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Abstract. We propose and study parallel numerical algorithms for simulation of flows with elastic membranes, such as red blood cells. The
challenges of modeling such flows include accurately resolving the interface motion and enforcing the appropriate interface mechanics. We propose
a phase field Eulerian method for implicitly capturing the location of the dynamic interface between two fluids. In addition, for flows with elastic
membranes separating the fluids, we present a phase field formulation for the membrane stresses. The method we propose avoids the computational
geometry complexities associated with fully Lagrangian or front-tracking Eulerian methods. These complexities are particularly pronounced on
parallel computers. The phase field formulation is discretized by a combined continuous/discontinuous Galerkin method, which lends itself to an
inherently parallel implementation. We present a block Schur-complement preconditioner for the coupled membrane-flow system that neutralizes
the ill-conditioning due to disparate material properties. Parallel performance results demonstrate the efficacy of this preconditioner.

1. Introduction and motivation. In this paper we propose and study parallel numerical algorithms for simula-
tion of flows with elastic interfaces. Such problems belong to the general class of flows of multi-fluids. Modeling
such flows necessitates resolution of dynamic interfaces, which presents mathematical, numerical, and computational
challenges. Physical examples of such flows include the mixing of two immiscible fluids, the flow of blood cells
through capillaries and arteries, and the transport of contaminants in groundwater.

Our interest is in cell-scale simulations of blood flow. Blood is composed primarily of red blood cells (RBCs)
and plasma. An RBC can be modeled as a Newtonian fluid (hemoglobin) encapsulated by an elastic membrane,
while plasma is essentially Newtonian. Other components of blood, such as white blood cells and platelets, occupy a
negligible volume fraction of blood. This inhomogeneous mixture of RBCs in plasma can exhibit such macroscopic
non-Newtonian behavior as shear-thinning, viscoelasticity, shear-induced anisotropy, and phase separation. This be-
havior could be predicted by cell-scale simulations that resolve individual cell deformations and interactions with the
surrounding plasma.

One of the motivating problems for cell-scale simulations of blood flow is the design of ventricular assist devices
(VADs), for which it is crucial to understand blood damage at the cellular level [4, 5]. Current blood flow models
used in the design of artificial hearts and heart-assist devices are macroscopic, treating blood as a homogeneous
continuum. Rather than resolve individual cellular interactions, macroscopic blood flow models distribute the cell-
scale effects into the continuum. However, continuum models of cellular interactions, such as the red blood cell–
plasma interface forces, are extremely difficult to obtain experimentally. Cell-scale simulations can provide insight
into the physical mechanisms occuring and suggest appropriate macroscopic continuum models. Furthermore, critical
high shear regions in VADs are often characterized by dimensions on the order of a few tens of microns, such as
in bearings and at rotor tips. Modeling blood damage in such regions is crucial; yet the small length scales lead to
breakdown in homogeneous blood models, and cell-scale simulations become necessary.

2. Methods for modeling flows with dynamic interfaces. There are three primary challenges to address when
numerically modeling flows with dynamic interfaces, such as flows of RBCs. First, the numerical method must
accurately resolve the complex motion of the interface in time and space. Second, the appropriate interface mechanics,
such as surface tension, must be enforced. Finally, the numerical method must be computationally tractable, efficient,
and scalable.

Many numerical techniques have been suggested for representing the motion and deformation of a dynamic fluid-
fluid interface. In general, these methods can be distinguished by three characteristics:

• The definition of the interface and its deformation. The interface is either defined explicitly, also known as
front-tracking, or implicitly, sometimes called front-capturing. An explicit method, through the use of marker
particles or grid points, maintains the interface as a sharp discontinuity and tracks its motion. No modeling
is required to define interface. An implicit scheme, which does not explicitly locate the interface, solves an
additional set of field equations describing the motion of the interface. The location of the interface is usually
reconstructed from the field equations.

• The coordinate framework and discretization of the domain. Generally, a choice is made between a La-
grangian (material) framework and an Eulerian (spatial) framework. In the Lagrangian framework, the fluid
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flow is observed with a set of fluid particles that move with the flow over time. Generally, the topology of the
interface is embedded in the discretization of the domain. As the interface deforms, the material points move
with that deformation, maintaining a sharp interface. From a finite element perspective, large deformations
may result in degenerate elements, necessitating re-discretization of the domain. In an Eulerian framework,
the fluid flow is observed with a set of spatial points. Generally, a fixed discretization is used, eliminating the
need for remeshing, except as increased resolution is required. However, because the interface may not be
embedded in the domain discretization, the interface must be resolved through other means.

• The coupling of the interface forces. In a front-tracking method, the location of the interface is exactly known.
Interfacial forces, such as surface tension, can be applied directly at the interface. A front-capturing method
does not exactly resolve the location of the interface; thus, interfacial forces are often smeared across a finite
region near the interface.

Numerical methods for dynamic interfaces usually fall into the categories of front-tracking Lagrangian methods, such
as pure Lagrangian [1] or Arbitrary Lagrangian Eulerian [12] methods; front-capturing Eulerian methods, such as
volume of fluid [10, 23], level set method [18, 25], and phasefield [28] methods; or front-tracking Eulerian methods,
such as immersed boundary [19, 27], immersed interface [15], fictitious domain [8], distributed Lagrange multiplier
[13], and embedded boundary [3, 11] methods.

Front-tracking Lagrangian methods have the advantages that the interface is sharply resolved, the material descrip-
tion is natural for elastic interfaces, and the numerics are often simplified due to the Lagrangian form of the equaitons.
The major disadvantage, however, is in the computational geometry required to maintain quality propagating meshes
as they conform to dynamic interfaces, which is particularly difficult on highly parallel computers [1]. The absence of
any reported 3D parallel Lagrangian implementations for the flow of elastic bodies undergoing large translations and
rotations attests to these difficulties.

Front-capturing Eulerian methods are attractive for interfaces and boundaries undergoing large deformations and
topological changes. The primary advantage is their ability to capture large deformations of the interface without
requiring the grid to be rediscretized. Rather than explicitly tracking the interface, these methods reconstruct it as an
isocontour of a field variable. This results in the cleanest parallel implementation of the three classes of methods; but
due to the lack of explicit treatment, interfacial forces are generally smeared over a small region surrounding the inter-
face. Moreoever, elasticity is an inherently Lagrangian quantity, requiring knowledge of the reference configuration
of the body relative to its current position, so special techniques must be devised to incorporate elastic interfaces.

Front-tracking Eulerian methods occupy an intermediate position between explicit Lagrangian and implicit Eule-
rian methods. The interface is explicitly tracked using a Lagrangian representation, and embedded within a fixed-mesh
Eulerian problem domain that does not conform to the interface motion. Interfacial forces, such as surface tension,
are coupled between the interface and the domain as body forces applied at grid points in the vicinity of the interface.
Computational geometry is not as complex as for Lagrangian methods, but not as straightforward as in front-capturing
Eulerian methods due to the need to explicitly track the interface, which complicates parallel implementations.

We conclude that for problems of simulating flows with numerous elastic membranes undergoing large rotations
and translations, front-capturing Eulerian methods offer the most straighforward path to achieving large-scale par-
allelism. The major barriers that must be overcome are development of stable Eulerian models for flow-membrane
interaction and efficient methods for their numerical approximation and parallel implementation. Our approach is
based on a phasefield model to distinguish interiors and exteriors of cells, a phasefield Eulerian model for elastic
interfaces, discontinuous/continuous Galerkin schemes for the numerical approximation, and operator split/domain
decomposition solvers. In this note we give an overview of the methods and provide preliminary scalability and per-
formance data on up to 64 processors of the AlphaServer cluster at the Pittsburgh Supercomputing Center for some
model 2D and 3D problems. A longer article will contain simulations with multiple interacting cells on a large con-
figuration of the machine. Due to the Eulerian formulation, simulating flows of multiple cells on multiple processors
presents no special difficulties other than longer run times.

3. A phasefield Eulerian model for flows with elastic membranes. In this section we give an overview of
an Eulerian phasefield continuum mechanics model for the flow of viscous incompressible fluids enclosed by elastic
membranes, embedded with another viscous incompressible fluid. Details on the derivation of the model and an
analysis of its stability can be found in [9].

3.1. The phase variable. The phase variable, φ(x, t), an order parameter, is defined for a two-phase system of
incompressible fluids such that

φ(x, t) =

⎧⎨
⎩

+1 x ∈ ΩA(t)
0 x ∈ Γ(t)

−1 x ∈ ΩB(t)
, (3.1)
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where ΩA and ΩB are the regions occupied by fluid A and fluid B and Γ is the interface between Ω A and ΩB . For
immiscible fluids, the phase variable uniquely defines the density, and similarly other material properties, at every
point (x, t) in Ω as

ρ(x, t) =
1 + φ(x, t)

2
ρA +

1 − φ(x, t)
2

ρB, (3.2)

where ρA and ρB are the densities of fluids A and B, respectively.
As defined, φ(x, t) is an Eulerian (or spatial) quantity, dependent on the spatial coordinate x and time t. The

equivalent Lagrangian (or material) description, Φ(X) = φ(x(X, t), t), is independent of time; therefore, the material
time derivative is zero, or Φ′ = 0. The equivalent Eulerian expression is

φt + v · ∇φ = 0. (3.3)

Physically, this equation describes the phase at every spatial point x ∈ Ω at time t for a given velocity field v.

3.2. Balance of momentum and mass. The balance of linear momentum and mass for incompressible, Newto-
nian fluids requires that

ρ (vt + (v · ∇) v) − div (pI + µD(v)) + T ) = ρ f, (3.4)

ρt + ∇ · (ρv) = 0, (3.5)

where v is the fluid velocity, p the fluid pressure, f an externally applied force, µ the fluid viscosity, D(v) =
1
2

(∇v + (∇v)T
)

is the stretching tensor of the velocity field, and T is the Cauchy stress of the elastic membrane.
Substituting the expression (3.2) for density in terms of phase variable into the mass equation (3.5), and making use
of the conservation of phase relation (3.3), gives the condition

div(v) = 0 (3.6)

Thus we may take (3.3), (3.4), and (3.6) as the governing equations.

3.3. The elastic membrane. In this section we describe the model for the elastic membrane and its incorporation
into the balance of momentum equation (3.4). The Cauchy stress for an elastic membrane is expressed as

Ts =
4
Js
RsC(Es)RT

s (3.7)

where Rs and Es are the rotation and strain tensors of the membrane and C is the elasticity tensor. In this work, we
restrict ourselves to isotropic elastic membranes, for which the constitutive assumption is that

C(Es) = αEs + β tr(Es)I,

where α and β are the Lamé parameters. The phase field approximation for the Cauchy stress in (3.7) is

T � 4
J
RsC(Es)RT

s δ,

where δ = |∇Xφr(X)| =
∣∣FT∇xφ(x)

∣∣ localizes the stress to the interface. For incompressible fluids, J = det(F ) =
1. To avoid the explicit computation of δ, it can be absorbed into R s and Es as Řs = Rsδ

1/4 and Ěs = Esδ
1/2.

Therefore, the membrane stress becomes

T � 4 ŘsC(Ěs)ŘT
s

and the equations for the evolution of the membrane rotations and strain (under small strain assumptions) are

˙̌Rs = W (v)Řs

˙̌Es = ŘT
s D(v)Řs,

whereW (v) = 1
2

(∇v − (∇v)T
)

is the skew part of the velocity gradient tensor. Appropriate initial conditions for an
initially unstrained membrane are Rs(0) = (I −N ⊗N) and Es(0) = 0.
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3.4. Summary of the governing equations. The full system of equations describing the phase field model for
viscous incompressible flow with elastic membranes can be summarized by

ρ(φ) (vt + (v · ∇) v) − div
(
pI + µ(φ)D(v) + 4ŘsC(Ěs)ŘT

s

)
= ρ(φ) f

div(v) = 0
φt + v · ∇φ = 0 (3.8)

Řs,t + (v · ∇)Řs = W (v)Řs,

Ěs,t + (v · ∇)Ěs = ŘT
s D(v)Řs,

with appropriate boundary and initial conditions, and with rotation and strain initializations given in terms of the intial
phase variable by

Řs(0) = (I −N ⊗N) |∇xφ(0)|1/4

Ěs(0) = 0.

3.5. The weak forms of the governing equations. To affect a numerical approximation of the governing equa-
tions (3.8), we first their write weak forms. For the balance of linear momentum (3.4) and incompressibility (3.6)
equations, we seek v : (0, T ]× Ω → Rd, p : (0, T ] × Ω → R such that∫

Ω

[ρ(φ) (vt + (v ·∇)v)·w + p div(w) + µ(φ)D(v)·D(w) + T ·D(w)] dΩ =
∫

Ω

ρf · wdΩ +
∫

∂ΩN

g ·wds ∀w ∈ V(3.9)∫
Ω

div(v) q dΩ = 0 ∀q ∈ P

where w and q are test functions. For the phase evolution equation (3.3), we seek φ : (0, T ] × Ω → R such that

∫
Ω

φψ dΩ
∣∣∣∣
T

t=0

−
∫ T

0

∫
Ω

φ (ψt + v · ∇ψ) dΩ dt (3.10)

+
∫ T

0

∫
∂Ωout

φψv · n ds dt = −
∫ T

0

∫
∂Ωin

φinψv · n ds dt, ∀ψ

where ∂Ωout = {s ∈ ∂Ω | v · n ≥ 0}, ∂Ωin = {s ∈ ∂Ω | v · n < 0}, and ψ is the test function. Similar weak forms
can be derived for the strain and rotation evolution equations.

4. Numerical scheme. In this section, we give a numerical scheme for solving the coupled system of momentum,
mass, phase field, strain, and rotation equations in (3.8). We choose to lag the velocity in the convective terms of the
momentum and phase equations so that (1) the momentum equation becomes linear in v and (2) the momentum and
phase equations decouple. In addition, the velocity field in the rotation equation is also lagged. This choice decouples
the phase and rotation equations from the momentum equation; however, the strain equation remains strongly coupled
to the momentum equation. The resulting algorithm is depicted in Figure 4.1 and can be summarized as follows:

1. Solve the phase equation using the discontinuous Galerkin method in both space and time. Given the solutions
from the previous time step (φn−1

h , vn−1
h ) or the initial conditions, compute the approximation of φ on every

spatial element for the (tn−1, tn) time element as φh ∈ Pk ⊗Rh,∫
K

φh(tn)ψh(tn) −
∫ tn

tn−1

∫
K

φh

(
(ψh)t + vn−1 · ∇ψh

)

+
∫ tn

tn−1

∫
∂K

((
vn−1 · n)+

φh +
(
vn−1 · n)−

φh−

)
ψh (4.1)

=
∫

K

φh−(tn−1)ψh(tn−1).

for all ψh ∈ Pk ⊗ Rh, where Pk is the set of orthonormal polynomials of degree k. Stability arguments [9]
dictate that φ is approximated by quartic polynomials.

2. Mean viscosity and density ρ and µ are defined as

ρ =
1
τ

∫ tn

tn−1
ρ(φh)
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FIG. 4.1. The solution methodology for modeling the motion of two fluids separated by an elastic membrane. Lagging the velocity in the
convective terms of all four systems of equations decouples the phase equation and the rotation from the momentum and strain equations.

and

µ =
1
τ

∫ tn

tn−1
µ(φh),

where again this approximation is dictated by stability arguments.
3. Solve the rotation equation using the discontinuous Galerkin method in both space and time. Knowing the

solutions from the previous time step (Řn−1
h , vn−1

h ), the approximation of Ř on every spatial element for the
(tn−1, tn) time element is computed as Řh ∈ Pk ⊗�h,

∫
K

Řh(tn)Sh(tn) −
∫ tn

tn−1

∫
K

Řh

(
(Sh)t +

(
vn−1 · ∇)

Sh

)
+W (vn−1)Řh · Sh

+
∫ tn

tn−1

∫
∂K

((
vn−1 · n)+

Řh +
(
vn−1 · n)−

Řh−

)
Sh (4.2)

=
∫

K

Řh−(tn−1)Sh(tn−1)

for all Sh ∈ Pk ⊗�h, where again Pk is the set of orthonormal polynomials of degree k. For simplicity, the
s subscript has been neglected.

4. Finally, given the solutions from the previous time step (φn−1
h , vn−1

h ) and the current solutions φn
h and Řn

h ,
solve the coupled momentum and strain equations. The momentum equation is approximated by the standard
Galerkin method in space and discretized by the backward Euler method in time. Therefore, we seek an
approximation of vn, pn on every element as (vn

h , p
n
h) ∈ Vh × Ph,

∫
Ω

[
ρ

(
φn−1

h

) (
vn

h − vn−1
h

τ
+ (vn−1 · ∇)vn

h

)
· wh + ph div(wh)

]
dΩ

+
∫

Ω

[
µD(vn

h ) ·D(wh) + 4Řn
sh

C(Ěn
sh

)
(
ŘT

sh

)n ·D(wh)
]
dΩ (4.3)

=
∫

Ω

ρfn+1/2 · wh dΩ +
∫

∂ΩN

gn+1/2 · wh ds,∫
Ω

div(vn
h) qh dΩ = 0

for all wh ∈ Vh, qh ∈ Ph. We use the Taylor-Hood element (quadratic velocity, linear pressure). The strain
equation is discretized in space and time by the discontinuous Galerkin method. Thus, we seek a solution
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Ěh ∈ Fh ⊂ F on each space-time element (tn−1, tn) ×K such that∫
K

Ěh(tn)Fh(tn) −
∫ tn

tn−1

∫
K

Ěh

(
(Fh)t +

(
vn−1 · ∇)

Fh

)
+

∫ tn

tn−1

∫
∂K

((
vn−1 · n)+

Ěh +
(
vn−1 · n)−

Ěh−

)
Fh (4.4)

−
∫ tn

tn−1

∫
∂K

(
ŘT n

D(vn)Řn · Fh

)
=

∫
K

Ěh−(tn−1)Fh(tn−1)

for all Fh ∈ F . Again, for brevity, the s subscript has been neglected. The equations 4.3 and 4.4 form a
coupled system of linear equtions in the velocity, pressure, and strain unknowns.

5. Parallel solution. In the previous section, we have described a numerical scheme for a phase field model
of the interaction of dynamic elastic membranes with viscous incompressible fluids. The combination of phase field
interface capturing method, Eulerian elastic membrane model, and discontinuous Galerkin approximation of the evo-
lution equations for phase, rotation, and strain field variables leads to a method that permits discretization on a fixed
grid without explicit resolution of the interface. This affords a straightforward parallel implementation; in our case
we use the parallel data structures, linear Krylov solvers, and domain decomposition preconditioners from the parallel
numerical libarary PETSc [2].

Discontinuous Galerkin approximation of the phase, rotation, and strain evolution equations leads to well-con-
ditioned linear systems. Because the phase (4.1) and rotation (4.2) linear systems are well-conditioned, we either use
no preconditioning, or if necessary invoke the additive Schwarz preconditioner from the PETSc library with minimal
overlap and fill. Krylov solution of these two systems is affected with PETSc’s implementation of either GMRES,
BiCGSTAB, or TFQMR. Performance results presented in Table 5.1 illustrate that typically just a handful of Krylov
iterations are required per time step for the evolution equations for phase and rotation, in this case around 4. Moreover,
the number of iterations is seen to be independent of mesh size and number of processors for a range of 1 to 64
processors, with isogranular increase in problem size. We have observed this algorithmic scalability for a variety of
problems.

While iterative solution of the discontinuous Galerkin-discretized evolution equations scales optimally, it is well
known that Galerkin approximation of the momentum and incompressibility equations for viscous incompressible flu-
ids typically results in ill-conditioned linear systems, which require aggressive preconditioning. Moreoever, here the
fluid velocity/pressure unknowns are strongly coupled with the strain unknowns (which is why we do not decouple
the two systems). Because of disparate elastic and viscous properties, this coupled system can be very ill-conditioned;
moreover, large numbers of Navier-Stokes iterations can drag along the strain computation during the system solve.
This is problematic, since strains are tensor quantities, and they are approximated by piecewise quartic polynomials,
both of which lead to large systems and additional work if iterated too many times. Therefore, it is crucial to pre-
condition the coupled Navier-Stokes–strain evolution linear system in a way that exploits the structure and favorable
conditioning of the strain problem and is effectve in reducing the number of iterations.

In the remainder of this section we describe a Schur complement-type preconditioner displaying these properties.
The coupled momentum, incompressibility, and strain equations for fluid flow with an elastic membrane can be written
in block form as [

Auu AuE

AEu AEE

] {
u

Ěs

}
=

{
fu

fE

}
(5.1)

where u represents the velocity and pressure unknowns, and Ěs the strain unknowns. An exact factorization of the
matrix A is

A =
[

Auu AuE

AEu AEE

]
=

[
S AuE

0 AEE

] [
I 0

A−1
EEAuE I

]

where S = Auu − AuEA−1
EEAEu is the Schur complement of Auu in A. We can write the preconditioner for A

symbolically as

P =

[
I 0

−Ã
−1

EEAuE I

][
S̃

−1 −S̃
−1

AuEÃ
−1

EE

0 Ã
−1

EE

]

where S̃
−1

and Ã
−1

EE are approximate inverses of S and AEE . A convenient and inexpensive choice for ÃEE is
to include just element contributions from the discontinuous Galerkin approximation and neglect face contributions.
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TABLE 5.1
Parallel performance and isogranular scalability of coupled flow-elastic membrane solver. Problem solved is 2D elastic fluid-filled capsule

falling under gravity. Preconditioner is additive Schwarz with ILU(1) and β = 1 overlap. PEs is number of processors; Elements refers to number
of Taylor-Hood or discontinuous Galerkin elements; Time steps is number of time steps for an entire simulation; DOF is number of unknowns for
phase (φ), rotation (R), strain (equal to R), and velocity/pressure (N-S) variables; Iterations are average number of GMRES iterations for the phase
system (φ), GRMES iterations for the rotation system (R), and TFQMR iterations for the coupled strain-momentum-continuity system (N-S); and
Time is seconds of wallclock to carry out the specified number of time steps.

DOF iterations
PEs Elements φ φ R N-S Time

Time Steps R (s)
N-S

1 8 x 8 1,024 1.34 1,36 20.21 32
38 2,467

659
4 16 x 16 4,096 3.93 3.97 40.85 97

75 16,384
2,467

16 32 x 32 16,384 4.20 4.20 72.40 335
150 65,536

9,539
32 45 x 45 32,400 4.03 4.06 112.90 919

225 129,600
18,678

64 64 x 64 65,536 4.05 4.13 137.62 1522
300 262,144

37,507

Recall from (4.4) that the discrete form for AEE is given implicitly by

F T AEEEs =
∫

K

Ěh(tn)Fh(tn) −
∫ tn

tn−1

∫
K

Ěh

(
vn−1 · ∇)

Fh

+
∫ tn

tn−1

∫
∂K

((
vn−1 · n)+

Ěh +
(
vn−1 · n)−

Ěh−

)
Fh.

Therefore, the approximation for ÃEE is taken as

F T ÃEEEs =
∫

K

Ěh(tn)Fh(tn) −
∫ tn

tn−1

∫
K

Ěh

(
vn−1 · ∇)

Fh.

Because only element contributions are considered and because the spatial and temporal approximations for the strain

are discontinuous, ÃEE is block-diagonal, with blocks corresponding to (quartic) elements. Therefore, A uEÃ
−1

EEAEu

has the same sparsity structure as Ãuu and is assembled across processors in the usual way. Another approximation we
make in the preconditioner is to replace the saddle point matrix Auu corresponding to velocity and pressure unknowns
with its pressure-stabilized form Ãuu, i.e. the 0 in the (2,2) block is replaced by the scaled discrete Laplacian βh 2∆h.
This yields a matrix that is more amenable to standard domain decomposition preconditioners.

Finally, we employ an additive Schwarz preconditioner from the PETSc library to approximate S̃
−1

, using gen-
erous overlap and fill for particularly difficult problems. Performance results suggest that our preconditioner for the
coupled membrane–momentum–mass system (5.1) effectively neutralizes the relative stiffness of the membrane; that
is, the iteration complexity of the preconditioned system is the same with or without the membrane, as can be seen
by comparing the growth in N-S iterations of the membrane (Table 5.1) and no-membrane (Table 5.2) cases. In either
case, the iteration count increases with the square root of problem size. Although the number of iterations does de-
pend on problem size, this is expected since we are using a single-level domain decomposition preconditioner for the
Navier-Stokes component. This can be overcome by implementing a multilevel preconditioner, which we have not yet
done in anticipation of a forthcoming public release of a robust parallel algebraic multigrid solver. In any case, the
preconditioner appears to effectively treat ill-conditioning due to mixing of fluid and elastic properties in the coupled
system.
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TABLE 5.2
Parallel performance and isogranular scalability of multifluid flow solver without membrane. All column headings similar to those in table 5.1.

DOF iterations
PEs Elements φ φ N-S Time

Time Steps N-S (s)
1 16 x 16 4,096 2.96 10.28 25

75 2,467
4 32 x 32 16,384 4.11 23.57 72

150 9,539
8 45 x 45 32,400 4.90 30.76 136

225 18,678
16 64 x 64 65,536 4.34 44.34 228

300 37,507
32 91 x 91 132,496 4.66 60.88 467

450 75,442

6. A two-dimensional example. To illustrate the effect of the elastic membrane, we simulate the flow of a
denser, more viscous cell with and without an elastic membrane through a notched channel. Consider the spatial
domain Ω = {(x, y) | −1.0 ≤ x ≤ 1.0,−0.5 ≤ y ≤ 0.5} containing two immiscible fluids, Fbulk and Fcell, with
material properties

µbulk = 1.0, ρbulk = 1.0,
µcell = 2.0, ρcell = 2.0,

as shown in Figure 6.1. Traction-free, or Neumann, boundary conditions are assumed on ∂Ω out; Dirichlet boundary
conditions are applied to the remainder of the boundary. Initially, the fluids are at rest; however, a Poiseuille flow
profile, vx = (0.25− y2), is introduced through Dirichlet boundary conditions on ∂Ω in. We examine the time domain
t ∈ [0, 3].

In these examples, the spatial domain Ω is discretized into 2,720 quadrilateral elements with element length
h = 0.025. Taylor-Hood elements, quadratic in v and linear in p, approximate v h and ph, respectively; biquartic
elements approximate φh, Rh and Eh. The time domain is discretized into 4,800 time steps.

Figure 6.2 demonstrates the evolution of the phase variable through time. As expected, in the absence of an elastic
membrane at the fluid-fluid interface, the velocity profile dictates the shape of the cell. Figure 6.3 illustrates the effect
of the elastic membrane, with elastic constants

α = β = 2.5 × 104,

on the shape of the deforming cell. The effect of the elastic membrane is readily apparent when comparing the shape
of the cell during the simulation to that in Figure 6.2. The elasticity of the membrane dictates the shape of the cell,
rather than the velocity profile.

7. A three-dimensional example. The primary motivation for modeling the fluid-fluid interface with a front-
capturing method, such as the phase field method, is to avoid the numerical and geometric difficulties associated with
remeshing, especially in three-dimensions. We illustrate the flexibility of the phasefield method and its extensibility
by the following three-dimensional example.

Consider a spatial domain Ω = {(x, y, z) | −1.5 ≤ x, y, z ≤ 1.5}, again containing two immiscible fluids, F bulk

and Fdrop, with material properties

µbulk = 1.0, ρbulk = 1.0,
µdrop = 2.0, ρdrop = 2.0.

Initially, fluid Fdrop is of spherical shape with radius 0.5 centered at (0, 0, 0.75). Dirichlet, or fixed, boundary con-
ditions were applied to ∂Ω; initally, the fluids were at rest. We study the effect of a gravity body force acting on the
domain over t ∈ [0, 10].

The spatial domain Ω was discretized into 16× 16× 16 hexahedral elements. Again, vh and ph are approximated
with Taylor-Hood elements; triquartic elements approximate φh. The time domain was discretized into 1000 time
steps. Figure 7.1 illlustrates the evolution of the level set of the phase variable with time. As expected, the evolution
of the phase variable is an axisymmetric form of the two-dimensional example.
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FIG. 6.1. The schematic of the geometry and material properties for the simulation of a cell, both with and without an elastic membrane,
flowing through a notched channel.

(a) (b) (c)

(d) (e) (f)

FIG. 6.2. The evolution of the phase function for a cell flowing through a notched channel at times (a) t = 0.0, (b) t = 1.0, (c) t = 1.4, (d)
t = 1.8, (e) t = 2.2 and (f) t = 2.6. In this example, there is no elastic membrane present at the interface.
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FIG. 7.1. The isosurface, φ = 0, of the phase variable for a three-dimensional falling drop simulation without an elastic membrane.


