
Scalable End-to-End Parallel Supercomputing and Application to
Real-time Earthquake Modeling

Hongfeng Yu (Technical lead)‡ Tiankai Tu (Team lead)∗ Jacobo Bielak∗ Omar Ghattas†

Julio Lopez∗ Kwan-Liu Ma‡ David R. O’Hallaron∗ Leonardo Ramirez-Guzman∗

Nathan Stone§ Ricardo Taborda-Rios∗ John Urbanic§

Abstract

We demonstrate a new scalable approach to real-time mon-
itoring, visualization, and steering of massively parallel
simulations from a personal computer. The basis is an end-
to-end approach to parallel supercomputing in which all
components — meshing, partitioning, solver, and visual-
ization — are tightly coupled and execute in parallel on a
supercomputer. This approach avoids bottlenecks associated
with transfer and storage of massive simulation outputs,
thereby enabling real-time visualization and steering on
supercomputers with thousands of processors. We have
incorporated this methodology into a framework namedHer-
cules, which targets octree-based finite element simulations.
The submitted video demonstrates real-time monitoring and
steering from a laptop PC of a 1024-processor simulation
of the 1994 Northridge earthquake in Southern California.
Because this end-to-end approach does not require moving
large data over the network and is completely scalable, our
approach shows promise for overcoming the challenges of
visualization of petascale simulations.

1 Introduction

As parallel supercomputing moves beyond the realm of the
terascale and into the petascale, the size of the data generated
by a single scientific simulation can exceed hundreds of
terabytes. Beyond the challenges of efficiently executing
parallel simulations on thousands of processors lie the—
perhaps even greater—challenges of visualization and inter-
pretation of results produced by such massive simulations.
While a number of efforts have been directed at facilitating
the storage, transfer, and visualization of massive simulation
datasets, there remain significant bottlenecks associated with
this offline approach for very large-scale problems. A
more scalable solution is to visualize the simulation output
directly at simulation runtime. However, the visualization

∗Carnegie Mellon University
†The University of Texas at Austin
‡University of California, Davis
§Pittsburgh Supercomputing Center

computations must be as scalable as the simulation to make
this online approach viable.

We have developed a new approach that couples all sim-
ulation components (meshing, partitioning, solver, and vi-
sualization) tightly in a unified framework. All components
operate on a shared parallel data structure, execute in parallel
on the same set of processors, and avoid intermediary file
I/Os. We refer to this new approach asend-to-end parallel
supercomputing.

A crucial feature that facilitates scalability to thousands
of processors and billions of elements is the ability to
visualize partial differential equation (PDE) solution data
simultaneously as the PDE solver executes. Volume ren-
derings are computed online and in parallel using the same
processors that compute the PDE solution; thus, simulation
results are retrieved directly from each processor cache or
main memory for rendering. As a result, data reduction and
summarization take place instantly. Visualization images,
which are often several orders of magnitude smaller in size
than the corresponding solution fields, are sent to a remote
user via (for example) a low bandwidth TCP/IP connection.
By contrast, traditional methods use a separate visualization
cluster, which requires a sustained network bandwidth equal
to the solution output rate in order to support runtime
visualization [4].

Our approach therefore avoids the bottlenecks asso-
ciated with transferring and/or storing large volumes of
output data, and is applicable whenever the user’s ultimate
interest is visualizing the 3D volume output, as opposed
to retaining it for future analysis. However, rendering
solution datain-situ and on-the-fly presents a number of
significant computational and networking challenges. First,
how can we visualize efficiently on thousands of processors
simultaneously with the execution of the solver? Usually, vi-
sualization clusters are relatively small (8 to 128 processors).
As a result, traditional visualization algorithms involving
unstructured finite element meshes seldom scale on more
than 512 processors. Second, how can we send an image
back to a remote user? Third, how can we support runtime
user interaction? That is, when a user specifies a different
visualization configuration (for example, a new view angle),



how is the control information sent to a supercomputer,
and how can the parallel visualization algorithm adjust its
rendering and compositing schedule accordingly?

We have addressed these problems within an end-to-
end supercomputing framework namedHercules[3], which
targets octree-based finite element simulations. The break-
through new capabilities are listed below.1

• A new parallel unstructured octree mesh volume ren-
dering algorithm that scales on 1024 processors

• Runtime image delivery to a remote client computer

• Runtime remote user-controlled visualization steering

Note that in our system, volume rendering is performed
solely on a supercomputer. A client machine such as a
laptop serves only to composite the received image with a
background and render the results. When a user steers a
visualization, the controls are captured locally and sent to
a supercomputer. The heavy lifting, i.e. re-construction of a
parallel visualization communication schedule, is carried out
on the supercomputer in parallel.

We have applied the extended Hercules framework to
simulate the 1994 Northridge earthquake in California. Run-
ning the code on the Cray XT3 at the Pittsburgh Super-
computing Center (PSC), we are able to visualize seismic
body wave propagation, change view angles, adjust sampling
steps, zoom in and out of the domain, modify color maps,
and interpret the results—all concurrently with the execution
of the simulation on 1024 processors.

2 System Overview

Figure 1 shows the overall software architecture, which
consists of three main components: Hercules, PDIO, and
QuakeShow.

Hercules[3] is a finite element/octree-based end-to-end
parallel simulation framework. It generates and partitions
an unstructured hexahedral finite element mesh, solves the
governing PDEs, and volume renders the solution results,
all in parallel, tightly coupled, and built on top of the same
octree data structures. Our previous work has demonstrated
the scalability of Hercules on up to 2048 processors for a
problem with 400 million degrees of freedom.

In the context of earthquake simulations, the input to
Hercules is a material database describing the earth prop-
erties in the domain of interest and an earthquake source
description. On the PSC Cray XT3, the material database
(22 GB) is stored on the Lustre parallel file system. The
outputs are images of the propagation of seismic body waves,
in either compressed jpeg format (a few hundred kilobyte) or
uncompressed tga format (a few megabyte).

PDIO (Portals Direct I/O) [2] is a special-purpose mid-
dleware infrastructure that supports external interaction with

1The results presented in this paper are the newest extensions to
the Hercules system.

Meshing Partitioning Solving Visualizing

V
el

(m
/s

)

time

InternetInternet

Supercomputer

Laptop / Desktop

Receive Image Buffer Send Config Buffer

QuakeShow

Hercules

MPI MPI MPI MPI PDIO Lib.

PDIO Daemon
TCP

Figure 1:Extended Hercules System Architecture.

2



parallel programs running on Portals-enabled compute nodes,
as is the case on the Cray XT3.2 An application, for
instance an MPI program, calls PDIO client library functions
to communicate with PDIO daemons running on the I/O
nodes (of the same supercomputer). When a parallel process
writes to or reads from the PDIO client library, the data is
routed via the internal Portals network directly to or from a
PDIO daemon, without the intervention of other application
libraries such as MPI.

A PDIO daemon runs on an externally connected I/O
node. It receives Portals messages from clients on the
compute nodes, aggregates them into optimally-sized buffers
in memory and asynchronously routes them over the Internet
via parallel TCP/IP data streams to remote receivers. Each
process utilizes one or more multi-threaded ring buffers
accessed by Portals and TCP/IP.

QuakeShow, a client program, runs on a remote user’s
computer and communicates with a PDIO daemon using a
TCP socket. Besides receiving images and sending visual-
ization configurations, QuakeShow also blends the images
with a background, provides various user controls, and
captures mouse movements. Figure 2 and Figure 3 are two
snapshots extracted from the animation submitted along with
this paper.

In addition to the three main components described
above, we have also defined anapplication communication
protocol to support message exchanges (images and visual-
ization configurations) between a client machine (QuakeShow)
and a supercomputer (Hercules). PDIO delivers messages on
behalf of both sides without interpreting the semantics. This
design choice has not only simplified the implementation
of the PDIO library and daemon, but also guaranteed the
robustness of the whole system.

3 Enabling Techniques

This section briefly describes the enabling techniques that
have made very large scale runtime visualization steering
possible. We highlight important new features and omit the
technical details, which are described in [3].

3.1 A New Parallel Volume Rendering
Algorithm

The original visualization algorithm in Hercules renders vol-
ume using a parallel splatting method. It supports adaptive
rendering based on the level of details specified. But its
Achilles’ heel is that it takes several seconds to several min-
utes to build a parallel visualization communication schedule
due to an inherently sequential component that cannot be
removed.

To overcome this obstacle and enable real-time user in-
teraction, we have designed and implemented a new parallel

2Portals is a low level communication layer on top of which MPI
is implemented.

ray-casting algorithm for volume rendering. Similar to the
original one, our new algorithm supports adaptive rendering.
Unlike the original one, the new algorithm is able to build
(and rebuild when required by the user) a communication
schedule in parallel much faster.3 The key idea is to make
use of the underlying distributed octree structure to perform
efficient parallel sorting. As a result of this improvement, we
are able to change view angles, adjust sampling steps, and
zoom in and out, without noticing any interruptions of the
incoming image stream when running large-scale problems

Another improvement in the new algorithm is a better
compositing scheme that not only balances the workload of
compositing but also reduces network traffic.4

3.2 PDIO Read

When initially developed in 2005 to support streaming data
out of a supercomputer such as Cray XT3, PDIO supported
only write operations. That is, an MPI program can call a
PDIO write function (pdio write) to send data to a PDIO
daemon running on an I/O node, which in turn sends data
to a remote user. To support runtime user steering, we have
augmented the PDIO library and daemon to support the read
function (pdio read).

Whenever Hercules finishes sending an image by calling
pdio write, it attempts to read a new visualization config-
uration by callingpdio read. A PDIO daemon checks the
first cached message (stored in a FIFO) received from the
client side. If there is no message available, the return value
of pdio read is 0, indicating there is no new configuration
available. If the message size does not match the requested
pdio read size, an error has occurred in the application
communication protocol between QuakeShow and Hercules.
The message is discarded and an error code is reported to
Hercules. If the sizes match, the first cached message is
returned to Hercules. In case there are multiple cached
incoming messages, Hercules drains the message queue
(maintained by the PDIO daemon on a I/O node) to obtain
the most recent visualization configuration by repeatedly
callingpdio read until it returns 0.

The advantage of this retrieval procedure is that we
can decouple the execution of Hercules from QuakeShow
and the delay of TCP/IP network transmission. A lock-
step communication protocol (i.e. one image out, one vi-
sualization configuration in) could stop the execution on
the supercomputer if a client machine is slow or if there is
congestion in the TCP/IP network.

3Note that the parallel communication schedule used by the
visualization algorithm is unrelated to the one used by the solver.

4Here, we are referring to the traffic on a supercomputer’s
internal interconnection network (i.e. a 3D torus network) rather
than the traffic on the public TCP/IP network.

3



Figure 2:Snapshot One of QuakeShow during an earthquake simulation.

Figure 3:Snapshot Two of QuakeShow during an earthquake simulation.

4



Frequency 0.23 Hz 0.5 Hz 0.75 Hz 1 Hz 1.5 Hz 2 Hz
Elements 6.61E+5 9.92E+6 3.13E+7 1.14E+8 4.62E+8 1.22E+9
Nodes 8.11E+5 1.13E+7 3.57E+7 1.34E+8 5.34E+8 1.37E+9
Max leaf level 11 13 13 14 14 15
Min leaf level 6 7 8 8 9 9

Figure 4: Summary of the meshes of different resolutions for earthquake wave-propagation simulations.

3.3 QuakeShow

QuakeShow is instrumental for providing a powerful user
interface. A user interacts with QuakeShow through mouse
movements and clicks. Each click results in a request that is
either serviced locally or sent to the remote supercomputer
(a PDIO daemon). Local service renders the geographical
context of multi-resolution terrain data, cities, borders, and
highways. Remote requests are triggered whenever a user
changes view angles, adjusts sampling steps, zooms in or
out, or modifies the transfer function. QuakeShow does not
send a new visualization configuration to the PDIO daemon
until it receives an image.

The current implementation of QuakeShow is not multi-
threaded. As a result, a user may experience some jitter
while moving the mouse at the moment an image is being
received.

4 Scientific Applications

The extended Hercules framework has been used to execute
earthquake simulations that model seismic wave propagation
during historical and postulated earthquakes in the Greater
Los Angeles Basin, which comprises a 3D volume of100×
100 × 37.5 kilometers. The earth property model is the
Southern California Earthquake Center 3D community ve-
locity model [1] (Version 3, 2002).

Figure 4 summarizes characteristics of the underlying
octree meshes for a series of earthquake simulations we have
run that are characterized by increasing maximum resolved
seismic frequency [3]. The meshes range in size from 0.6
million to over 1.2 billion elements. Since the earth is highly
heterogeneous, the largest elements are 64 times larger than
the smallest ones (the difference between “max leaf level”
and “min leaf level”).

The submitted animation was generated by a screen
capturing program running on a laptop computer (1.7 GHz
Pentium M, 1 GB memory) where QuakeShow was running.
No simulation data was pre-processed or stored before the
screen-capturing program started. In other words, the ani-
mation is equivalent to a live demo.

The animation shows the first 10 minutes of executing
Hercules on 1024 processors of the PSC Cray XT3 to
simulate the 1994 Northridge earthquake at 0.5 Hz maximum
resolved seismic frequency. The number of elements and
nodes is 9.9 million and 11.3 million, respectively, as shown

in Figure 4. The delta time (i.e. the duration of each sim-
ulation time step) to ensure numerical stability is 0.008719
(computed automatically by Hercules according to the ma-
terial properties and resulting wave velocities). The entire
duration of the simulated earthquake is 80 seconds, which
translates to 9176 time steps. Visualization of solutions
occurs every 10 time steps. If we had stored the necessary
output for offline volume rendering instead of visualizing at
runtime, the combined size of output files would have been
250 GB (= 11.3 million mesh nodes× 3 doubles per node
per visualization step× 917 visualization steps).

Physical phenomena that are difficult to identify have
been visualized effectively. For example, Figure 2 shows
amplification of seismic waves in the San Fernando Valley,
where the soil is soft (red waves). Figure 3 illustrates
the strong residual seismic energy trapped in both the San
Fernando Valley and the Los Angeles Basin, while the
seismic waves in the nearby Santa Monica Mountains and
San Gabriel Mountains have dissipated: a validation that
sedimentary basins trap seismic energy during strong earth-
quakes. Among many other interesting discoveries is the
channeling effect of the mountains: the seismic waves travel
along the Santa Monica Mountains and into the Los Angeles
Basin. (See the animation for details.)

5 Conclusions

We have developed a novel end-to-end scalable methodology
for construction, execution, and visualization of large-scale
parallel simulations. The Hercules system has enabled real-
time, on-the-fly visualization and steering of earthquake sim-
ulations on supercomputers with thousands of processors.
While some of the techniques presented in this paper are
specific to the target class of octree-based discretization
methods, the design principle and the overall software ar-
chitecture are applicable to a wider class of numerical PDE
solvers.

We have demonstrated the feasibility and advantages
of monitoring, analyzing, and steering the outputs of very
large-scale parallel simulations at runtime from a personal
computer, thereby avoiding networking and storage bottle-
necks associated with massive datasets. Because this end-
to-end approach does not require moving large data over
the network and is completely scalable, it points the way to
integrated simulation and visualization on tens of thousands
of CPUs and offers a promising approach to overcoming the
challenges of visualization of petascale simulations.

5



Acknowledgments

This work is sponsored in part by NSF under grant IIS-
0429334, by a subcontract from the Southern California
Earthquake Center (SCEC) as part of NSF ITR EAR-0122464,
by NSF under grant ITR EAR-0326449, by DOE under the
SciDAC TOPS center grant DE-FC02-01ER25477, and by
a grant from Intel. Supercomputing time at the Pittsburgh
Supercomputing Center is supported under NSF TeraGrid
grant MCA04N026P. We would like to thank our SCEC
CME partners Tom Jordan and Phil Maechling for their
support and help. Special thanks to Paul Nowoczynski,
Jay R. Scott and Chad Vizino at PSC for their outstanding
technical support.

References

[1] H. M AGISTRALE, S. DAY, R. CLAYTON , AND R. GRAVES,
The SCEC Southern California reference three-dimensional
seismic velocity model version 2, Bulletin of the Seismological
Soceity of America, (2000).

[2] N. T. B. STONE, D. BALOG, B. GILL , B. JOHAN-
SON, J. MARSTELLER, P. NOWOCZYNSKI, D. PORTER,
R. REDDY, J. R. SCOTT, D. SIMMEL , J. SOMMERFIELD,
K. VARGO, AND C. VIZINO, Pdio: High-performance remote
file i/o for portals enabled compute nodes, in Proceedings of
the 2006 Conference on Parallel and Distributed Processing
Techniques and Applications, Las Vegas, NV, June 2006.

[3] T. TU, H. YU, L. RAMIREZ-GUZMAN , J. BIELAK , O. GHAT-
TAS, K.-L. M A , AND D. R. O’HALLARON , From mesh gen-
eration to scientific visualization — an end-to-end approach to
parallel supercomputing, in SC2006, Tampa, FL, November
2006.

[4] P. R. WOODWARD, D. H. PORTER, AND A. I YER, Initial
experiences with grid-based volume visualization of fluid flow
simulations on pc clusters, in Proceedings of Visualization and
Data Analysis 2005 (VDA2005), San Jose, CA, January 2005.

6


