SCALABLE PARALLEL OCTREE MESHING FOR TERASCALE APPLICATIONS
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Abstract. This paper presents a new methodology for generating and adapting octree meshes for terascale applications. Our
approach combines existing methods, such as parallel octree decomposition and space-filling curves, with a set of new methods that
address the special needs of parallel octree meshing. We have implemented these techniques in a parallel meshing tool called Octor.
Performance evaluations on up to 2,000 processors show that Octor has good isogranular scalability, fixed-size scalability, and absolute
running time. Octor also provides a novel data access interface to parallel PDE solvers and parallel visualization pipelines, making it
possible to develop tightly coupled end-to-end finite element simulations on terascale systems.

1. Introduction. The emergence of terascale computing has created unprecedented new opportunities
for scientists and engineers to simulate complex physical phenomena on a larger scale and at a higher res-
olution than heretofore possible. This trend has introduced new challenges to applications, algorithms, and
systems software. In particular, a significant challenge for terascale finite element simulations is how to gen-
erate and adapt high-resolution unstructured meshes with billions of nodes and elements, and how to deliver
such meshes to the processors of the terascale system.

A typical approach for preparing a finite element mesh for simulation is to first generate a large mesh
structure offline on a server [29, 30], and then upload the mesh to the supercomputer, where additional steps
such as mesh partitioning [18] and data redistribution are performed. The result is a series of large time-
consuming file transfers and disk 1/0 that consume large amounts of network and storage resources while
contributing nothing to the applications that will be using the mesh structure. Further, since the meshes are
generated offline on a server, the offline algorithm is unable to adapt the mesh dynamically at runtime. We
propose a better approach where the meshes are generated in situ, on the same processors where they will
later be used by applications such as finite element solvers and visualization pipelines.

In this paper, we describe a new methodology for parallel octree meshing for terascale applications. At
a first glance, it may appear that parallel octree meshing is simply a direct application of the well-known
parallel octree method. In fact, parallel octree meshing is fundamentally different from other parallel octree
applications in that it must manipulate the vertices (corners) of the octants, which correspond to the mesh
nodes. This is required to support finite element simulations, which associate unknowns to mesh nodes
and then solve the resulting linear system at these nodes. Complicated correlations between octants and
vertices and between vertices and vertices, either on the same processor or on different processors, must all
be identified and tracked. Thus, parallel octree meshing presents a set of new problems that do not exist in
other parallel octree applications.

Our work builds on a foundation of previous work on parallel octrees [32, 27, 3, 13, 34, 9], mesh gen-
eration [5, 26, 22, 6, 13, 12, 17, 7], parallel adaptive mesh refinement [1, 8, 19, 33], parallel adaptive finite
element methods [16, 23] and space-filling curves [4, 14]. To address the special requirements of parallel
octree meshing, we have developed a set of new algorithms and techniques that include: (1) A new algorithm
called parallel prioritized ripple propagation that balances an octree efficiently; (2) A sophisticated mem-
ory management scheme that facilitates data migration between processors; (3) A new method of extracting
parallel mesh structures that delivers mesh data directly to solvers; and (4) A novel data access interface that
allows solvers or visualizers to easily interact with the mesher.

We have implemented our methodology within a new parallel meshing tool called Octor. Performance
evaluations show that Octor has good isogranular scalability, good fixed-size scalability, and good absolute
running time. Roughly speaking, the runtime increases only logarithmically with the problem size (as mea-
sured by the number of mesh elements).

To our knowledge, Octor is the first parallel meshing tool that is capable of both generating massive
unstructured meshes statically (that is, before a solver starts running) on thousands of processors, and sup-
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porting dynamic mesh adaptation (that is, while a solver is still executing). Furthermore, it is the first parallel
meshing tool that supports tight coupling with other components downstream in the simulation process, thus
making it possible to develop terascale end-to-end finite element simulations [31] without the overheads of
intermediate file transfers and disk 1/O.

We have run Octor on Lemieux, the HP AlphaServer system at the Pittsburgh Supercomputing Center, to
generate unstructured finite element meshes for simulating the 1994 Northridge earthquake in the Greater Los
Angeles Basin. The largest mesh, with 1.22 billion elements and 1.37 billion nodes, resolves seismic wave
frequencies up to 2Hz. The running time to generate this mesh on 2,000 processors is 333 seconds. Given
that the execution time of a highly efficient seismic wave propagation solver [2] would be more than 60 hours
on the same 2,000 PEs for a typical 80 second earthquake simulation, the meshing time is inconsequential.

The rest of the paper describes the design, implementation and evaluation of Octor. Section 2 provides
the background of octree meshing. Section 3 briefly discusses related work. Section 4 presents an overview
of the design of Octor. Section 5 explains the algorithm and implementation details. Section 6 presents the
performance evaluation of Octor.

2. Background. Among the different types of finite element meshes, octree-based hexahedral meshes
provide a trade-off between modeling capability and simplicity. On the one hand, octree meshes provide
multiresolution capability by local adaptation. On the other hand, octree meshes simplify the treatment of
geometry and boundaries by spatial approximation. Octree mesh methods are employed in at least three ways.
(1) For PDEs posed in simple domains characterized by highly heterogeneous media in which solution length
scales are known a priori (such as in linear wave propagation), octree meshes that resolve local solution
features can be generated up front. (2) For PDEs in simple domains having solution features that are known
only upon solution of the PDEs, octree meshes — driven by solution error estimates — can be adapted
dynamically to track evolving fronts and sharp features at runtime (for example to capture shocks). (3) For
PDEs posed on complex domains, octrees meshes in combination with special numerical techniques (such as
fictitious domain, embedded boundary, or extended finite element methods) can be used to control geometry
approximation errors by adapting the octree mesh in regions of high geometric variability, either a priori
for fixed geometries, or at runtime for evolving geometries. Large-scale examples of a priori adapted octree
mesh generation can be found in seismic wave propagation modeling [20], while octree mesh methods for
compressible flow around complex aircraft configurations provides an excellent example of geometry- and
solution-driven dynamic adaptivity [35].

Conceptually, generating or adapting an octree-based hexahedral mesh is straightforward. As shown in
Figure 2.1, a problem domain is first refined or coarsened recursively using an octree. We require that two
adjacent octants sharing an edge of a face should not differ in edge size by a factor of 2. This constraint is often
referred to as the balance condition or, more intuitively, 2-to-1 constraint. Then, octants are mapped to mesh
elements and vertices are mapped to mesh nodes. The nodes hanging at the midpoint of an edge or the center
of the face of some element (due to the 2-to-1 constraint) are identified as dangling nodes. The remaining
nodes are anchored nodes. For conforming finite element methods, each dangling node is dependent on the
anchored nodes at the endpoints of the edge or the face on which it is hanging through an explicit algebraic
constraint. Explicit correlations between dangling nodes and anchored nodes are established.

3. Related work. Parallel octree structures have been successfully applied in many areas, especially
in the area of N-body simulations [32, 27, 3, 34]. Unlike in octree meshing, these applications do not need
to manipulate the vertices of the octants (cells). Nor is it necessary to enforce the balance condition on the
octree.

In the mesh generation area, [5, 26, 22] present sequential algorithms that use a quadtree or octree to
partition a 2D or 3D point set and then generate triangular or tetrahedral meshes by “warping” the vertices
of the leaf octant. [25] presents another sequential algorithm that also uses an octree to partition a domain
but converts the leaf octants to hexahedral meshes. [6] introduces a PRAM model of parallelizing quadtree-
based triangular mesh generation. [13, 11, 7] present techniques for parallel tetrahedral mesh generation.
Most parallel mesh generators, though, run on 32 or 64 processors. To our knowledge, none has run on more
than 128 processors. However, it should be noted that generating geometry-conforming 3D meshes (either
Delaunay or non-Delaunay) in parallel is a very difficult problem and is being actively researched [10].
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F1G. 2.1. Octree-based hexahedral meshes. (a) Octree domain decomposition. (We use a 2D quadtree to illustrate concepts, but
all techniques are designed and implemented for 3D cases.) (b) Octants map to elements and vertices map to mesh nodes. The dark
colored dots represent the anchored nodes and the light colored dots represent the dangling nodes. The dashed arrows represent the
explicit correlations between dangling nodes and anchored nodes. (c) An example 3D octree mesh.

For parallel mesh adaptation, there are two popular methods: adaptive mesh refinement (AMR) [1, 8,
19, 33] and adaptive finite elements [15, 16, 23]. Both methods start with an initial, coarse mesh, and, as the
numerical calculation proceeds, adapt the mesh structure (using different techniques) in those areas where
error estimators or indicators dictate a need to do so.

4. Design overview. Figure 4.1 shows the process of an end-to-end physical simulation. First, a mesh is
generated to model the material property or geometry of the problem. Next, a solver takes the mesh as input
and conducts numerical calculations, for example, to solve a system of PDEs. In some applications, the mesh
structure needs to be adapted dynamically while the solver is still executing. The numerical results produced
by the solver, such as displacements or temperatures, are then correlated to the mesh structure by a visualizer
to create 3D images or animations.

@—:b{ Mesher |—>| Solver |—>| Visualizer . ™

| j

Parallel end-to-end physical simulation

3D animation

F1G. 4.1. End-to-end physical simulation scenario. The backward arrow from solver to mesh generator represents mesh structure
adaptations driven by numerical computations, for example, in adaptive finite element simulations.

The design goal of Octor is to develop a scalable, efficient, and easy-to-use mesher to support such
end-to-end simulations for terascale applications. Scalable means that the mesher should be able to run on
a large number processors without performance degradation. Efficient means that mesh elements and nodes
should be produced where they will be used instead of on remote processors. Easy-to-use means that other
simulation components should be able to interact with Octor in a simple way.

To achieve this design goal, we have adopted existing techniques as well as developed new algorithms
and methods. We use a distributed, parallel octree to manage the backbone meshing data structure and space-
filling curve (SFC) based techniques to partition the meshes. The new methods we have developed are: (1)
A new algorithm called parallel prioritized ripple propagation that efficiently enforces the 2-to-1 constraint
on a parallel octree; (2) A sophisticated memory management scheme that keeps track of application-specific
meshing data internally and takes care of data migration between processors (caused by partitioning) auto-
matically; (3) A new method of extracting mesh structures: Instead of extracting a mesh structure first and
then partitioning, we partition the backbone parallel octree first and then extract the mesh structure; (4) A
novel data access interface that allows a solver or a visualizer to interact easily with the mesher.

Octor provides a small set of API functions (see Appendix) that allow users to write meshing applica-
tions. At a high level, Octor meshing consists of the steps shown in Figure 4.2. First, NEWTREE bootstraps
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a small octree on each processor. Next, the tree structure is adjusted by REFINETREE and COARSENTREE,
either statically or dynamically. While adjusting the tree structure, each processor is responsible only for a
small area of the domain. When the adjustment completes, there are many subtrees distributed among the
processors. The BALANCETREE step enforces the 2-to-1 constraint on the parallel octree. After a balanced
parallel octree is obtained, PARTITIONTREE redistributes the leaf octants among the processors. Finally and
most importantly, EXTRACTMESH derives mesh element and node information and determines the various
correlations between elements and nodes. The procedure just described provides a general framework for
different types of meshing. A particular application may choose not to execute some of the listed steps. For
example, for static mesh generation, it might be unnecessary to execute the COARSENTREE step. For dynamic
mesh adaptation, it might be unnecessary to run PARTITIONTREE if the numbers of leaf octants on different
processors only differ within a small percentage.

Upfront adaptation guided by
material property or geometry

@ COARSENTREE)—»BALANCETREE—»EARTITIONTREE

Online adaptation guided by Octree and mesh handles
solver’s output (e.g. error est.) to solver and visualizer

FI1G. 4.2. Octor meshing steps. Shaded ovals are required steps. Unshaded ovals are optional steps.

An application such as a finite element solver or a parallel visualization package can interact with Octor
in one of two ways. (1) Indirect interaction. The application can guide the manipulation of Octor’s internal
data structures indirectly using callback functions. The function prototypes for REFINETREE, COARSENTREE,
and BALANCETREE contain predefined callback function types. The application implements these callback
functions and passes the function pointers as arguments when performing any of the three meshing steps.
(2) Direct interaction. Octor also returns abstract data types (ADT) such as octree t, octant t and
mesh_t to an application, and provides a set of macros that allow the application to manipulate these ADTs
directly. For example, an application can attach to an ADT a pointer that references an arbitrary data structure
in memory whose semantics are completely irrelevant to meshing. Although simple, these two data access
methods have proven to be sufficiently powerful for integrating a parallel mesher, solver and visualizer [31].

5. Internals. This section explains the internal mechanisms of Octor. We highlight only the important
algorithm and implementation features, omitting many of the technical details.

5.1. NEWTREE. This step operates in three stages: tree expansion, task assignment, and tree pruning.

Tree expansion. Each processor starts with a root octant that encloses the entire domain, and then in-
dependently expands this tree until a certain level is reached. The level is determined by the number of
processors and is usually a small value (3 or 4). During the expansion process, any octant that falls outside
of the problem domain is discarded. When the expansion stops, each processor has an identical copy of an
initial octree.

Task assignment. In this context, a task corresponds to the refinement of a leaf octant in the initial octree.
Using the preorder traversal as the total ordering, we perform a parallel block data decomposition of the leaf
octants. Since all of the processors have complete information about the initial octree, no communication
is required during this step. Each processor is assigned a contiguous chunk (in preorder) of leaf octants to
refine. These octants are marked as local, and the remaining octants are marked as remote.

Tree pruning. On each processor, octants marked as remote are pruned from the initial octree. This is
implemented as an octree aggregation operation.

One caveat: because the refinements of the cubic areas (leaf octants) are determined by an application,
the workload of each task can be highly uneven, for example, due to the large heterogeneity within the
problem domain. There is no way to determine an optimal task assignment scheme. The best we can do is to
assign an approximately equal number of tasks to each processor.
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5.2. REFINETREE/COARSENTREE. In the REFINETREE step, each processor traverses its local leaf
octants. On visiting an octant, Octor invokes an application-supplied callback function to determine whether
the octant needs to be decomposed. In case a decomposition is triggered, eight new children octants are
created and linked into the tree structure automatically. In addition, extra internal memory is allocated by
Octor for each new octant to store application-specific meshing data such as material density or velocity. A
value initialization callback function is invoked to set the values properly.

The COARSENTREE step follows the reverse procedure. However, there may be cases where a coarsening
cannot be carried out. This happens when the eight children of an interior octant are spread over two proces-
sors. See Figure 5.1(a) for an example. In these cases, we skip the coarsening of that particular region. Since
it occurs only on the boundary of two processors, most internal coarsening can still be performed without
problem. Further, since the mesh is likely to be re-partitioned after the REFINETREECOARSENTREE Sstep,
those octants spread over a boundary are very likely to be re-distributed to the same processor. Then in the
next round of coarsening, they can be successfully merged.

y PE1
\

| PE 0
[

PEO | PE1 PE 2
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F1G. 5.1. Operations across processor boundaries. The dashed lines represent the boundaries between processors. (a) Coarsening
is skipped on processor boundaries. (b) A violation of the balance condition. Octant x and y are adjacent to each other spatially but
differ in size by a factor of 4. (c) The two spatially adjacent octants (x and y) are distributed on two processors.

5.3. BALANCETREE. We have proposed an efficient algorithm called prioritized ripple propagation in
[29]. The basic idea is to eliminate the effect of small octants on large octants level by level. The algorithm
first visits all leaf octants at the lowest level of an octree. For each leaf octant, a series of neighbor-findings
are carried out. Any neighboring leaf octants that are more than twice as large as the current octant are
decomposed repeatedly until the 2-to-1 constraint is satisfied. When all the leaf octants on the lowest octree
level are processed, the algorithm finishes one iteration and moves one level up to start another iteration that
processes the leaf octants at a higher level. The algorithm terminates when all the levels are processed. The
neighbor-finding operation is implemented using a variant of the standard pointer-based neighbor-finding
algorithm [24].

This algorithm works well on a single processor but would run into trouble on a multiprocessor. Fig-
ures 5.1(b) and 5.1(c) illustrate the problem. If octant x and y are spatially adjacent to each other but are
distributed on PE 0 and PE 1, respectively, then when x searches its neighbor in the north direction, the
neighbor-finding algorithm will get stuck.

The parallel prioritized ripple propagation algorithm overcomes this difficulty in the following way.
First, we build a small array (linearly proportional to the number of processors) on each processor that
contains the coordinate information of all the first local octants of all the processors. When the standard
neighbor-finding algorithm gets stuck, we search the small array using the SFC value of the remote neigh-
bor to find which processor hosts the neighbor. However, we do not forward the ongoing neighbor-finding
operation to the remote processor immediately. Instead, a request (containing the information of the cur-
rent octants as well as partial tree-traversal information) is stored in a request buffer that is destined for the
host processor. When all processors finish processing all local octants at the current tree level, the request
buffers are exchanged between processors. Each processor then services the neighbor-finding requests from
other processors and decomposes its large octants as necessary. When all of the processors finish servicing
remote requests, the algorithm proceeds to the next higher octree level. The key implementation technique
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of the parallel prioritized ripple propagation algorithm is a concise but expressive encoding scheme for the
neighbor-finding requests.

5.4. PARTITIONTREE. This step creates a new partition for the parallel octree and then migrates octants
between processors according to the partition.

The partition is computed in a very simple way. We sort all the leaf octants in Z-order, split them into
equal-size chunks and assign the ith chunk to the ith processor. Since the preorder traversal of octree leaves
is the same as Z-order, there is no need to physically sort the leaf octants. All the leaf octants on processor
¢ must be sorted in between the leaf octants on processor (¢ — 1) and the leaf octants on processor (i + 1).
See Figure 5.1(a) for an example. Therefore, the only information needed to compute an even partition is
the number of leaf octants on each processor. After a few reduction-style communications, each processor
receives the information it needs to compute the partition.

The more difficult part of PARTITIONTREE step is actually migrating octants between processors. We
have created an internal memory manager for Octor to facilitate this procedure. When octants are created
in the refinement process, internal memory is allocated to hold the application-specific data such as velocity
or density. While executing the PARTITIONTREE step, the Octor internal memory manager marshals the
data that needs to be migrated and sends it to the destination processor in bulk. The unused memory on
the sending processor is immediately reclaimed. On the receiving end, the Octor memory manager installs
the newly arrived leaf octants in the local octree, and allocates extra memory space to store any application-
specific meshing data. There are two advantages of relying on the Octor internal memory manager. First,
the function call interface for PARTITIONTREE is very simple to use (see Appendix). Second, Octor is more
robust, encapsulating and hiding the complex memory management issues from the application.

A side note: an interesting design feature of Octor is that we have chosen to partition the tree before
extracting the mesh structure. By migrating octants to their destinations first, each processor can obtain all
necessary information for extracting the mesh structures for the simulation or visualization code that is going
run on that processor.

5.5. EXTRACTMESH. As mentioned earlier, parallel octree meshing is fundamentally different from
other parallel octree applications in that there are complicated operations associated with the vertices of the
octants, i.e., the mesh nodes.

All of the complexities of handling mesh nodes and other mesh data structures are encapsulated in the
EXTRACTMESH step, which performs the following operations: (1) Extracting mesh nodes from the parallel
(balanced) octree and computing their coordinates; (2) Discovering dangling nodes; (3) Assigning each ele-
ment and each node to an owner processor; (4) Establishing sharing relationships between nodes on different
processors; (5) Allocating unique global element ids and node ids; (6) Assigning per-processor local element
ids and node ids, (7) Establishing the mapping between global ids with local ids; (8) Correlating local element
ids with local node ids (mesh connectivity information); (9) Correlating local dangling node ids with local
anchored node ids. These operations have been implemented in an intertwined fashion in Octor in order to
reduce communication cost and algorithm complexity. The rest of this section focuses on three interesting
issues that will shed some light on the complexity unique to parallel octree meshing.
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F1G. 5.2. How to extract mesh nodes and identify indirect sharing. (a) Mesh nodes are mapped to the smallest octants in the
domain and assigned to processors that cover the respective SFC segments. (b) Subtle sharing case 1: PE 1 is assigned the ownership
of a dangling node but does not use it. (c) Subtle sharing case 2: The patterns in the figure illustrate the partitioning of the mesh. PE 0
indirectly uses an anchored node that is on PE 2.




Determining the ownership of mesh nodes. Finite elements with Lagrange bases associate unknowns
to mesh nodes. If two or more elements sharing a node are distributed on different processors, then each
element (and thus its processor) will make some contribution to the values associated with the shared node.
The question is which processor will accumulate the value contributions that are distributed among different
processors? A commonly used method is to assign each node to an owner processor who will become respon-
sible for all the computation related to a node. A naive implementation would let all the processors sharing
that node enter a negotiation process and somehow select a processor as the owner. Our implementation
employs a different technique. The basic idea is to treat each mesh node as a smallest octant in the domain.
Then each mesh node must fall in the area covered by some processor, as shown in Figure 5.2(a). The proces-
sor that encloses the mesh node is assigned as the owner. This procedure can be easily implemented, using
well-known space-filling curve techniques, with no interprocessor communications.

Determining the processors that share a mesh node. The dual problem of assigning a node to an owner
processor is to determine which other processors share a particular node. From the standpoint of an owner
processor of a particular node, sharing means that a remote processor needs to access the values associated
with this node. A simple case of sharing is shown in Figure 5.2(a). The mesh node marked A is owned by
PE 1. PE 0 has element a that will contribute to the values associated with A. Thus, PE 1 and PE 0 should
both expect to exchange data with each other. However, there are more subtle cases of sharing. Figure 5.2(b)
shows a case where PE 1 does not know the existence of the dangling node D because none of the octants
on PE 1 has D as a vertex. However, on PE 0, node D is indeed a vertex of some octant and is produced as
a mesh node. Using the node ownership assignment algorithm just described, PE 0 determines PE 1 is the
owner of node D and will send data associated with node D to PE 1. Now a discrepancy in communication
occurs. Another subtle case is illustrated in Figure 5.2(c). PE 0 has a dangling node that is dependent on
node F, which is owned by PE2. So PE 0 needs to make use of the values associated with F. But PE 2 would
not be able to determine that PE 0 is sharing F with it. Note that PE 0 and PE 2 are not adjacent to each other
in the partition. To resolve such subtle sharing situations, we use a single round of all-to-all communication.
Fortunately, since the subtle sharing cases only occur when dangling nodes are involved in the processor
boundary area, they are much less common than the simple cases.

Returning a mesh structure that can be directly used by a solver. Since we are already extracting mesh
structures on the same processors where solvers will be running, we have gone one step further to extract a
mesh structure that can be directly used by finite element solvers. By directly, we mean that when a handle
to the local mesh is returned to an application, a solver can immediately build its communication schedule
without incurring any communication. Operations (6)—(9), listed earlier in this section, accomplish this task
on a solver’s behalf. The advantage of carrying out all these mapping operations within Octor is that we can
make efficient use of the various internal data structures built during the EXTRACTMESH step. For example,
we use the same node hash table repeatedly for various operations such as discovering dangling nodes and
correlating mesh elements to mesh nodes.

6. Performanceevaluation. In this section, we present a performance evaluation of Octor for statically
generating large unstructured finite element meshes.! The meshes are generated for modeling earthquake
simulations, and are directly used by an explicit seismic wave-propagation solver. The target region of these
simulations is the Greater Los Angeles Basin, which comprises a 3D volume of 100 km x 100 km x 37.5
km. The material model we used to drive the mesh generation process is the Southern California Earthquake
Center (SCEC) 3D velocity model [21] (Version 3, 2002). A sequence of meshes is generated to satisfy
different simulation frequency requirements. Roughly speaking, the higher the frequency, the finer (larger)
the mesh. Performance data presented in this section were obtained from production and experimentation runs
of earthquake simulations on Lemieux, the HP AlphaServer system at Pittsburgh Supercomputing Center, on
a number of processors ranging from 1 to 2,000.

Our performance evaluation focuses on two issues: (1) The isogranular scalability [28] of Octor. That is,
how scalable is Octor when we generate larger meshes on more processors while keeping the average number
of elements on each processor more or less the same? (2) The fixed-size scalability of Octor. That is, how

1We have not yet evaluated the performance of Octor for real-world dynamic meshing applications. Thus, the performance of
COARSENTREE is not presented.
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scalable is Octor when we fix the problem size and increase the number of processors?

6.1. Isogranular scalability study. Figure 6.1 summarizes the results of generating meshes of various
sizes on different number of processors. Since the earth is highly heterogeneous, the largest elements of the
meshes are 64 times as large in edge size as the smallest ones (the difference between “max leaf level” and
“min leaf level”). Also, because of the multi-resolution in the mesh, there are a large number of dangling
nodes in the mesh (between 11% and 20%).

The larger meshes (1Hz, 1.5Hz, and 2Hz) are for terascale finite element simulations that run on thou-
sands of processors [2]. However, for the purpose of this study, we have chosen the numbers of processors to
ensure that the memory utilization per processor across the different experiments is roughly the same. Given
the unstructured nature of the meshes, it is impossible to guarantee the per-processor element (node) number
to be exactly the same over different runs. Nevertheless, we have contained the difference to within 10% (as
shown on the “Element/PE” row). The smallest mesh (0.23Hz) has 661K elements and is generated on one
processor, while the largest one (2Hz) has 1.22B elements and is generated on 2,000 processors.

PEs 1 16 52 184 748 2000
Mesh name 0.23Hz 0.5Hz 0.75Hz 1Hz 1.5Hz 2Hz
Elements 6.61E+5 | 9.92E+6 | 3.13E+7 | 1.14E+8 | 4.62E+8 | 1.22E+9
Nodes 8.11E+5 1.13E+7 | 3.57E+7 | 1.34E+8 | 5.34E+8 | 1.37E+9

Anchored 6.48E+5 9.87E+6 3.12E+7 | 1.14E+8 | 4.61E+8 | 1.22E+9

Dangling 1.63E+5 1.44E+6 457+6 | 2.03E+7 | 7.32E+7 1.48+8
Max leaf level 11 13 13 14 14 15
Min leaf level 6 7 8 8 9 9
Elements/PE 6.61E+5 | 6.20E+5 | 6.02E+5 | 6.20E+5 | 6.18E+5 | 6.12E+5
Octor time(sec) 19.98 74.79 127.95 150.26 305.35 332.85

FiG. 6.1. Summary of the meshes of different resolutions for earthquake wave-propagation simulations and the time to generate
them on different number of processors.

Figure 6.2(a) shows how the Octor meshing time increases as the problem size increases (along with the
number of processors used). Note that the horizontal axis (problem size) is in log-scale, while the vertical
axis (time) is in linear scale. It can be seen that, roughly, the meshing time increases as just a logarithm of
problem size. As shown in Figure 6.2(b), the increased running time is mostly due to the PARTITIONTREE
step. Although Octor does not achieve the theoretical optimal isogranular performance (the dashed line), the
linear meshing time trend suggests that Octor has good isogranular scalability. We can speculate that if Octor
were to be used to mesh a problem 10 times as large as the 2Hz mesh on 20,000 processors, then the meshing
time would only increase moderately. Here is another way to appreciate the efficiency of Octor: Assume that
a 2Hz mesh (80 GB in size) already exists on a lab server and that we have to move it across the network to
a supercomputer. Transferring the mesh at peak rates over a gigabit ethernet connection would require more
than 10 minutes. In comparison, Octor takes less than 6 minutes to generate the mesh from scratch in situ.

We now examine the running time of different meshing steps in more detail for the isogranular runs.
Figure 6.3(a) shows the execution time breakdown for generating the different meshes (annotated by the
number of processors used). Each bar represents the contribution of the five meshing steps as a percentage
of the total execution time. From the fact that percentage breakdowns (except for single-PE run that does
not invoke PARTITIONTREE) do not change significantly between different runs, we can deduce that none
of the meshing steps is a scalability bottleneck. Otherwise, we would have seen disproportionately large
fluctuations in the percentage breakdowns. We can also see that the dominant cost of meshing is associated
with PARTITIONTREE, which is probably the most bandwidth (memory and network) intensive operation.
However, further research is needed to quantitatively determine the reason.

Figure 6.3(b) shows the running time of the meshing steps in a different way. We group together the
absolute running times of each step for different runs and compare the running time change of each individual
step over different problem sizes. Since the NEWTREE times are below 0.5 seconds for all the runs, we have
not presented them as a group in the figure. It is clear that REFINETREE, BALANCETREE, and EXTRACTMESH
perform well in an isogranular setting, while the performance of PARTITIONTREE deteriorates somewhat with
larger numbers of processors. It is surprising that EXTRACTMESH, which is the most complex step in terms
of algorithms and communications, runs faster and scales better than all of the other steps except for the
relatively simple NEWTREE step. This is strong evidence that our techniques for extracting mesh structures
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F1G. 6.2. Octor meshing execution time and detailed breakdown. (&) The running time of Octor increases roughly as a logarithm
of problem size (as determined by the total number of elements). (b) The trend of execution time increases in different steps. The time for
each step is plotted with a unique pattern, which is stacked on top of the previous step. From bottom up, the stripes represent time spent
inthe NEWTREE, REFINETREE, BALANCETREE, PARTITIONTREE,and EXTRACTMESH step, respectively. Note that since the NEWTREE
time is very short (lessthan 0.5 sec), its stripe isinvisible in the figure.
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number of processors.

F1G. 6.3. Understanding the performance of Octor from two different perspectives. Figure (a) shows where the execution time
goes. Figure (b) shows how each step’s running time varies on different numbers of processors.

6.2. Fixed-size scalability study. For applications that are computation bound, larger numbers of pro-
cessors might be used to solve a moderately-sized problem just to improve the turn-around time. Memory
utilization is not of particular importance to these applications. Therefore, we also need to investigate the
performance of Octor when we fix the problem size and increase the number of processors.

Three sets of fixed-size scalability experiments were conducted, for small size, medium size and large
size problems, respectively. The experimental setups are shown in Figure 6.4.

PEs [1 2 4 8 16 32 64 128 256 512 748 1024 2000
Small case (0.23Hz, 661k elements) X X X X X

Medium case (0.5Hz, 9.92m elements) X X X X X

Large case (1Hz, 114m elements) X X X X X X

FI1G. 6.4. Setup of fixed-size speedup experiments. Entries marked with “ X" represent experiment runs.

Figure 6.5 shows the performance of Octor for different fixed-sized problems. The figures on the left side
shows the speedup of meshing on more processors. The dashed line represents the ideal speedup. Although
not perfect, Octor achieves good speedups while running on a large number of processors. The figures on the
right show the execution time percentage breakdowns for different fixed-sized runs on different numbers of
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processors. That there is no major fluctuation in the breakdowns (except for the small case problem where 1
PE is involved) is more evidence that there are no scalability bugs among the meshing steps.
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Fi1G. 6.5. Execution time of generating a fixed-sized mesh on different numbers of processors and how different steps of meshing
contribute to the total running time percentage wise.

An important and closely related question is what happens to a solver when a fixed-sized problem is
meshed on larger numbers of processors? Figure 6.6 shows the speedup of an explicit finite element seismic
wave propagation solver for earthquake simulation. The solver takes a mesh produced by Octor in situ and
runs on the same processors. The solver runs 4,000 time steps for the medium case (Figure 6.6(a)) and 2,500
time steps for large case. Each time step requires the same amount work for a fixed-size problem. A complete
earthquake simulation would run somewhere between 10,000 to 80,000 time steps.

A surprising finding from these figures is that the solver achieves almost perfect speedup on hundreds
and thousands of processors, even though the strategy we used to partition the tree is extremely simple.
Also, a closer look at the vertical axes of Figure 6.5(c)(e) and Figure 6.6(a)(b) reveals that the meshing time
becomes inconsequential when compared with the running time of the solver. So the bottom line is that as
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long as a physical problem can be meshed in a reasonable amount of time, Octor meshing will not constitute

a bottleneck for terascale simulations.
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F1G. 6.6. Solver achieves almost perfect speedup using the partitioned meshes generated by Octor. (We have omitted the plotting
for the small case, which looks identical to that of the medium case.)

7. Conclusion. This paper has demonstrated how to combine existing, well-known techniques, such as
parallel octrees and space-filling curves, with a new set of algorithms and methods, such as parallel prioritized
ripple propagation, to deliver a new capability for generating and adapting massive octree meshes for high-
performance scientific computing.

We have implemented these new ideas in Octor, a parallel octree meshing tool that has been used suc-
cessfully for terascale finite element earthquake simulations. The good scalability of Octor on up to 2,000
processors indicates that it has the potential to continue to scale on more processors. Future work will focus
on applying Octor in the context of terascale applications with adaptive meshing requirements.
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Appendix. Major functions of the Octor API.

octree_t * octor_newtree (double x, double y, double z, int recsize, int myid,
int octor_refinetree(octree_t *octree, toexpand-t *toexpand, setrec.t *setrec);
int octor_coarsentree (octree.t *octree, toshrink.t *toshrink, setrec._t *setrec);
int octor._balancetree (octree.t *octree, setrec.t *setrec);

int octor_partitiontree (octree_t *octree) ;

mesh_t * octor_extractmesh(octree_t *octree);

void octor_deletemesh (mesh_t *mesh) ;

void octor.deletetree (octreet * octree) ;

int groupsize) ;
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