
SIAM J. SCI. COMPUT. c© 2005 Society for Industrial and Applied Mathematics
Vol. 27, No. 2, pp. 714–739

PARALLEL LAGRANGE–NEWTON–KRYLOV–SCHUR METHODS
FOR PDE-CONSTRAINED OPTIMIZATION. PART II: THE

LAGRANGE–NEWTON SOLVER AND ITS APPLICATION TO
OPTIMAL CONTROL OF STEADY VISCOUS FLOWS∗

GEORGE BIROS† AND OMAR GHATTAS‡

Abstract. In part I of this article, we proposed a Lagrange–Newton–Krylov–Schur (LNKS)
method for the solution of optimization problems that are constrained by partial differential equa-
tions. LNKS uses Krylov iterations to solve the linearized Karush–Kuhn–Tucker system of optimality
conditions in the full space of states, adjoints, and decision variables, but invokes a preconditioner in-
spired by reduced space sequential quadratic programming (SQP) methods. The discussion in part I
focused on the (inner, linear) Krylov solver and preconditioner. In part II, we discuss the (outer,
nonlinear) Lagrange–Newton solver and address globalization, robustness, and efficiency issues, in-
cluding line search methods, safeguarding Newton with quasi-Newton steps, parameter continuation,
and inexact Newton ideas. We test the full LNKS method on several large-scale three-dimensional
configurations of a problem of optimal boundary control of incompressible Navier–Stokes flow with
a dissipation objective functional. Results of numerical experiments on up to 256 Cray T3E-900
processors demonstrate very good scalability of the new method. Moreover, LNKS is an order of
magnitude faster than quasi-Newton reduced SQP, and we are able to solve previously intractable
problems of up to 800,000 state and 5,000 decision variables at about 5 times the cost of a single
forward flow solution.

Key words. sequential quadratic programming, adjoint methods, PDE-constrained optimiza-
tion, optimal control, Lagrange–Newton–Krylov–Schur methods, Navier–Stokes, finite elements, pre-
conditioners, indefinite systems, nonlinear equations, parallel algorithms

AMS subject classifications. 49K20, 65F10, 65K05, 65K10, 65J22, 65N55, 65W10, 65Y05,
65Y20, 76D05, 76D07, 76D55, 90C52, 90C55, 90C90, 93C20

DOI. 10.1137/S1064827502415661

1. Introduction. In part I of this two-part article [3] we proposed a Newton–
Krylov method for solution of the optimality system stemming from the optimization
of systems governed by partial differential equations (PDEs). We concentrated our
discussion on the inner iteration: the solution of the linear system associated with a
Newton step on the Karush–Kuhn–Tucker (KKT) optimality conditions. The algo-
rithm is based on a Krylov solver combined with a family of Schur-type preconditioners
that are equivalent to an approximate quasi-Newton reduced SQP (QN-RSQP) step.
We termed the method Lagrange–Newton–Krylov–Schur (LNKS), a concatenation of
Lagrange–Newton for the outer iteration and Krylov–Schur for the inner iteration.
We also provided theoretical and numerical evidence that these preconditioners work
very well by considering several linearly-constrained quadratic optimization prob-
lems, namely those involving boundary control of Stokes flows with flow-matching

∗Received by the editors October 9, 2002; accepted for publication (in revised form) November 17,
2004; published electronically November 15, 2005. This work is a part of the Terascale Algorithms for
Optimization of Simulations (TAOS) project at CMU, with support from NASA grant NAG-1-2090,
NSF grant ECS-9732301 (under the NSF/Sandia Life Cycle Engineering Program), and the Penn-
sylvania Infrastructure Technology Alliance. Computing services on the Pittsburgh Supercomputing
Center’s Cray T3E were provided under PSC grant BCS-960001P.

http://www.siam.org/journals/sisc/27-2/41566.html
†Courant Institute of Mathematical Sciences, Department of Computer Science, New York Uni-

versity, New York, NY 10012 (biros@cs.nyu.edu).
‡Ultrascale Simulation Laboratory, Departments of Biomedical Engineering and Civil & Environ-

mental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 (oghattas@cs.cmu.edu).

714

LAGRANGE–NEWTON–KRYLOV–SCHUR METHODS, PART II 715

and dissipation-type objectives.
In part II, we present algorithmic components of the LNKS method related to the

(outer) Lagrange–Newton solver, including such globalization strategies as line search,
quasi-Newton safeguarding, and parameter continuation, and inexactness in the inner
linear solver and its interaction with the line search. We assess performance of the
LNKS method on several more stringent test problems that contain many features
of the most challenging PDE-constrained optimization problems: three-dimensional
unstructured meshes, multicomponent coupling, large problem size, nonlinearity, and
ill-conditioning. The underlying problem class is optimal control of a viscous in-
compressible fluid by boundary velocities, which is of both theoretical and industrial
interest.

Following part I, we refer to the unknown PDE field quantities as the state vari-
ables; the PDE constraints as the state equations; solution of the PDE constraints as
the forward problem; the inverse, design, or control variables as the decision variables;
and the problem of determining the optimal values of the inverse, design, or control
variables as the optimization problem.

The paper is organized as follows. In section 2 we briefly review the problem
formulation. We then discuss algorithmic issues related to Lagrange–Newton methods
and in particular globalization methodologies. We give details on three globalization
techniques to enhance robustness in the LNKS method: line search, safeguarding
LNKS steps with (approximate) QN-RSQP steps, and continuation. We also discuss
inexact Newton methods and how they interact with a merit function line search. In
section 3 we present the full globalized LNKS algorithm. Section 4 formulates the
optimal control problem for the Navier–Stokes equations and presents results for a
Poiseuille flow, a flow around a cylinder, and a flow around a Boeing 707 wing.

Note on notation. We use boldface characters to denote vector-valued functions
and vector-valued function spaces. We use roman characters to denote discretized
quantities and italics for their continuous counterparts. For example, u will be the
continuous velocity field and u will be its discretization. Greek letters are overloaded
and whether we refer to the discretization or the continuous fields should be clear
from context. We also use + as a subscript or superscript to denote variable updates
within an iterative algorithm.

2. Globalization and inexactness of the LNKS method. In this section
we consider strategies for globalizing the Newton iteration at the heart of the LNKS
method, as well as opportunities for introducing inexactness in the solution for a
Newton step. Let us revisit the constrained optimization problem formulation,

min
x∈RN

f(x) subject to c(x) = 0,(2.1)

where x ∈ R
N are the optimization variables, f : R

N → R is the objective func-
tion, and c : R

N → R
n are the constraints. In our context these constraints are

discretizations of the state equations. The Lagrangian,

L(x,λ) := f(x) + λT c(x),(2.2)

is used to transform the constrained optimization problem into a system of nonlinear
equations, the first-order optimality conditions:

{
∂xL
∂λL

}
(x,λ) =

{
g(x) + A(x)Tλ

c(x)

}
= 0 (or h(q) = 0),(2.3)

716 GEORGE BIROS AND OMAR GHATTAS

where q := {x,λ}T represents the optimization variables and Lagrange multipliers.
As in part I, g is the gradient of the objective function, A the Jacobian of the
constraints, and W the Hessian of the Lagrangian. Consistent with part I, we think
of x, g, A, and W as being partitioned into state (indicated by an s subscript) and
decision variable (d subscript) components. We use Newton’s method to solve for
x and λ. A Newton step on the optimality conditions is given by[

W AT

A 0

]{
px

pλ

}
= −

{
g + ATλ

c

}
(or Kv = −h),(2.4)

where px and pλ are the updates of x and λ from the current to the next iteration.
In part I we reviewed a popular algorithm for solving for a KKT point, RSQP and
in particular its quasi-Newton variant (Algorithm 3 in part I). Although RSQP is
efficient and robust, it often does not scale very well with the number of decision
variables. It avoids solving (2.4) directly by reduction onto the decision space and in
doing so requires repeated solution of linearized forward and adjoint problems. Thus,
it can be very inefficient for large-scale PDE-constrained optimization. We argued
that a better approach would be to remain in the full space of states, decisions, and
multipliers by using a Krylov method to solve (2.4). For most problems, however, the
KKT matrix is notoriously ill-conditioned. Motivated by this, part I proposed a family
of efficient preconditioners. The key idea was to use an approximate RSQP method
as a preconditioner. We showed that RSQP can be viewed as a block-LU factorization
in which the reduced Hessian Wz is the Schur complement for the decision variables.
It has the property that the only systems that have to be solved involve the reduced
Hessian and the Jacobian of the state equations (and its transpose). Therefore, by
using a limited memory quasi-Newton approximation of the reduced Hessian, and
by replacing the linearized PDE solves by applications of their preconditioners, we
obtain a method that requires no PDE solves within a Krylov iteration, yet maintains
Newton convergence in the outer iteration. A sketch of the LNKS method for solving
the KKT system (2.4) is given by Algorithm 1, in which P−1 is an application of the
approximate RSQP preconditioner.

Algorithm 1. Lagrange–Newton–Krylov–Schur (LNKS).

1: Choose x, λ
2: loop
3: Check for convergence
4: Compute c, g, A, W
5: Solve P−1Kv = P−1h (Newton step)
6: Update x = x + px

7: Update λ = λ + pλ

8: end loop

Nevertheless, there are two issues that should be addressed before we can claim a
fast and robust general-purpose algorithm. The first is whether the LNKS algorithm
can be made convergent for any initial guess (x0,λ0), and the second is whether we
can utilize inexactness in the inner iterations to further accelerate LNKS. Within this
framework we examine line search algorithms, reverting to a QN-RSQP step when a
LNKS steps fails to make progress, continuation, and inexact Newton methods.

2.1. Line search methods. Algorithm 1 is only locally convergent. Pop-
ular methods to globalize Newton’s method include line search and trust region

LAGRANGE–NEWTON–KRYLOV–SCHUR METHODS, PART II 717

algorithms. Details can be found in [21]. Trust region methods, especially in com-
bination with RSQP and inexact Newton methods, have been extended successfully
to PDE-constrained optimization [14, 17, 19]. Global convergence proofs for these
methods can be found in [5]. Trust region methods are often based on the Steihaug
modification of the conjugate gradient (CG) algorithm [24]. However, this approach
works well only with positive definite systems. It is not obvious how to use trust
regions with an indefinite Krylov solver (which is required for the KKT system) and
thus we have opted for a line search algorithm to help globalize LNKS.

An important component of a line search algorithm is the choice of a merit func-
tion: a scalar function (of the optimization variables) that monitors the progress of
the algorithm. In contrast with unconstrained optimization, the choice of a merit
function is not straightforward, since we are trying to balance minimization of the
objective function with feasibility of the constraints. Two common choices are the
l1 merit function,

φ(x) := f + ρφ‖c‖1,(2.5)

and the augmented Lagrangian merit function,

φ(x,λ) := f + cTλ +
ρφ
2

cT c.(2.6)

The scalar ρφ is the penalty parameter—a weight chosen to balance minimization of
the objective function with minimization of the residuals of the constraints. Both
functions are “exact” provided the penalty parameter is large enough. By exact we
mean that if x∗ is a minimizer for (2.1), then it is also an (unconstrained) minimizer
for the merit function. A crucial property of a merit function is that it should accept
unit step lengths close to a solution in order to allow full Newton steps and thus
quadratic convergence. The l1 merit function suffers from the “Maratos” effect; that
is, sometimes it rejects good steps and slows down the algorithm. The augmented
Lagrangian merit function does not exhibit such behavior but its drawback is that it
requires accurate estimates of the Lagrange multipliers.

The outline of a general line search method is given in Algorithm 2. To simplify
notation we use φ(α) for φ(q + αv) and φ(0) for φ(q), and likewise for the derivative
∇φ. The algorithm used to compute the search direction v is intentionally left un-
specified. All that matter to ensure global convergence are the properties of the merit
function and the properties of v. Step 3 in Algorithm 2 lists three conditions on v:
descent direction, sufficient angle, and sufficient step length size [9]. The condition in
step 4 is often called the Armijo condition. If φ is bounded and has a minimum, and
if v is bounded, Algorithm 2 is guaranteed to converge to a local minimum [20]. We
use a simple backtracking line search, with a factor α of 0.5. The search is bounded
so that αmin ≤ α ≤ 1. As mentioned before, the choice of the penalty parameter has
a great effect on the performance of the algorithm.

For a step computed by quasi-Newton RSQP (Algorithm 3 of part I), the update
for the l1-merit function is relatively straightforward. The directional derivative for a
search direction px is given by

∇φTpx = gTpx − ρφ‖c‖1.(2.7)

If Wz is positive definite, it can be shown that by setting

ρφ = ‖λ‖∞ + δ, δ > 0,(2.8)

718 GEORGE BIROS AND OMAR GHATTAS

Algorithm 2. Line search.

1: Choose q, δA > 0 and κ1, κ2 arbitrary constants (strictly positive)
2: while Not converged do
3: Compute search direction v so that

vT∇φ(0) < 0
|vT∇φ(0)| ≥ κ1 ‖v‖ ‖∇φ(0)‖ angle condition
‖v‖ ≥ κ2‖∇φ(0)‖ length condition

4: Compute α such that φ(α) ≤ φ(0) + αδAvT∇φ(0) Armijo condition
5: Set q = q + αv
6: end while

we obtain a descent direction. In our numerical experiments we have used the l1-merit
function with QN-RSQP and the augmented Lagrangian with LNKS. The l1-merit
function performed reasonably well. However, we did observe the Maratos effect. To
overcome this obstacle we have implemented a second-order correction, in which an
extra normal step toward feasibility is taken [21, p. 570].

When an augmented Lagrangian merit function is used, the penalty parameter
should be chosen differently. The directional derivative of the augmented Lagrangian
merit function is given by

∇φTv = (g + ATλ + ρφA
T c)Tpx + cTpλ.(2.9)

Lagrange multipliers slightly complicate the algorithm since we have to compute pλ.
λ may be considered a function of x [4, 8] or an independent variable [5, 23] or may be
simply ignored by setting pλ = 0 [25]. In LNKS we solve for λ simultaneously with x
and it is natural to use the step pλ. On the other hand, RSQP uses λ = −A−T

s gs

and it seems natural to consider λ a function of x. In this case the last term in (2.9)
is given by

cTpλ = cT (∂xλ)px,

where

∂xλ := −A−T
s [Wss Wsd].

(However, this formula cannot be used with the QN-RSQP method of Algorithm 3,
part I, since second derivatives are not computed.) If we set

ρφ =
(g + ATλ)px + cTpλ + δ

cTApx
, δ > 0,(2.10)

we obtain a descent direction.

2.2. Combining QN-RSQP with LNKS. For iterates far from the solution,
relying solely on a line search algorithm to globalize LNKS is not sufficient, since
the Newton step is likely to be of poor quality. Usually global convergence can be
shown if the reduced (and not full) Hessian Wz is positive definite. If Wz is positive
definite (and assuming the system (2.4) is solved exactly), then the resulting step v
satisfies the Armijo sufficient decrease criterion. Far from the minimum, however,
Wz can be singular or indefinite. On the other hand, certain quasi-Newton methods,
like BFGS, are preferable for iterates far from the solution since they can guarantee
positive definiteness. For this reason (and for preconditioning purposes) LNKS does
maintain a BFGS approximation for Wz: if a computed Newton search direction fails
to satisfy the Armijo criterion, we discard it and revert to a QN-RSQP step.

LAGRANGE–NEWTON–KRYLOV–SCHUR METHODS, PART II 719

2.3. Continuation. One of the standard assumptions in global convergence
proofs is the full rank of the constraint Jacobian for all iterates. In LNKS, this
translates to the nonsingularity of the state Jacobian As, i.e., the PDE state opera-
tor. For highly nonlinear PDEs such as the Navier–Stokes equations, this can be an
unrealistic assumption. Even if As is nonsingular, severe ill-conditioning may cause
both QN-RSQP and LNKS algorithms to stall. Indeed, in our numerical experiments,
the most difficult computation (for iterates far from the solution) was converging the
As-related linear solves. Krylov solvers often reached their maximum iteration counts
without a significant decrease in the linear system residual. As a result, the iterates
were of poor quality and the algorithm stagnated as it was impossible to compute a
search direction, be it from QN-RSQP or LNKS.

One remedy for this problem is parameter continuation. This idea (in its simplest
form) works when we can express the nonlinearity of the problem as a function of a
single scalar parameter. Continuation is suitable for problems in which the underly-
ing PDE has a parameter that scales (and thus determines the effects of) nonlinear
terms. Examples of such parameters are the Reynolds number for viscous flow, the
Mach number for compressible flow, the Weissenberg number for viscoelastic flow,
load magnitude for buckling problems, and the Hartman number in magnetohydro-
dynamics. In problems where such a parameter cannot be found, an alternative ap-
proach is to use a pseudotransient continuation scheme [18], a homotopy method [1],
or mesh-size continuation.

Continuation allows uphill steps to be taken (unlike monotone line search meth-
ods) and generates good initial guesses, not only for the optimization variables, but
also for the penalty parameter in the merit function. An important feature of the
continuation algorithm is that under certain conditions it globalizes trivially.1 If the
continuation step places the next iterate outside the attraction basin of the Newton
method, then we simply reduce the continuation step size. In principle, the method
globalizes LNKS without the need to use line search or some other globalization
strategy. Nevertheless, taking a large number of continuation steps significantly slows
down the algorithm. Experience from our numerical experiments suggests that the
best strategy for globalizing LNKS is a combination of line searching, reverting to
quasi-Newton steps, and continuation.

2.4. Inexact Newton method. Before we discuss the inexact Newton method
in the context of LNKS, we briefly summarize a few results for a general nonlinear
system of equations. Assume we want to solve h(q) = 0. Further assume the follow-
ing: (1) h and K := ∂qh are sufficiently smooth in a neighborhood of a solution q∗;
(2) at each iteration an inexact Newton method computes a step v that satisfies

‖Kv + h‖ ≤ ηN‖h‖,(2.11)

where ηN is often called the forcing term. It can be shown that if ηN < 1, then
q → q∗ linearly; if ηN → 0, then q → q∗ superlinearly; and if ηN = O(‖h‖), then
we recover the quadratic convergence rate of an exact Newton method. The forcing
term is usually given by

ηN =
‖h(+) − h − Kv‖

‖h‖ .(2.12)

Other alternatives exist (for details see [7]).

1This is true only when the initial problem is a well-posed quadratic programming problem (like
Stokes) and all iterates on the continuation path are far from turning and bifurcation points.

720 GEORGE BIROS AND OMAR GHATTAS

The extension of inexact Newton methods to unconstrained optimization prob-
lems is relatively easy. The extension becomes more complicated for problems with
constraints. In [14] global convergence proofs are given for a trust region RSQP-based
algorithm, but to our knowledge such an approach has not been extended to full space
algorithms. Close to a KKT point the theory for Newton’s method applies and one
can use the analysis presented in [6] to show that the inexact version of the LNKS
algorithm converges. However, the line search we are using is not based on the resid-
ual of the KKT equations but instead on the merit function discussed in the previous
session. It is not obvious that an inexact Newton step (which simply reduces ‖h‖) will
satisfy the merit function criteria. We will show for points that are close enough to the
solution, inexact Newton steps do satisfy the Armijo criterion for the merit function
line search. Our analysis is based on the augmented Lagrangian merit function.2 We
assume that, locally, A and K are nonsingular and uniformly bounded. We define
κ1 := max ‖K−1(q)‖ for q in the neighborhood of the solution q∗. We also define v
as the exact solution of the (linearized) KKT system so that

Kv + h = 0,(2.13)

and ṽ the approximate solution so that

Kṽ + h = r.(2.14)

We also have ‖r‖ = η‖h‖, 0 < η ≤ ηN , from the inexact Newton stopping criterion
(2.11). By (2.3) we get that ‖h‖2 = ‖g + ATλ‖2 + ‖c‖2 and since A is uniformly
bounded, there is constant κ2 such that

‖AT c‖ ≤ κ2‖h‖.(2.15)

Besides the assumptions on K and A we also assume the following: (1) ρφ is suffi-
ciently large so that the merit function is exact and ‖∇φ‖ ≥ κ3‖h‖ for some con-
stant κ3; (2) v is a descent direction and satisfies the angle and length conditions
as well as the Armijo condition. From the latter it is immediate that v satisfies the
Cauchy fraction condition:3

|∇φTv| ≥ 2κ4‖∇φ‖2.(2.16)

We will show that if η is small enough, then the approximate step ṽ satisfies the
Cauchy fraction, angle, and length conditions. Then, we will use a theorem from [20]
to conclude that the Armijo condition is satisfied with unit step lengths. Therefore if
η = O(‖h‖), quadratic convergence is preserved.

From (2.13) and (2.14) we have

∇φT ṽ = ∇φTv + ∇φTK−1r,

and thus by (2.16) we get

|∇φT ṽ| ≥ 2κ4‖∇φ‖2 − |∇φTK−1r|.

Therefore, to satisfy the Cauchy fraction condition

|∇φT ṽ| ≥ κ4‖∇φ‖2,(2.17)

2For brevity we drop the subscript from φL and just use the symbol φ for the augmented La-
grangian merit function.

3The Cauchy step is a steepest descent step for the merit function.

LAGRANGE–NEWTON–KRYLOV–SCHUR METHODS, PART II 721

we need to show that

|∇φTK−1r| ≤ κ4‖∇φ‖2.(2.18)

The gradient of the merit function is given by

∇φ = h + ρφ

{
AT c
0

}
,

and thus

|∇φTK−1r| =

∣∣∣∣hTK−1r + ρφ

{
AT c
0

}T

K−1r

∣∣∣∣
≤ κ1(‖h‖ ‖r‖ + ρφ‖AT c‖ ‖r‖)
≤ κ1η(‖h‖2 + ρφ‖AT c‖ ‖h‖)
≤ κ1η(1 + ρφκ2)‖h‖2

≤ κ1η(1 + ρφκ2)
‖∇φ‖2

κ2
3

.

If

η ≤ κ4 κ2
3

κ1(1 + ρφκ2)
,(2.19)

then (2.18) holds. If we choose a superlinearly convergent inexact Newton variant,
then

η ≤ ηN → 0,

and therefore, close to the solution (2.19) holds. We also have that

ṽ = K−1(r − h),

‖ṽ‖ ≤ κ1(1 + η)‖h‖,

‖ṽ‖ ≤ κ1(1 + η)
‖∇φ‖
κ3

,

‖ṽ‖ ≤ κ5‖∇φ‖.

(2.20)

By combining (2.20) and (2.17) we get

|∇φT ṽ| ≥ κ4‖∇φ‖2 ≥ κ4κ5‖∇φ‖ ‖ṽ‖

and

‖∇φ‖ ‖ṽ‖ ≥ κ6|∇φT ṽ| ≥ κ6κ4‖∇φ‖2 =⇒ ‖ṽ‖ ≥ κ7‖∇φ‖.

That is, the length and angle conditions are satisfied. It can be shown [20, Theo-
rem 10.6] that there is an α, bounded below, so that the Armijo condition holds true.
Thus by choosing δA small enough, the Armijo condition is satisfied with unit step
length. Hence the quadratic convergence rate associated with Newton’s method is
observed; i.e., the inexactness does not interfere with the merit function. In addi-
tion it can be shown that the augmented Lagrangian merit function allows unit step
length near the solution (see [8, 23] and the references therein). Finally, notice that
convergence does not require that ηN → 0; it only requires that ηN is small enough.
This is in contrast with inexact reduced space methods which require the tolerances
to become tighter as the iterates approach the solution [14].

722 GEORGE BIROS AND OMAR GHATTAS

2.5. The globalized inexact LNKS algorithm. In this section we present
the complete LNKS method incorporating the globalization and inexactness strate-
gies discussed above, and give a high-level description of implementation details and
specific heuristics used to accelerate convergence. The basic steps of our method are
given in Algorithm 3.

Algorithm 3. Globalized LNKS.

1: Choose xs, xd, ρφ, δA, set Re = Restart , tol = tol0
2: AT

s λ + gs ≈ 0 solve inexactly for λ
3: while Re
= Retarget do
4: loop
5: Evaluate f , c, g, A, W
6: gz = gd + AT

d λ
7: Check convergence: ‖h‖ ≤ tol
8: P−1Kv + P−1h ≈ 0 solve inexactly for v
9: Compute ρφ such that ∇φT (0)v ≤ 0

10: Compute α s.t. φ(α) ≤ φ(0) + δAα(∇φT (0)v)
11: if Line search failed then
12: Compute α s.t. ‖h(α)‖ < (1 − δAα (vT Kh(0))) Armijo for KKT residual
13: end if
14: if LNKS step failed then
15: Bzpd = −gz solve inexactly for pd

16: Asps + Adpd + c ≈ 0 solve inexactly for ps

17: AT
s λ+ + gs ≈ 0 solve inexactly for λ+

18: Compute α s.t. φ(α) ≤ φ(0) + δAα(∇φT (0)v)
19: if Line search on QN-RSQP step failed then
20: Reduce Re and go to step 5.
21: end if
22: end if
23: λ+ = λ + pλ (only for LNKS step)
24: x+ = x + px

25: end loop
26: Re = Re + Δ Re
27: Tighten tol
28: end while

The algorithm uses a three-level iteration.
• In the continuation iteration (lines 3–28) the continuation parameter is grad-

ually increased until the target value is reached.
• The outer iteration (lines 4–25) corresponds to the Lagrange–Newton solver

for the KKT optimality system for a fixed continuation number.
• The inner iteration (line 8 for LNKS, and lines 15–17 for QN-RSQP) refers

to the solution of the linearized KKT system.
The outer iteration consists of two core branches: the computation of the LNKS
search direction and the computation of a search direction with the limited-memory
BFGS QN-RSQP method. The default branch is the LNKS step. If this step fails to
satisfy the line search conditions, we switch to QN-RSQP. If the QN-RSQP search
direction fails to satisfy the line search criteria as well, then we reduce the continuation
parameter Re and return to the beginning of the continuation loop (line 3).

There are several possible instantiations of this framework. Below, we give some

LAGRANGE–NEWTON–KRYLOV–SCHUR METHODS, PART II 723

additional implementation details on our algorithmic choices.
• The linear solves in lines 8, 16, and 17 are performed inexactly. We follow [7]

in choosing the forcing term. For the LNKS step (line 8) we use ‖h‖ as the resid-
ual that drives the Newton solver; for the QN-RSQP step (lines 15–18) we use ‖c‖
and ‖gz‖.

• We allow for nonmonotone line searches. If the LNKS step (line 8) is rejected
by the merit function line search (line 10) we do not switch immediately to QN-RSQP.
Instead we do a line search on the KKT residual (line 12) and if the step is accepted we
use it to update the variables for the next iteration. However, we do store information
(λ and x, the merit function value and gradient) for the iterate for which the LNKS
step failed, and we insist that a subsequent iterate satisfies the conditions of the
merit line search (evaluated at the failure point) after a fixed number of iterations.
Typically, we permit two iterations before we demand reduction of the merit function.
If the Armijo criterion is still violated, we backtrack to the original point of failure
and switch to a QN-RSQP method (lines 15–18).

• We use various heuristics to bound the penalty parameter and possibly reduce
it. A new penalty parameter ρ+

φ is computed using the LNKS step and formula (2.10).

If ρ+
φ > 4ρφ we update the penalty parameter and switch to QN-RSQP. If ρ+

φ < ρφ/4

we reduce the penalty parameter and set ρ+
φ = 0.5ρφ. We also reduce the penalty

parameter if there is a successful search on the KKT residual (step 12).
• A Lanczos algorithm can be used to (approximately) check the second-order

optimality conditions. If an extremal eigenvalue of W̃z is negative, then we abandon
the full space and revert to a QN-RSQP step. The eigenvalue computation is frozen
through a single continuation step, but if a negative direction is detected, they are
recomputed at each SQP iteration.

• In line 6 we use the adjoint variables to update the reduced gradient. This is
equivalent to gz = gd−AT

d A−T
s gs if λ is computed by solving exactly AT

s λ+gs = 0.
When λ is taken from the LNKS step computation, it includes second-order terms
(which tend to zero as we approach a stationary point). This introduces error in the
computation of gz. When λ is taken from QN-RSQP it introduces additional error
since we never solve the linear systems exactly.

• Typical values for the parameters are ρφ = 0.5, δA = 10−4, and tol =
10−5‖h0‖ (following [6]). Here h0 is the value of the KKT residual at the first it-
eration of each outer loop.

We have shown how it is possible to augment the basic LNKS method with line
search and continuation, safeguard it with QN-RSQP steps, and further accelerate it
with inexact Newton. We have shown that inexactness does not interfere with the
line search algorithm, and we have described the globalized algorithm and various
heuristics that are observed to improve performance.

In the next section we study an optimal control problem for the steady incom-
pressible Navier–Stokes equations. We cite results on the existence and uniqueness
of solutions and make comparisons between the discrete and continuous forms of the
optimality conditions.

3. Formulation of an optimal control problem. We turn our attention to
the formulation and well-posedness of a specific optimization problem: the Dirichlet
control of the steady incompressible Navier–Stokes equations. We present the con-
tinuous form of the KKT optimality conditions and we cite convergence results for
finite element approximations from [15] and [16]. A survey and articles on this topic
can be found in [11]. More on the Navier–Stokes equations can be found in [10, 13].

724 GEORGE BIROS AND OMAR GHATTAS

We study problems in which we specify both Dirichlet and Neumann boundary con-
ditions. The controls are restricted to be of Dirichlet type only, but the theory is
similar for distributed and Neumann controls [15].

3.1. Continuous optimality conditions. We use the velocity-pressure (u, p)
form of the incompressible steady Navier–Stokes equations. We begin by writing the
following strong form of the flow equations:

−ν∇ · (∇u + ∇uT) + (∇u)u + ∇p = b in Ω,

∇ · u = 0 in Ω,

u = ug on Γu,

u = ud on Γd,

−pn + ν(∇u + ∇uT)n = 0 on ΓN .

(3.1)

Here ν = 1/Re and the decision variables are the control velocities ud on Γd. For
a forward solve we need not distinguish between Γd and Γu. In the optimization
problem, however, ud is not known. We will present a mixed formulation that treats
the tractions on the Dirichlet boundary Γd as additional unknown variables. The
traction variables play the role of Lagrange multipliers (not to be confused with the
Lagrange multipliers of the optimal control problem) and are used to enforce the
Dirichlet boundary conditions [2].

By L2(Ω) we denote the space of scalar functions that are square-integrable in Ω,
and by H1(Ω) we denote the space of vector functions whose first derivatives are
in L2(Ω). H1/2(Γ) is the trace space (the restriction on Γ) of functions belong-
ing to H1(Ω). Finally H−k(D) is the set of bounded linear functionals on func-
tions belonging to Hk(D), where D is some smooth domain in R

3. We also define
V := {v ∈ H1(Ω) : v|Γu = 0}. We define the following bilinear and trilinear forms
associated with the Navier–Stokes equations:

a(u,v) :=

∫
Ω

(∇u + ∇uT) · (∇v + ∇vT) dΩ ∀u,v ∈ H1(Ω),

c(w,u,v) :=

∫
Ω

(∇u)w · v dΩ ∀u,v,w ∈ H1(Ω),

b(q,v) :=

∫
Ω

−q∇ · v dΩ ∀q ∈ L2, v ∈ H1(Ω).

We also use the notation (x,y)D for
∫
D

x · y dD.
In the weak formulation of (3.1) we seek u ∈ H1(Ω), p ∈ L2(Ω), and σ ∈

H−1/2(Γd) such that

νa(u,v) + c(u,u,v) + b(p,v) − (σ,v)Γd
= (f ,v)Ω ∀v ∈ V ,

b(q,u) = 0 ∀q ∈ L2(Ω),

−(t,u)Γd
= −(t,ud)Γd

∀t ∈ H−1/2(Γd).

(3.2)

We also define d to be the decision field (so that ud = d). Based on the above formu-
lation we proceed in defining the Lagrangian function for the optimization problem.
The objective function is given by

J (u,d) :=
ν

2
a(u,u) +

ρ

2
(d,d)Γd

,(3.3)

LAGRANGE–NEWTON–KRYLOV–SCHUR METHODS, PART II 725

and (the weak form of) the constraints are given by (3.2). We define the Lagrangian
function L by

L(u, p,d,σ,λ, μ, τ) := J (u,d)

+ νa(u,λ) + c(u,u,λ) − (σ,λ)Γd
− (f ,λ)Ω + b(p,λ)

+ b(μ,u) − (τ ,u − d)Γd

∀u ∈ H1(Ω), p ∈ L2(Ω), σ ∈ H−1/2(Γd), d ∈ H1/2(Γd),

∀λ ∈ V , μ ∈ L2(Ω), τ ∈ H−1/2(Γd).

(3.4)

Here λ, μ, τ are the Lagrange multipliers for the state variables u, p, σ. By taking
variations with respect to the Lagrange multipliers we obtain (3.2) augmented with
ud = d on Γd. Taking variations with respect to the states u, p, σ we obtain the
weak form of the adjoint equations

νa(v,λ) + c(v,u,λ) + c(u,v,λ) + b(μ,v) + (τ ,v)Γd
= −νa(u,v) ∀v ∈ V ,

b(q,λ) = 0 ∀q ∈ L2(Ω),

(t,λ)Γd
= 0 ∀t ∈ H−1/2(Γd).

(3.5)

Finally, by taking variations with respect to d we obtain the decision equation

ρ(d, r)Γd
+ (τ , r)Γd

= 0 ∀r ∈ H1/2(Γd).(3.6)

Equations (3.2), (3.5), (3.6) are the weak form of the first-order optimality con-
ditions. Extensive discussion on the existence of a solution and the existence of the
Lagrange multipliers can be found in [15, 16]. In [15] the existence of a local minimum
for the optimization problem and the existence of Lagrange multipliers that satisfy
the first-order optimality conditions are asserted.4 Furthermore, uniqueness is shown
for sufficiently small data. Note that in the absence of a Neumann condition (ΓN = ∅)
the controls have to satisfy the incompressibility condition (d · n)Γd

= 0.
The strong form of the adjoint and decision equations can be obtained by using

the following integration by parts formulas:

a(u,v) = −(v,Δu)Ω + ((∇u)n,v)Γ,

c(u,v,λ) = −c(u,λ,v) − ((∇ · u)λ,v)Ω + ((u · n)λ,v)Γ,

b(μ,v) = (∇μ,v)Ω − (μn,v)Γ.

Upon sufficient smoothness we arrive at the strong form of the optimality condi-
tions. Equation (3.1) is the strong form of the constraints. The strong form of the
adjoint equations is given by

−ν∇ · (∇λ + ∇λT) + (∇u)Tλ − (∇λ)u + ∇μ = ν∇ · (∇u + ∇uT) in Ω,

∇ · λ = 0 in Ω,

λ = 0 on Γu,

λ = 0 on Γd,

−μn + ν(∇λ + ∇λT)n + (u · n)λ = −ν(∇u + ∇uT)n on ΓN ,

(3.7)

4The objective functional used in [15] is different from ours. An L4 functional is used for the
matching problems and an H1

Γd
is used for the penalization of ud—resulting in a surface Laplacian

equation for the decision variables.

726 GEORGE BIROS AND OMAR GHATTAS

and (equation for τ)

ν(∇λ + ∇λT)n + ν(∇u + ∇uT)n − τ = 0 on Γd.(3.8)

We may also determine that the strong form of the decision equation is given by

τ = ρd on Γd.(3.9)

In [15] estimates are given for the convergence rates of the finite element approx-
imations to the exact solutions for the optimal control of steady viscous flow. For the
case of boundary velocity control, the basic result is that if the exact solutions are
smooth enough, then provided the Taylor–Hood element is used (for both adjoints
and states), the solution error satisfies the following estimates:

‖u − uh‖0 ≤ O(h3),

‖p− ph‖0 ≤ O(h2),

‖λ − λh‖0 ≤ O(h3),

‖μ− μh‖0 ≤ O(h2).

(3.10)

Here h is the maximum element size, and ‖ · ‖0 is the L2(Ω) norm.

3.2. Discrete and discretized optimality conditions. In our implementa-
tion we have not discretized the continuous forms of the optimality conditions. Instead
we have discretized the objective function and the Navier–Stokes equations and then
used this discretization to form the optimality conditions. In general, discretization
and differentiation (to obtain optimality conditions) do not commute. That is, if A
is the infinite-dimensional (linearized) forward operator and A∗ is its adjoint, then in
general

(A∗)h
= (Ah)T ,

where the subscript h indicates discretization. We will show that for Galerkin ap-
proximation of the steady incompressible Navier–Stokes optimal control problem,
discretization and differentiation do commute.

For the discretized equations we use the following notation:

a(uh,vh) + c(uh,uh,vh) ��� U(u)u,

a(uh,vh) + c(ph,uh,vh) + c(uh,ph,vh) ��� V(u)p,

a(uh,vh) ��� Qu,

b(qh,uh) ��� Pu,

(th,uh)Γd
��� Tu,

(dh, rh)Γd
��� Md.

The discretized form of the Navier–Stokes equations (3.2) is then given by

U(u)u + PTp + TTσ = f1,

Pu = f2,

Tu = Td.

(3.11)

The discrete Lagrangian function is given by

LAGRANGE–NEWTON–KRYLOV–SCHUR METHODS, PART II 727

1

2
uTQu +

ρ

2
dTMd + λT {U(u)u + PTp + TTσ − f1}

+ μT {Pu − f2} + τT {Tu + Td} = 0.
(3.12)

By taking derivatives with respect to the discrete Lagrange multiplier vectors (λ,μ, τ),
we recover the state equations (3.11). By taking derivatives with respect to the dis-
crete state variables (u,p,σ), we obtain the discrete adjoint equations

VT (u)λ + PTμ + TT τ = −Qu,

Pλ = 0,

Tλ = 0.

(3.13)

These equations correspond to the discretization of (3.5) provided that VTλ is the
discretization of a(λ,u)+c(v,u,λ)+c(u,v,λ). The bilinear form a(·, ·) is symmetric
so we omit it from our discussion. If φ denotes the basis function for u, ψv for v, and
ψλ for λ, then the (3 × 3)-block elements for the linearized state and adjoint are∫

Ω

I (∇φ · u)ψv + (∇u)φψv dΩ state element matrix,

∫
Ω

I (∇ψv · u)ψλ + (∇u)Tψλψv dΩ adjoint element matrix.

Therefore, the transpose of the discretized (linearized) state equations coincides with
the discretization of the adjoint equations, i.e.,

(A∗)h = (Ah)T .

One needs to be careful to use the weak form given by (3.5). If (3.7) were used without
employing the reverse integration by parts on the term c(u,v,λ), this would result in a
discretization which is incompatible with the discrete optimization problem (which is
what is presented to the optimization algorithm). It would result in an nonsymmetric
KKT matrix and would possibly prevent the optimizer from converging to a KKT
point. A Petrov–Galerkin formulation would also be incompatible.

In our formulation we do not solve explicitly for σ and τ . We approximate both
tractions and velocity traces in H1(Γd); in this case the stresses can be eliminated. For
a discussion on choice of H1(Γd) for the stresses see [12]. The resulting equations are
equivalent to the formulations described in this section. We use a standard Galerkin
approximation scheme (no upwinding) with Taylor–Hood elements to approximate
the velocities, the pressures, and their adjoints.

We conclude this section with a remark on continuation. To solve a Navier–Stokes
control problem with large Reynolds number, some kind of continuation scheme is
usually needed. We first solve a Stokes-flow optimal control problem (Re0 = 0) and
then we progressively increase the Reynolds number by Re(+) = Re+Δ Re. One could
set u(+) = u + (∂Reu)Δ Re, where ∂Reu can be easily computed through a linearized
forward solve. Since we consider only steady flows, we follow [10] and use a fixed Δ Re,
and simply set u(+) = u; i.e., the initial guess at the new Reynolds number is the
solution from the previous optimization step. Additionally, quasi-Newton information
is carried forward to the next Reynolds number.

4. Numerical results. In this section we investigate the accuracy, performance,
and scalability of the LNKS method via four numerical examples. Numerical approx-
imation and parallel implementation details are described in section 4.1 of part I of

728 GEORGE BIROS AND OMAR GHATTAS

this article. First we examine the finite element approximation convergence rates with
a problem that has a closed form solution. Then we revisit the Poiseuille flow problem
of part I and use it to study the effectiveness of the limited-memory BFGS method
as a preconditioner for the reduced Hessian. In both cases we solve for the bound-
ary conditions that reproduce the exact solution by minimizing a matching velocity
functional.

We then consider the more challenging problem of the control of a flow around
a cylinder. The objective function to be minimized is the rate of energy dissipation
functional. We use this problem to study the LNKS line search algorithm, the effec-
tiveness of the Krylov–Schur preconditioner for highly nonlinear problems, and the
heuristics we introduced in section 2. The last test problem is the optimal control of
a flow around a wing.

4.1. Finite element approximation error. In this section we use a model
problem to verify the convergence rate estimates given in the previous section. The
velocity and pressure are given by

u∗(x, y, z) = {1 − (x2 + y2)2, x,−y}T , p∗(x, y, z) = x2 + y2 − z2,

which satisfy the Navier–Stokes equations. We restrict this solution to a cylindrical
domain and choose a part of its boundary as the control domain Γd. We define the
velocity on the circumferential walls to be the decision variables. On Γ/Γd we set
u = u∗. The objective function is given by

J (u,ud, p) =
1

2

∫
Ω

(u∗ − u)2 dΩ.

Since the boundary conditions for (u, p) on Γ/Γd are compatible with (u∗, p∗), the
values for the objective function and the Lagrange multipliers are equal to zero at the
minimum.

Table 4.1 gives convergence rates for the state variables and the Lagrange mul-
tipliers. The results are in good agreement with the theoretical predictions. The
convergence rate for the velocities and their adjoints is approximately 2.92 (compar-
ing errors between the first and second rows) and 2.96 (comparing errors between the
second and third rows). For the pressures and their adjoints the convergence rate is
1.96 and 1.97, respectively.

Table 4.1

Convergence rate of the finite element approximation for a matching velocity problem. Here n
is the number of elements and h is the cube root of the volume of the maximum inscribed sphere
inside a tetrahedron of the finite element mesh. Near-optimal convergent rates can be observed for
the state and adjoint variables.

n h ‖u∗ − uh‖0 ‖p∗ − ph‖0 ‖λ∗ − λh‖0 ‖μ∗ − μh‖0

124,639 0.80 1.34 × 10−4 2.01 × 10−5 3.88 × 10−4 1.76 × 10−5

298,305 0.53 4.40 × 10−5 9.00 × 10−6 1.19 × 10−4 7.90 × 10−6

586,133 0.40 1.70 × 10−5 5.20 × 10−6 5.00 × 10−5 4.50 × 10−6

4.2. Poiseuille flow. The Poiseuille flow is a stable solution of the Navier–
Stokes equations for small Reynolds numbers. We use this example to study the ef-
fectiveness of the limited-memory BFGS method as a preconditioner for the reduced
Hessian. Since the optimization problem is nonlinear, LNKS takes several iterations

LAGRANGE–NEWTON–KRYLOV–SCHUR METHODS, PART II 729

and curvature information can be built up. Quasi-Newton theory predicts that Bz

approaches Wz as the iterates get closer to the solution. Therefore, we expect the ef-
fectiveness of the preconditioner to improve as the optimization algorithm progresses.
We store 30 vectors for the limited-memory BFGS preconditioner.

For this set of tests we fix the size and granularity of the problem. The target
Reynolds number is 500. We start at Reynolds number 100 and use a continuation
step Δ Re = 200. Continuation is not used to initialize the state and control variables,
but only to carry BFGS information forward to the next Reynolds number.

The forward problem preconditioner is based on a block factorization

[
I −V−1PT

0 I

] [
V−1 0
0 S−1

] [
I 0

−PV−1 I

]
,

where S := −PV−1PT is the Schur complement for the pressure. Based on this
factorization, the preconditioner is defined by replacing the exact solves V−1 with
domain decomposition approximations Ṽ−1. To “invert” the pressure Schur comple-
ment S we use several iterations of the two-step stationary method described in part I
(section 3.2).

In QN-RSQP we use QMR for the linearized Navier–Stokes solves, preconditioned
with an overlapping additive Schwarz method with ILU(1) in each subdomain.5 Re-
sults for a problem with 21,000 state and 3,900 design variables on 4 processors and
for a sequence of three Reynolds numbers are presented in Table 4.2. The number
of KKT iterations in LNKS-I reveals the efficacy of the BFGS preconditioner. This
number drops from an average 48 iterations to 38. The effect of BFGS in LNKS-II is
hidden since the KKT iterations are dominated by the ill-conditioning of the forward
and adjoint operators (in LNKS-I these solves are exact in each iteration). Overall, we
can observe that LNKS reduces significantly the execution time relative to QN-RSQP.

The Newton solver performed well, requiring just 3 iterations to converge. In
these problems we did not use inexact Newton criteria to terminate the KKT solves
early; instead they were fully converged at each iteration. No line search was used in
the LNKS variants; we used the l1-merit function for the QN-RSQP.

It is rather surprising that the quasi-Newton approximation works well as a pre-
conditioner within the Newton method, whereas it stagnates when used alone to
drive the QN-RSQP method. One explanation could be that the QN-RSQP method
in these tests suffered the Maratos effect. In our subsequent tests we switched to a
second-order correction method [21, p. 570].

4.3. Flow around a cylinder. All the problems examined so far were useful in
verifying certain aspects of the LNKS method, but they are linear or mildly nonlinear.
In order to test LNKS further we consider a highly nonlinear problem: that of flow
around a cylinder with a dissipation-type objective function. The cylinder is anchored
inside a rectangular duct, much like a wind tunnel. A quadratic velocity profile is
used as an inflow Dirichlet condition and we prescribe a traction-free outflow. The
decision variables are defined to be the velocities on the downstream portion of the
cylinder surface. We have investigated flows in the laminar steady-state regime. For
exterior problems the transition Reynolds number is 40 but for the duct problem we
expect higher Reynolds numbers due to the dissipation from the duct walls.

Figures 1 and 2 illustrate optimal solutions for different Reynolds numbers. LNKS
eliminates the recirculation region and secondary flows downstream of the cylinder. In

5For definitions of ILU(0) and ILU(1) see [22].

730 GEORGE BIROS AND OMAR GHATTAS

Table 4.2

Work efficiency of the proposed preconditioners for a Poiseuille flow matching problem for
fixed size and fixed granularity as a function of the Reynolds number. Recall that LNKS does not
use any preconditioner for the KKT system, LNKS-I uses a KKT preconditioner that involves two
linearized exact forward/adjoint solves per iteration, and LINKS-II uses a KKT preconditioner that
involves just the application of the forward problem preconditioner. Re is the Reynolds number;
N/QN denotes the number of outer iterations. The number of iterations for the KKT system is
averaged across the optimization iterations. The problem has 21,000 state equations and 3,900
control variables; results are for 4 processors of the T3E-900. Wall-clock time is in hours.

Re Method N/QN iter KKT iter ‖gz‖ Time

100 QN-RSQP 262 — 1 × 10−4 5.9

LNK 3 186,000 9 × 10−6 7.1

LNKS-I 3 48 9 × 10−6 3.2

LNKS-II 3 4,200 9 × 10−6 1.3

300 QN-RSQP 278 — 1 × 10−4 6.4

LNK 3 198,000 9 × 10−6 7.6

LNKS-I 3 40 9 × 10−6 3.1

LNKS-II 3 4,300 9 × 10−6 1.4

500 QN-RSQP 289 — 1 × 10−4 7.3

LNK 3 213,000 9 × 10−6 9.0

LNKS-I 3 38 9 × 10−6 3.0

LNKS-II 3 4,410 9 × 10−6 1.4

order to avoid the excessive suction that we observed in the Stokes case, we imposed
Dirichlet boundary conditions on the outflow of the domain. The incompressibility
condition prevents the optimizer from driving the flow inside the cylinder.6

Our experiments on the Stokes optimal control problem demonstrated the de-
pendence of the performance of the Krylov–Schur iteration on the forward problem
preconditioner. Thus before we discuss results on the LNKS algorithm we cite rep-
resentative performance for the Navier–Stokes forward solver. We use an inexact
Newton’s method combined with the preconditioner we presented in part I. A block-
Jacobi ILU(0) preconditioner is used for the velocity block as well as for the pressure
mass matrix (scaled by 1/Re); the latter is used to precondition the pressure Schur
complement block. ILU(1) would have been a better choice, but memory limitations
prevented us from doing so.7

Table 4.3 gives statistics for three different Reynolds numbers and for three differ-
ent problem sizes. We report the (aggregate) number or Krylov iterations required to
converge the Newton solver, the number of Newton iterations, and the total execution
time. For these runs we did not use continuation, but we did use an inexact Newton
method. The time for a forward solve has increased almost sixfold in comparison with
the linear Stokes solver (part I, Table 4.1). However the time per Newton iteration is
roughly the same as that taken in the linear Stokes case. For example, in the 128 pro-
cessor problem and for Reynolds number 30, the average (Krylov) iteration count is
1005, whereas in the linear case it is 882. Similarly, the average time per Newton

6When Dirichlet conditions are specified everywhere on Γ, then
∫
Γ u · n dΓ should be zero. The

constraint should be imposed either explicitly or implicitly by using a proper function space. In our
implementation we use a penalty approach by modifying the objective function.

7Our matrix storage includes the state Jacobian, the Hessian of the constraints, and the Hessian
of the objective—substantially more than required for the forward solver. PSC’s T3E-900 (which
hosted the majority of our computations) has just 128 MB of memory per processor.

LAGRANGE–NEWTON–KRYLOV–SCHUR METHODS, PART II 731

(a) (b)

(c) (d)

Fig. 1. The top row depicts stream tubes of the flow for Reynolds number 20 and the bottom row
for Reynolds number 40. The left column depicts the uncontrolled flow. The right column depicts
the controlled flow. These images illustrate the flow pattern on the downstream side of the cylinder.

step is 401 seconds. The time for the Stokes solver is little higher, 421 seconds.8 We
conclude that the forward preconditioner performs reasonably well.

Table 4.4 shows results for 32, 64, and 128 processors of a T3E-900 for increas-
ing problem sizes. Results for two different preconditioning variants of LNKS are
presented: the exact (LNKS-I) and inexact (LNKS-II) version of the Schur precondi-
tioner. The globalized LNKS algorithm is compared with QN-RSQP. In LNKS-II-TR
we activate the inexact Newton method. In this example we have used continuation to
warm start the Re = 60 problem. The reduced Hessian preconditioner is a combina-
tion of the BFGS and two-step preconditioners (as we described in part I, section 3.2).
In the line search we use the augmented Lagrangian merit function.

Based on the overall wall-clock time reported in the rightmost column of Ta-
ble 4.4, we observe that for this problem, QN-RSQP was able to converge, but only
several days of wall-clock time. LNKS-I, although faster, does not reduce the required
time significantly. LNKS-II, which avoids the exact forward/adjoint solves, is much

8The reason for this is related to the scaling between the velocity and pressure block of the forward
problem. Increasing the Reynolds number improves this scaling and thus improves the eigenvalue
distribution. Of course this is true up to certain Reynolds number. For higher values the Jacobian
becomes highly nonsymmetric and ill-conditioned.

732 GEORGE BIROS AND OMAR GHATTAS

(a) (b)

(c) (d)

Fig. 2. The top row depicts stream tubes of the flow for Reynolds number 20 and the bottom row
for Reynolds number 40. The left column depicts the uncontrolled flow. The right column depicts
the controlled flow. The decision variables are Dirichlet boundary conditions for the velocities on
the downstream half of the cylinder surface. Here we see the flow from the upstream side of the
cylinder. In (c) we can clearly identify the two standing vortices formed on the lower left corner of
the image.

Table 4.3

Forward solver efficiency in relation to problem size and Reynolds number for three-dimensional
flow around a cylinder. PEs is processor number; n is the problem size; Re is the Reynolds number;
qmr is the number of aggregate Krylov iterations required to satisfy ‖r‖/‖r0‖ ≤ 1×10−7; nw is the
number of Newton steps to satisfy ‖c‖/‖c0‖ ≤ 1 × 10−6; and t is time in seconds. The runs were
performed on a T3E-900.

Re = 20 Re = 30 Re = 60

PEs n qmr nw t qmr nw t qmr nw t

32 117.048 2,905 5 612 3,467 7 732 2,850 6 621

64 389,440 4,845 5 1,938 5,423 7 2,101 5,501 7 2,310

128 615,981 6,284 5 2,612 8,036 8 3,214 7,847 7 3,136

better—4 to 5 times faster than QN-RSQP. Even more dramatic is the acceleration
achieved by using the inexact version of LNKS, i.e., LNKS-II-TR. The inexactness
did not interfere at any point with the merit function and in all cases we observed
quadratic convergence. Overall, LNKS-II-TR runs more than 10 times faster than

LAGRANGE–NEWTON–KRYLOV–SCHUR METHODS, PART II 733

Table 4.4

The table shows results for 32, 64, and 128 processors of a Cray T3E for a roughly doubling
of problem size. Results for the QN-RSQP and LNKS algorithms are presented. QN-RSQP is
quasi-Newton reduced-space SQP; LNKS-I requires two exact linearized forward/adjoint solves per
Krylov step combined with the two-step-stationary-BFGS preconditioner for the reduced Hessian;
in LNKS-II the exact solves have been replaced by approximate solves; LNKS-II-TR uses an exact
Newton method that avoids fully converging the KKT system for iterates that are far from a solution.
Time is wall-clock time in hours on a T3E-900. Continuation was used only for Re = 60.

Re = 30

States

Controls
Method N or QN iter Average KKT iter Time (hours)

117,048 QN-RSQP 161 — 32.1

2,925 LNKS-I 5 18 22,8

(32 procs) LNKS-II 6 1,367 5,7

LNKS-II-TR 11 163 1.4

389,440 QN-RSQP 189 — 46.3

6,549 LNKS-I 6 19 27.4

(64 procs) LNKS-II 6 2,153 15.7

LNKS-II-TR 13 238 3.8

615,981 QN-RSQP 204 — 53.1

8,901 LNKS-I 7 20 33.8

(128 procs) LNKS-II 6 3,583 16.8

LNKS-II-TR 12 379 4.1

Re = 60

States

Controls
Method N or QN iter Average KKT iter Time (hours)

117,048 QN-RSQP 168 — 33.4

2,925 LNKS-I 6 20 31,7

(32 procs) LNKS-II 7 1,391 6,8

LNKS-II-TR 11 169 1.5

389,440 QN-RSQP 194 — 49.1

6,549 LNKS-I 8 21 44.2

(64 procs) LNKS-II 7 2,228 18.9

LNKS-II-TR 15 256 4.8

615,981 QN-RSQP 211 — 57.3

8,901 LNKS-I 8 22 45.8

(128 procs) LNKS-II 8 3,610 13.5

LNKS-II-TR 16 383 5.1

QN-RSQP (5.1 hours compared to 57.3 hours). This is consistent with the perfor-
mance improvements we observed for the Stokes flow control problem.

Despite the high degree of nonlinearity of the external cylinder flow problem, the
augmented Lagrangian globalization performed robustly and we did not have problems
converging the optimality equations. In this example, the QN-RSQP safeguard was
never activated due to detection of a negative curvature direction. Finally, it is worth
noting that the optimization solution is found at a cost of 5 to 6 flow simulations—
remarkable considering that there are thousands of control variables.

4.4. Flow around a Boeing 707 wing. For our last test we solved for the
optimal flow control around a Boeing 707 wing. In this problem the control variables

734 GEORGE BIROS AND OMAR GHATTAS

Table 4.5

In this table we present results for the wing flow problem, which has 710,023 state and 4,984 de-
cision variables. The runs were performed on 128 processors on a T3E-900. Here Re is the Reynolds
number; iter is the aggregate number of Lagrange–Newton iterations—the number in parentheses is
the number of iterations in the last continuation step; time is the overall time in hours; qn is the
number of QN-RSQP steps taken as a safeguard for Newton (the number in parentheses reports the
number times a negative curvature was detected); minc is the number of nonmonotone line search
iterations—in parentheses is the number of times this heuristic failed. The globalized LNKS-II-TR
algorithm is used. The Lagrange–Newton solver was stopped after 50 iterations. In the last column
Re × Δf gives the reduction of the objective function (with the respect the uncontrolled flow). “no
cont” means that continuation was not activated.

Re Iter Time qn Minc ‖g + AT λ‖ ‖c‖ Re × Δf

100 no cont 19 4.06 2 4 9 × 10−6 9 × 10−6 4.065

cont

200 no cont 39 7.8 6(1) 2 9 × 10−6 9 × 10−6 5.804

cont 20(10) 4.6 0 3 9 × 10−6 9 × 10−6 5.805

300 no cont 48 11.8 16(3) 0 9 × 10−6 9 × 10−6 6.012

cont 29(11) 6.4 0 2 9 × 10−6 9 × 10−6 6.016

400 no cont 50 13.6 40(3) 0 2 × 10−4 3 × 10−3 3.023

cont 33(11) 7.36 0 6(1) 9 × 10−6 9 × 10−6 8.345

500 no cont 50 16.7 42(5) 0 4 × 10−2 9 × 10−2 1.235

cont 39(14) 9.09 1 5(1) 9 × 10−6 9 × 10−6 10.234

are the velocities (Dirichlet conditions) on the downstream half of the wing. The
Reynolds number (based on the length of the wing root) was varied from 100 to 500,
and the angle of attack was fixed at 12.5 degrees. The problem size is characterized
by 710,023 state variables and 4,984 control variables.

Table 4.5 summarizes the results from this set of experiments. The main purpose
of this analysis is to compare continuation with the other globalization techniques. In
addition we employ the double inexactness idea; that is, we solve inexactly in both
the continuation loop and the Lagrange–Newton loop. It is apparent that the use of
continuation is crucial in this problem. Without it, and for Reynolds numbers larger
than 300, LNKS was forced to terminate early (we set the Lagrange–Newton iteration
bound to 50). In the last row (Re = 500) and when we did not use continuation,
LNKS ends up switching to a QN-RSQP step 42 times out of a total of 50 iterations;
a negative curvature direction was detected 5 times. As a result LNKS was terminated
without satisfying the convergence criteria. Furthermore, the small reduction in the
objective function and the residuals (last three columns) indicate small progress at
each optimization step. Note that in these examples we did not activate backtracking
in the continuation parameter.

It could be argued that a reason the algorithm stagnated was the early termina-
tion of the Krylov–Schur solver due to inexactness. We did not conduct exhaustive
experiments to confirm or reject this. However, our experience on numerous problems
suggests that it is the ill-conditioning and nonlinearity of these problems that leads to
stagnation and not the inexactness. In our tests (systematic or during debugging and
development) it was never the case that a run with exact solves converged in reason-
able time, and the inexact version did not. On the contrary, inexactness significantly
reduced execution times.

On the other hand, when we used continuation (consisting of relatively large steps
on the Reynolds number), the algorithm converged successfully after 39 Lagrange–
Newton iterations. Reverting to QN-RSQP was required just once. In the minc

LAGRANGE–NEWTON–KRYLOV–SCHUR METHODS, PART II 735

column of Table 4.5 we monitor the nonmonotone line search criterion. Recall that if
the merit function line search on the LNKS step fails, we perform a line search with a
different merit—the KKT residual (i.e., the first-order optimality conditions). If the
step gets accepted, via backtracking, we use it as an update direction. Eventually,
we insist that the (augmented Lagrangian) merit gets reduced. This strategy was
successful 20 times and failed only twice.9

Finally we conclude with some comments on the physics of this problem. Figures
3 and 4 depict snapshots of the uncontrolled and controlled flow for Reynolds num-
ber 500. The wing-tip vortices are eliminated by optimization. But at what cost?
Figure 5 shows a snapshot of the (scaled) control variables—the velocity boundary
conditions. The image illustrates that optimization has created a perforated wing,
which means a significant reduction in lift (the plane will never leave the ground!).
Changing the problem to include a penalty on reduction in lift would remedy the
difficulty; this example demonstrates the importance of including all relevant desired
goals in the objective, lest optimization defeat them.

5. Conclusions. In this second part of our two-part article on the LNKS method
for PDE-constrained optimization, we have presented the algorithmic components of
the (outer) Lagrange–Newton solver, including such globalization strategies as line
search, quasi-Newton safeguarding, and parameter continuation, and inexactness in
the inner linear solver and its interaction with the line search. We studied the ap-
plication of the LNKS method to a set of challenging viscous flow optimal boundary
control problems that included such compounding factors as three-dimensional un-
structured meshes, multicomponent coupling, large problem size, nonlinearity, and
ill-conditioning. Our experiments demonstrate the efficacy and scalability of the
LNKS method. The Krylov–Schur preconditioner maintained its effectiveness, the
Lagrange–Newton solver exhibited mesh-independent convergence, and inexact New-
ton steps dramatically accelerated the method. A combination of line searching,
quasi-Newton safeguarding, and continuation ensured global convergence.

The results reveal at least an order of magnitude improvement in solution time
over popular quasi-Newton RSQP methods, rendering tractable some three-dimen-
sional problems with close to a million state variables and several thousand control
variables on parallel computers. Indeed, the optimum is often found in a small mul-
tiple of the cost of a single simulation.

The LNKS method is more suitable for steady PDE constraints. Although the
method is in principle applicable to time-dependent problems, it is not recommended
for three-dimensional unsteady problems: because LNKS sees the entire space-time
domain, it requires large memory for the state and adjoint variables. Moreover, the
opportunities for economizing by hiding the nonlinear and linear forward iterations
behind the optimization iterations are limited, since the nonlinear systems at each time
step are usually mildly nonlinear and well-conditioned (for time-accurate integration).
We are investigating various ways to address this issue. Another important extension
of LNKS is the treatment of inequality constraints via interior point methods.

Acknowledgments. We thank the PETSc development group at Argonne Na-
tional Lab for making this work possible. We also thank Jonathan Shewchuk for
providing the meshing and partitioning routines Pyramid and Slice, and David Mar-
cum for providing the meshing module AFLR. Finally, we thank David Keyes, David

9In general, using the residual of the KKT conditions to test a step can compromise robustness
since the optimizer may become trapped in a saddle point or a local maximum.

736 GEORGE BIROS AND OMAR GHATTAS

(a) (b)

(c) (d)

Fig. 3. The left column depicts streamlines of the uncontrolled flow, while the right depicts
streamlines of the controlled flow. Top row gives a side snapshot of the flow; bottom row gives a
front view. The Reynolds number (based on the length of the root of the wing) is 500.

Young of Boeing, and the other members of the TAOS project—Roscoe Bartlett,
Larry Biegler, and Andreas Wächter—for their useful comments.

LAGRANGE–NEWTON–KRYLOV–SCHUR METHODS, PART II 737

(a) (b)

(c) (d)

Fig. 4. The left column depicts streamlines of the uncontrolled flow. The right column depicts
streamlines of the controlled flow. Top row gives a snapshot of the flow from below; bottom row
gives a rear view. Reynolds number is 500. We can clearly identify the wing tip vortices in the left
images. The images in the right column depict the flow with the wing boundary conditions modified
by optimization; the vorticity is eliminated (but so is the lift, since it does not enter into the objective
function).

738 GEORGE BIROS AND OMAR GHATTAS

Fig. 5. Snapshot of the (Dirichlet control) velocity field on the wing.

REFERENCES

[1] E. L. Allgower and K. Georg, Introduction to Numerical Continuation Methods, SIAM,
Philadelphia, 2003.

[2] I. Babuška, The finite element method with Lagrangian multipliers, Numer. Math., 20 (1973),
pp. 179–192.

[3] G. Biros and O. Ghattas, Parallel Lagrange–Newton–Krylov–Schur methods for PDE-
constrained optimization. Part I: The Krylov–Schur solver, SIAM J. Sci. Comput., 27
(2005), pp. 687–713.

[4] P. T. Boggs and J. W. Tolle, A strategy for global convergence in a sequential quadratic
programming algorithm, SIAM J. Numer. Anal., 26 (1989), pp. 600–623.

[5] J. E. Dennis, Jr., M. El-Alem, and M. C. Maciel, A global convergence theory for general
trust-region-based algorithms for equality constrained optimization, SIAM J. Optim., 7
(1997), pp. 177–207.

[6] S. C. Eisenstat and H. F. Walker, Globally convergent inexact Newton methods, SIAM J.
Optim., 4 (1994), pp. 393–422.

[7] S. C. Eisenstat and H. F. Walker, Choosing the forcing terms in an inexact Newton method,
SIAM J. Sci. Comput., 17 (1996), pp. 16–32.

[8] R. Fletcher, Practical Methods of Optimization, 2nd ed., John Wiley and Sons, Chichester,
UK, 1987.

[9] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, London,
New York, 1981.

[10] M. D. Gunzburger, Finite Element Methods for Viscous Incompressible Flows, Academic
Press, Boston, 1989.

[11] M. D. Gunzburger, ed., Flow Control, IMA Vol. Math. Appl. 68, Springer-Verlag, New York,
1995.

[12] M. D. Gunzburger and S. L. Hou, Treating inhomogeneous essential boundary conditions in
finite element methods and the calculation of boundary stresses, SIAM J. Numer. Anal.,
29 (1992), pp. 390–424.

[13] M. D. Gunzburger and R. A. Nicolaides, eds., Incompressible Computational Fluid Dy-
namics, Cambridge University Press, Cambridge, UK, 1993.

[14] M. Heinkenschloss and L. N. Vicente, Analysis of Inexact Trust-Region SQP Algorithms,
Technical report TR99-18, Department of Computational and Applied Mathematics, Rice
University, Houston, TX, 1999.

LAGRANGE–NEWTON–KRYLOV–SCHUR METHODS, PART II 739

[15] L. S. Hou, Analysis and Finite Element Approximation of Some Optimal Control Problems
Associated with the Navier-Stokes Equations, Ph.D. thesis, Carnegie Mellon University,
Pittsburgh, PA, 1989.

[16] L. S. Hou and S. S. Ravindran, Numerical approximation of optimal flow control problems
by a penalty method: Error estimates and numerical results, SIAM J. Sci. Comput., 20
(1999), pp. 1753–1777.

[17] C. T. Kelley and E. W. Sachs, Truncated Newton methods for optimization with inaccurate
functions and gradients, J. Optim. Theory Appl., 116 (2003), pp. 83–98.

[18] C. T. Kelley and D. E. Keyes, Convergence analysis of pseudo-transient continuation, SIAM
J. Numer. Anal., 35 (1998), pp. 508–523.

[19] F. Leibfritz and E. W. Sachs, Inexact SQP interior point methods and large scale optimal
control problems, SIAM J. Control Optim., 38 (1999), pp. 272–293.

[20] S. G. Nash and A. Sofer, Linear and Nonlinear Programming, McGraw-Hill, New York, 1996.
[21] J. Nocedal and S. J. Wright, Numerical Optimization, Springer-Verlag, New York, 1999.
[22] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS, Boston, 1996.
[23] K. Schittkowski, The nonlinear programming method of Wilson, Han, and Powell with an

augmented Lagrangian type line search function, Numer. Math., 38 (1981), pp. 83–114.
[24] T. Steihaug, The conjugate gradient method and trust regions in large scale optimization,

SIAM J. Numer. Anal., 20 (1983), pp. 626–637.
[25] H. Yamashita, A globally convergent constrained quasi-Newton method with an augmented

Lagrangian type penalty function, Math. Program., 23 (1982), pp. 75–86.

