence of inverted material models, corresponding to increasingly
finer inversion grids, as dictated by our multiscale algorithm, and culminating with the 257×
257 grid in the next-to-last image. The shear wave velocity is approximated on a piecewise
bilinear mesh. This inversion was performed with 64 observers distributed uniformly on
the free surface. The high fidelity of the results is noteworthy: even fine features, of the
size of a fraction of a wavelength, are accurately resolved on the finest grid. Figure 3.2b
compares results for 64 and 16 receivers. As expected, the resolution of the inverted model
for 16 receivers is not as sharp as for 64 receivers, yet it too approximates closely the target
model. The synthetics in Figure 3.2b show the velocity at one non-receiver location for the
two models, both for the initial guess and for the inverted solution. The results show that even
with just 16 receivers and for a comparison at a non-receiver location, the waveforms of the
inverted material models remain quite close to the target.

Results of the source inversion are shown in Figure 3.3. The first, middle, and right
columns show results for the initial guess, fifth iteration, and the converged solution (target
values are in red). The latter essentially coincides with the target source. Inversion for either
source or material parameters represents a major computational challenge when the forward
problem is a 3D high-resolution earthquake simulation. When both are unknown (referred to
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FIG. 3.2. (a) Stages of the multiscale inversion, starting from a homogeneous guess. The last image shows the
hypocenter and fault superposed on the target distribution. (b) Wave velocity profiles (left column) obtained using
64 receivers (top row) and 16 receivers (bottom row). Middle and right column: velocity history comparison at
a non-receiver location (location of receiver is shown in the wave velocity profiles). Initial guess is shown in the
middle column and the converged solution is in the right column. Red is target, blue is inverted result.

as the blind deconvolution problem), this problem is even more challenging.

4. Summary. The inverse problem of determining source, elastic, and attenuation pa-
rameters for complex 3D basins presents enormous computational challenges. Towards this
end, we have developed the capability to mesh and solve forward earthquake simulation prob-
lems on multiresolution hexahedral meshes that will scale to billion grid point meshes of the
LA Basin—which correspond to earthquake simulations to 2 Hz maximum frequency and
100 m/s lowest shear wave velocity—using present supercomputing resources. We have used
this capability to carry out 1 Hz simulations of the 1994 Northridge earthquake with 100
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FIG. 3.3. Source inversion: left column, initial guess; middle column, 5th iteration; right column, converged
solution. Red shows the target and blue shows the inverted results. Top row, function T (x) represents the delay time;
second row, function u0(x) represents the amplitude of the source; third row, t0(x) represents the ramp time of the
source; fourth row, displacement history comparison at a receiver location.

million grid points; our wave propagation solver sustains 1.21 teraflop/s for 4 hours on 3000
AlphaServer processors at 80% parallel efficiency.

We have presented results for material and source inversion of high-resolution models of
2D basins undergoing antiplane motion using parallel scalable inversion algorithms that over-
come many of the difficulties particular to inverse heterogeneous wave propagation problems.
Our forward simulations are among the largest unstructured mesh computations reported to
date, requiring multiple hours on thousands of processors. Yet these forward problems are but
a mere “inner iteration” of the inverse problem, which invokes the (forward and backward)
wave propagation simulations repeatedly. Even though the number of iterations taken by our
inversion algorithm is shown to be independent of the problem size, it does require over 400
total iterations for inversion of a 2.2 million parameter problem—implying over 800 wave
propagation simulations to solve the inverse problem. This places the goal of inversion of
high resolution source and basin models from records of past earthquakes among the largest
nonlinear inverse problems currently contemplated.
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