Parallel Preconditioners for KKT Systems Arising in
Optimal Control of Viscous Incompressible Flows*

G. Biros? and O. Ghattas?®

2Computational Mechanics Laboratory
Carnegie Mellon University, Pittsburgh PA, 15213, USA
biros@cs.cmu.edu, oghattas@cs.cmu.edu

1. Introduction

Recently, interest has increased in model-based optimal flow control of viscous fluids,
that is the determination of optimal values of parameters for systems governed by the fluid
dynamics equations. For example, the objective could be minimizing drag on a solid body,
and the controls might consist of velocities or tractions on some part of the boundary or
of the shape of the boundary itself. Such problems are among the most computationally
challenging optimization problems. Their complexity stems from their being constrained
by numerical approximations of the fluid equations, commonly the Navier-Stokes or the
Euler equations. These constraints are highly nonlinear and can number in the millions
for typical systems of industrial interest.

The current state-of-the-art for solving such flow-constrained optimization problems
is reduced sequential quadratic programming (RSQP) methods. General mathematical
analysis of these methods [3,9] as well as CFD-related research [5,7] have appeared. In
addition, parallel implementations of RSQP methods exhibiting high parallel efficiency
and good scalability have been developed [6,10]. These methods essentially project the
optimization problem onto the space of control variables (thereby eliminating the flow
variables), and then solve the resulting reduced system using a quasi-Newton method.
The advantage of such an approach is that only two linearized flow problems need to
be solved at each iteration. However, the convergence of quasi-Newton based RSQP
methods (QN-RSQP) deteriorates as the number of control variables increases, rendering
large-scale problems intractable.

The convergence can often be made independent of the number of control variables m
by using a Newton—as opposed to quasi-Newton—RSQP method. However, N-RSQP
requires m linearized forward solves per iteration. The m linear systems share the same
coefficient matrix; their right-hand sides are derivatives of the state equations with respect

*This work is a part of the Terascale Algorithms for Optimization of Simulations (TAOS) project at
CMU, with support from NASA grant NAG-1-2090, NSF grant ECS-9732301 (under the NSF/Sandia
Life Cycle Engineering Program), and the Pennsylvania Infrastructure Technology Alliance. Computing
services were provided under grant number BCS-960001P from the Pittsburgh Supercomputing Center,
which is supported by several federal agencies, the Commonwealth of Pennsylvania and private industry.

to each control variable. LU factorization of the linear system would be ideal here, but is
not viable for the large, sparse, three-dimensional, multicomponent forward problems we
target. Instead, iterative solvers must be used, and N-RSQP’s need for m forward solves
per optimization iteration is unacceptable for large m.

The need for forward solutions results from the decomposition into state and control
spaces (range and null spaces of the state equations), and this can be avoided by remaining
in the full space of combined state and control variables. This leaves of course the question
of how to solve the resulting “Karush-Kuhn-Tucker” (KKT) full space system. For the
large, sparse problems contemplated, there is no choice but a Krylov method appropriate
for symmetric indefinite systems. How to precondition the KK'T matrix within the Krylov
solver remains an important challenge, and is crucial for the viability of large-scale full
space optimization methods.

In this paper we propose a preconditioner for the KKT system based on a reduced
space quasi-Newton algorithm. Battermann and Heinkenschloss [2] have suggested a
preconditioner that is also motivated by reduced methods; the present one can be thought
of as a generalization of their method. As in reduced quasi-Newton algorithms, the new
preconditioner requires just two linearized flow solves per iteration, but permits the fast
convergence associated with full Newton methods. Furthermore, the two flow solves
can be approximate, for example using any appropriate flow preconditioner. Finally, the
resulting full space SQP parallelizes and scales as well as the flow solver itself. Our method
is inspired by the domain-decomposed Schur complement algorithms. In these techniques,
reduction onto the interface space requires exact subdomain solves, so one often prefers to
iterate within the full space while using a preconditioner based on approximate subdomain
solution [8]. Here, decomposition is performed into states and controls, as opposed to
subdomain and interface spaces.

Below we describe reduced and full space SQP methods and the proposed reduced
space-based KK'T' preconditioner. We also give some performance results on a Cray T3E
for a model Stokes flow problem. Our implementation is based on the PETSc library for
PDE solution [1], and makes use of PETSc domain-decomposition preconditioners for the
approximate flow solves.

2. Reduced SQP methods

We begin with a typical discretized constrained optimization problem,
mai:n f(x) subject to c(x) =0, (1)

where x are the optimization variables, f is the objective function and ¢ are the con-
straints, which in our context are discretized flow equations. Using the Lagrangian £, one
can derive first and higher order optimality conditions. The Lagrangian is defined by

L(z,) = f(z) + Ae(), 2)

and the first order optimality conditions are'

{ giﬁ }:{ awf+(cawc)T>\ }: 0. (3)

This expression represents a system of nonlinear equations. Sequential quadratic pro-
gramming can be viewed as Newton’s method for the first order optimality conditions.
Customarily, the Jacobian of this system is called the Karush-Kuhn-Tucker (KKT) matrix
of the optimization problem. To simplify the notation further, let us define:

A =0,c Jacobian of the constraints,
W =8, f+ >, \i0,.c; Hessian of the Lagrangian, (4)
g =0.f Gradient of the objective function.

A Newton step on the optimality conditions (3) is given by

T n ey e WA e

where p, and p, are the updates in and A from current to next iterations and A, is
the updated Lagrange multiplier. To exploit structure of the flow constraints, it is useful
to induce a partition of the optimization variables into state x; and control (or decision)
variables x4. The above KKT system can be partitioned logically as follows:

WSS W‘}d Af ps gs
Wi Wag Af Dy =—94 94 (- (6)
A, A, O AL c

The current practice is to avoid solution of the full KK'T matrix by a reduction to a
lower dimension problem corresponding in the control variables. Such so-called reduced
space methods eliminate the linearized state constraints and variables, and then solve an
unconstrained optimization problem in the resulting control space. RSQP can be derived
by a block elimination on the KK'T system: Given p,, solve the last block of equations for
P, then solve the first to find Ay, and finally solve the middle one for p,. For convenience
let us define

W, = ATA"W,, A Ay — ATA"W,y — Wy, AT Ay + Wy, (7)
the reduced Hessian of the Lagrangian; B,, its quasi-Newton approximation; and
9.=9,- AjA" g, 8)

the reduced gradient of the objective function. The resulting algorithms for Newton
(N-RSQP) and quasi-Newton (QN-RSQP) variants of RSQP are:

1. Imitialize: Choose x,, x4

LAll vectors and matrices depend on the optimization variables « or the Lagrange multipliers A or both.
For clarity, we suppress this dependence.

2. Control step: solve for p, from

W,p,=—g,+ Wy — ATA; W) A 'e N-RSQP 9)
B.p;=—9. QN-RSQP

3. State step: solve for p, from
Asp, = —Aap,— (10)

4. Adjoint step: solve for A, from

AZWA-F = - Ssps - Wsdpd - gs N_R‘SQP (11)
ATX =g, QN-RSQP

5. Update:
rys =5+ D

(12)
Ly = Tq + pd.

The quasi-Newton method defined here is a variant in which second order terms are
dropped from the right-hand sides of the control and adjoint steps, at the expense of a
reduction from one-step to two-step superlinear convergence [3]. An important advantage
of this quasi-Newton method is that only two linearized flow problems need to be solved
at each iteration, as opposed to the m needed by Newton’s method in constructing A;lAd
as can been seen in (7). Furthermore, no second derivatives are necessary, since a quasi-
Newton approximation is made to the reduced Hessian. Finally, it can be shown that this
method parallelizes very efficiently [10]. Unfortunately, the number of iterations required
for a quasi-Newton method to converge increases with the number of control variables,
rendering large-scale problems intractable. Additional processors will not help since the
bottleneck is in the iteration dimension.

In Newton’s method, the convergence is often independent of the number of control
variables m. However, the necessary m flow solves per iteration preclude its use, par-
ticularly on a parallel machine, for which iterative methods will be used for the forward
solves. These solves can be avoided by remaining in the full space of flow and control
variables, since it is the reduction onto the control space that necessitates the flow solves.
Nevertheless, this also presents difficulties: exploitation of structure is much more diffi-
cult with the KKT matrix, which is over twice the size, highly indefinite, and contains
scattered blocks, each having mesh-based sparsity structure.

3. Full space SQP with reduced space preconditioner

In this section we present a new preconditioner for KKT systems arising in full space
SQP, that is based on reduced space quasi-Newton algorithms. This recovers the small
(constant) number of linearized flow solves per iteration of the quasi-Newton method,
but permits the fast convergence associated with Newton methods. The preconditioner
retains the structure-exploiting properties of RSQP, and parallelizes as well.

To motivate the derivation, let us return to the reduced Newton method. As we stated
before, N-RSQP is equivalent to solving with a permuted block-LU factorization of the
KKT matrix; this factorization can be also viewed as a Schur-complement reduction for
the control space step p,;. The unpermuted form is given by

Ws‘s Wsd Az WssA;1 0 I As Ad 0
Wy Wy A | =| WAl T ATAT 0 W, o0 |, (13)
A, A; O I 0 0 0o W, Al

where W, :== W,; — VVSSAs_lAd. This block factorization suggests its use as a precondi-
tioner by replacing W, with B,. The resulting preconditioned KKT matrix,

I o0 o
0 W,B;' 0 (14)
o o I

would be the identity if B, were equal to W,.

There are two main differences between this preconditioner and the one suggested in [2]:
the first is that this preconditioner is based on an exact factorization of the KKT matrix,
i.e. it is indefinite. The second one is that it incorporates BFGS as a sub-preconditioner
to deflate the reduced Hessian. The preconditioned KKT matrix is positive definite,
with 2n unit eigenvalues and the remaining m determined by the effectiveness of BFGS.
However, we still require four forward solves per iteration. One way to restore the two
solves per iteration of QN-RSQP is to, in addition, drop second order information from
the preconditioner, exactly as one often does when going from N-RSQP to QN-RSQP. A
further simplification of the preconditioner is to replace the exact forward operator A, by
an approximation A, which could be for example any appropriate flow preconditioner.
With these changes, no forward solves need to be performed at each KKT iteration.
Thus, the work per KKT iteration becomes linear in the state variable dimension (e.g.
when A, is a constant-fill domain decomposition approximation). Furthermore, when B,
is based on a limited-memory quasi-Newton update (as in our implementation), the work
per KKT iteration is also linear in the control variable dimension. With an “optimal”
forward preconditioner and the assumption that the B, approximation is a good one, one
would expect the number of KKT (inner) iterations to be insensitive to the problem size.
Mesh-independence of SQP (outer) iterations would then lead to scalability with respect
to both state and control variables. To examine the effects of discarding the Hessian terms
and approximating the forward solver, we define two different preconditioners:

e Preconditioner I: W, = B,, all of the Hessian terms in (13) discarded
2 (linearized) solves/iteration

Preconditioner Preconditioned KKT matrix
00 I A, A; O I 0 0
0 I A¥AT 0 B, 0 |, W/ A" W.B;' 0 (15)
I o 0 0 o AT WAl W,B;' I

e Preconditioner II: W, = B,, A, = A,, Hessian terms retained in (13)
no forward solves, E, := (A, ! — ;1_1), I, = ASAS_I

S

Preconditioner Preconditioned KKT matrix

W,A," 0 I A, A, 0 I, O(E,) 0 1 g
WiA,' I ATA" || 0 B. 0 | | OE,) OE,)+W,B O(E,)
I 0 o0 o W, A O(E,) O(E,) I7

4. Results on an optimal flow control problem

The preconditioner was tested on a model quadratic programming problem (QP), that
of a 3D interior Stokes flow boundary control problem. The objective is to minimize the
L? norm of the velocity error given a prescribed velocity field, and the constraints are the
Stokes equations:

minimize % /Q (Uexact — u)? dQ

subject to:

—vAu+Vp=f, in Q (17)
V-u=0, in

U = Uexact; ON I'/Teontrol

U =uUq, on Leopprol

Here, uexact is taken as a Poiseuille flow solution in a pipe, and the control variables
correspond to boundary velocities on the circumferential surface of the pipe. We discretize
by the Galerkin finite element method, using tetrahedral Taylor-Hood elements. The
minimum residual method (MINRES) is used for solving the resulting linear flow equations
whenever A" is needed. To precondition the flow system, we apply a two-block diagonal
matrix where the two blocks are domain decomposition approximations of the discrete
Laplacian and discrete mass matrices, respectively. Our code is built on top of the PETSc
library [1] and the domain decomposition approximations we use are PETSc’s block-Jacobi
preconditioners with local ILU(0).

Both reduced and full space algorithms for the control problem have been implemented.
Since the preconditioner we propose is indefinite, we use a quasi minimum residual (QMR)
method that supports indefinite preconditioners [4]. The reduced Hessian is approximated
by a limited-memory BFGS formula? in which we update the inverse of B,. In this
way, only a limited number of vectors need to be retained and both the update and the
application of B;l involve only vector inner products.

Numerical experiments that include scalability and performance assessment on a Cray
T3E and comparisons with RSQP have yielded very encouraging results. A comparison
between the different methods is presented in Table 1. A simple scalability analysis, de-
picted in Table 2, shows very good efficiency with respect to the optimization algorithm
and the parallel implementation. On the other hand, the algorithmic efficiency of the for-
ward preconditioner is not very good; we intend to remedy this with a more sophisticated
preconditioner for A;. We are extending the implementation to encompass Navier-Stokes
flows. Since the problem is no longer a QP, issues of robustness and global convergence
become crucial. We believe that a hybrid SQP method that combines QN-RSQP far from

2This is done only in QN-RSQP. For a QP problem, full Newton takes one iteration to converge so
N-FSQP cannot create curvature information for B,. We have set B, = I in the KKT preconditioner.

Table 1

Performance of implementations of reduced and full-space SQP methods for a viscous flow optimal
boundary control problem, as a function of increasing number of state and control variables and number
of processors. Here, precond is the KKT preconditioner; N or QN iter is the number of optimization
iterations; || g, || is the Euclidean norm of the reduced gradient; and time is wall-clock hours on the
Pittsburgh Supercomputing Center’s Cray T3E-900. To prevent long execution times for QN-RSQP, the
algorithm was terminated for the first four cases at 200 iterations, and for the last at 100 iterations.
Similarly, N-FSQP was terminated at 500,000 KKT iterations for the two largest problems. In contrast,
both preconditioned N-FSQP methods were allowed to completely converge to a reduced gradient norm of
107% in all cases. For this reason, the true performance of preconditioned N-FSQP is better than depicted
in the table. Even with the more stringent tolerance, the new preconditioner improves wall-clock time
by a factor of 10 from QN-RSQP.

states controls method precond N or QN iter KKT iter | g,| time

21,000 3900 QN-RSQP 200 — 1x10" 36

(4 PEs) N-FSQP none 1 114,000 9x10°% 25
N-FSQP I 1 25 9x10°% 1.2

N-FSQP II 1 3,200 9x10°% 0.3

43,000 4800 QN-RSQP — 200 — 4x10* 81

(8 PEs) N-FSQP none 1 198,000 9x107% 4.4
N-FSQP I 1 29 9x10°% 1.7

N-FSQP II 1 5,500 9x107% 0.7

86,000 6400 QN-RSQP 200 — 2x10° 128

(16 PEs) N-FSQP none 1 376,000 9x107% 9.0
N-FSQP I 1 28 9x107% 24

N-FSQP I 1 8200 9x10°% 1.0

167,000 12,700 QN-RSQP — 200 — 3x107°% 184
(32 PEs) N-FSQP none 1 500,000 8x 1075 12.3
N-FSQP I 1 27 9x10° 27

N-FSQP i 1 11,100 9x107° 1.3

332,000 23500 QN-RSQP 100 — 9x10° 11.0
(64 PEs) N-FSQP none 1 500,000 4 x 10™* 13.0
N-FSQP I 1 28 9x10° 3.1

N-FSQP I 1 14900 9x10°¢ 1.7

Table 2

Isogranular scalability results for N-FSQP with Preconditioner I. Per processor Mflop rates are average
(across PEs) sustained Mflop/s. Implementation efficiency (impl eff) is based on Mflop rate; optimization
algorithmic efficiency (opt eff) is based on number of optimization iterations; forward solver algorithmic
efficiency (forw eff) is deduced; overall efficiency (overall eff) is based on execution time, and is product
of all three.

PEs Mflop/s/PE Mflop/s 1impl eff opt eff forw eff overall eff

4 41.5 163 1.00 1.00 1.00 1.00
8 39.7 308 0.95 0.86 0.84 0.68
16 38.8 603 0.92 0.89 0.62 0.51
32 37.2 1130 0.87 0.93 0.55 0.45

64 36.8 2212 0.85 0.89 0.52 0.39

the minimum and full space N-FSQP (preconditioned by RSQP) close to the minimum
will prove to be robust and powerful. The order-of-magnitude improvement in execution
time and high parallel efficiency observed for the Stokes flow control problem encourage
further development and application of the new KKT preconditioner.

Acknowledgments

We thank the authors of PETSc, Satish Balay, Bill Gropp, Lois Mclnnes, and Barry
Smith of Argonne National Lab. We also thank David Keyes of ICASE/Old Dominion
University, David Young of Boeing, and the other members of the TAOS project—Roscoe
Bartlett, Larry Biegler, Greg Itle and Ivan Malcevi¢—for their useful comments.

REFERENCES

1. S. Balay, W. D. Gropp, L. C. Mclnnes, and B. F. Smith. PETSc home page.
http://www.mcs.anl.gov/petsc, 1999.

2. A. Battermann and M. Heinkenschloss. Preconditioners for Karush-Kuhn-Tucker
matrices arising in the optimal control of distributed systems. In W. Desch, F. Kappel,
and K. Kunisch, editors, Optimal control of partial differential equations, volume 126
of International Series of Numerical Mathematics, pages 15-32. Birkhauser Verlag,
1998.

3. L. T. Biegler, J. Nocedal, and C. Schmid. A reduced Hessian method for large-scale
constrained optimization. SIAM Journal on Optimization, 5:314-347, 1995.

4. R.W. Freund and N. M. Nachtigal. An implementation of the QMR method based on
coupled two-term recurrences. SIAM Journal of Scientific Computing, 15(2):313-337,
March 1994.

5. O. Ghattas and J.-H. Bark. Optimal control of two- and three-dimensional incom-
pressible Navier-Stokes flows. Journal of Computational Physics, 136:231-244, 1997.

6. O. Ghattas and C. E. Orozco. A parallel reduced Hessian SQP method for shape
optimization. In N. Alexandrov and M. Hussaini, editors, Multidisciplinary Design
Optimization: State-of-the-Art, pages 133—-152. SIAM, 1997.

7. M. Heinkenschloss. Formulation and analysis of a sequential quadratic programming
method for the optimal Dirichlet boundary control of Navier-Stokes flow. In W. W.
Hager and P. M. Pardalos, editors, Optimal Control: Theory, Algorithms, and Appli-
cations, pages 178-203. Kluwer Academic Publishers B.V., 1998.

8. D. E. Keyes and W. D. Gropp. A comparison of domain decomposition techniques for
elliptic partial differential equations and their parallel implementation. SIAM Journal
on Scientific and Statistical Computing, 8(2):S166-S202, March 1987.

9. K. Kunisch and E. W. Sachs. Reduced SQP methods for parameter identification
problems. SIAM Journal on Numerical Analysis, 29(6):1793-1820, December 1992.

10. 1. Malcevi¢. Large-scale unstructured mesh shape optimization on parallel computers.
Master’s thesis, Carnegie Mellon University, 1997.

