COMPUTATIONAL STRATEGIES FOR
SHAPE OPTIMIZATION OF
TIME-DEPENDENT NAVIER-STOKES FLOWS*

BEICHANG HE!, OMAR GHATTAS*, AND JAMES F. ANTAKI}

Abstract. We consider the problem of shape optimization of two-dimensional flows governed by
the time-dependent Navier-Stokes equations. For this problem we propose computational strategies
with respect to optimization method, sensitivity method, and unstructured meshing scheme. We
argue that, despite their superiority for steady Navier-Stokes flow optimization, reduced sequential
quadratic programming (RSQP) methods are too memory-intensive for the time-dependent prob-
lem. Instead, we advocate a combination of generalized reduced gradients (for the flow equation
constraints) and SQP (for the remaining inequality constraints). With respect to sensitivity method,
we favor discrete sensitivities, which can be implemented with little additional storage or work be-
yond that required for solution of the flow equations, and thus possess a distinct advantage over
discretized continuous sensitivities, which require knowledge of the entire time history of the flow
variables. Finally, we take a two-phase approach to unstructured meshing and grid sensitivities. Far
from the optimum, we remesh each new shape completely using an unstructured mesh generator to
accommodate the large shape changes that are anticipated in this phase, while an inconsistent but
easily computed form of grid sensitivities is employed. Close to the optimum, where differentiability
of the mesh movement scheme and consistency of grid sensitivities are desirable, we use elastic mesh
movement to generate meshes corresponding to new shapes. Elastic mesh movement is valid only
for small shape changes but is differentiable and permits computation of exact grid sensitivities in
a straightforward manner. Two examples characterized by a viscous dissipation objective function
illustrate the approach.

1. Introduction. The problem of finding the optimal design of a system gov-
erned by the incompressible Navier-Stokes equations arises in many design problems
in aerospace, automotive, hydraulic, ocean, structural, and wind engineering. Exam-
ple applications include aerodynamic design of automotive vehicles, trains, low speed
aircraft, sails, and flexible structures, and hydrodynamic design of ship hulls, pro-
pellers, turbomachinery, and offshore structures. In many cases, the flow equations
do not admit steady-state solutions, and the optimization model must incorporate
the time-dependent form of the Navier-Stokes equations.

Most of the theoretical and numerical work on optimization of Navier-Stokes flows
has been done in the context of both optimal control and steady flows (see [17] for
an overview). A few studies have considered optimal control of time-dependent flows,
where the control is in the form of boundary velocities [23] [41]. Our concern in
this article is on shape optimization of time-dependent Navier-Stokes flows, and in
particular on devising efficient numerical strategies for solution of two-dimensional
(2D) realizations of such problems. Our ultimate goal is to solve three-dimensional
(3D) shape optimization problems arising in the design of artificial heart devices [2]

[8).

*Technical Report CMU-CML-97-102, June, 1997. This work was supported in part by the Engi-
neering Design Research Center, an Engineering Research Center of the National Science Foundation,
under Grant No. EEC-8943164, and by Algor, Inc. Computations were performed on computers pur-
chased with funds provided in part by NSF equipment grant BCS-9212819.

TEngineering Mechanics Laboratory, General Electric Company, Niskayuna, NY 12309
(hebQcrd.ge.com).

fComputational Mechanics Laboratory, Department of Civil and Environmental Engineering,
Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA (oghattas@cs.cmu.edu).

§ Artificial Heart Program, Department of Surgery, University of Pittsburgh Medical Center, Pitts-
burgh, PA 15213, USA (antaki@pittsurg.nb.upmc.edu).

1

2 B. HE AND O. GHATTAS AND J.F. ANTAKI

One of the major difficulties in numerically solving optimization problems gov-
erned by time-dependent Navier-Stokes flows is the large number of equality con-
straints that arise upon space and time discretization of the flow equations. The size
of this constraint set is the number of spatial flow variables multiplied by the number
of time steps, and can be of the order of millions for typical 2D problems, such as those
solved in this paper; several orders of magnitude larger can be expected in 3D. This
puts the time-dependent Navier-Stokes optimization problem in the category of ex-
tremely large scale, nonlinearly-constrained optimization. In general, problems with
numbers of constraints as large as these pose difficulties for such modern nonlinear
optimization methods as the sequential quadratic programming (SQP) method.

One approach common in optimal design for accommodating large constraints
sets arising from discretized partial differential equations (PDEs) is to eliminate the
state equations and state variables at each optimization iteration. This is done by
solving the state equations for the states variables given values of the design variables.
The state variables are then used to evaluate the objective function and remaining
constraints, and the implicit function theorem is invoked for derivative computations.
See, for example, [18] [19]. This method therefore treats the equality constraints in
a generalized reduced gradient (GRG) fashion, since it satisfies them exactly at each
optimization iteration. The remaining constraints are then treated using one’s favorite
nonlinear optimizer. The GRG idea greatly reduces the size of the optimization
problem, since it is now of dimension of the design variables, and relieves the optimizer
from its role as PDE solver. On the other hand, the disadvantage of this method is
that the state equations must be completely solved for a given set of design variables;
this can be quite onerous when the state equations are highly nonlinear.

A different approach that is particularly effective for optimization problems gov-
erned by nonlinear boundary value problems has emerged in recent years. The state
equations are retained as constraints, and the optimization problem is solved by a
reduced SQP (RSQP) method. Two key ideas are: unlike GRG (but like full-space
SQP), only a linear approzimation of the state equations is satisfied at each iteration;
and unlike full space SQP (but like GRG), curvature information is required only in
a subspace defined by the null space of the Jacobian of the state equations, which
is of the dimension of the design variable vector, and is thus typically small relative
to the number of state variables. When second derivatives are difficult to compute,
as is often the case in optimal design, this reduced Hessian can be approximated
cheaply by a quasi-Newton update. In a sense, RSQP combines the best of GRG and
full-space SQP. Indeed, there is an intimate connection between GRG and RSQP for
optimization problems governed by state equations. The two can be seen roughly as
extremes of a continuum, the endpoints of which are: completely converging the state
equations at each optimization iteration versus performing a single Newton step on
them (see [28]). The efficacy of RSQP for PDE-constrained optimization problems
has been demonstrated in a number of applications including structural optimization
[35] [39] [40], heat equation boundary control [26], compressible flow airfoil design
[33] [34] [43], boundary control of viscous incompressible flows [14] [21], and inverse
parameter estimation problems [11] [24]. Reduced SQP methods have been analyzed
for the finite dimensional case in [5] [9] [32], and for infinite dimensions in [22] [25].

In light of its vastly superior performance over GRG (for steady optimal boundary
velocity control [14]), our initial idea was to use RSQP for solution of the time-
dependent Navier-Stokes shape optimization problem. However, the large size of state
constraints in the form of the spatio-temporally discretized Navier-Stokes equations

SHAPE OPTIMIZATION OF TIME-DEPENDENT NAVIER-STOKES FLOWS 3

forced us to rethink that desire. In exchange for not completely solving the state
constraints at each time step—instead satisfying the flow equations asymptotically
as the optimum is approached—RSQP requires storage of the entire time history
of flow variables. This is a serious drawback. Indeed, the very advantage of SQP
has turned out to result in a disadvantage: simultaneous storage of flow variables at
all time steps is needed precisely because we are permitted to update them at each
optimization iteration—with the goal of eventually converging the nonlinear algebraic
equations characterizing a time step. GRG does not suffer from this storage problem:
because the time dimension represents the “initial” part of the initial-boundary value
problem, the states evolve through time, and a numerical algorithm for time-stepping
simply replaces one time step’s flow variables with the next. The advantage of RSQP
in this context is the reduction in computational effort per optimization iteration, by
avoiding solution of the flow equations in favor of a single Newton step that updates
them. Here, however, the flow equations are not terribly nonlinear; since time steps
are chosen for time-accuracy, it is usually the case that the flow equations for a given
time step can be solved for the flow variables at the next time step, given the current
flow variables, in just two or three Newton iterations (provided the flow is away from
turning or bifurcation points). So time-accurate integration of the spatially-discretized
flow equations—as necessitated by the time-dependent nature of the objective and
inequality constraints—has rendered the fully-discretized state equations only weakly
nonlinear, and RSQP’s contribution is limited to reducing those two or three Newton
steps to just one. Thus, the benefit of RSQP relative to GRG for time-dependent flow
optimization is not as great as the steady case, in which over an order of magnitude
improvement has been observed [14].

Instead, we pursue here a combination of SQP and GRG. At each optimization
iteration, we solve the equality state constraints (i.e. the spatio-temporally discretized
Navier-Stokes equations) completely, by stepping sequentially through time, obtaining
the flow variables at the next time step given those of the current. Sensitivity deriva-
tives are found discretely also at each time step, again obviating the need to store the
entire time history of flow variables, as would be required with discretized continuous
sensitivities. Objective and constraint functions defined as integrals over time are
simply accumulated step-by-step using a quadrature rule, as are their derivatives. In
exchange for a big reduction in storage, we do some more work. This is the GRG
component of the method. The treatment of the remaining, inequality, constraints is
in the fashion of SQP; only a linear approximation of the active constraints is satisfied
at any optimization iteration. The storage thus required can be as little as the current
and previous flow field (if a matrix-free method is used to solve the state equations).
We stress that this approach to state equation-constrained optimization problems is
not novel: indeed this is the usual way design optimization problems are solved, and
is what is usually referred to in the engineering literature as an “SQP method.”

Several caveats are in order here. First, if the nonlinear iteration used to solve the
flow equations at each time step is not a true Newton method (i.e. it doesn’t compute
the exact Jacobian), it may require many more iterations at each time step, and so the
reduction to a single linear solve of the state equations offered by RSQP may result in
a substantial reduction in computational effort. Second, this situation is an example of
the classic time—memory tradeoff. For us, storage wins out, since unstructured mesh
methods are already very memory intensive. However, when memory is not a problem,
RSQP’s offer of a reduction to just one Newton step on the state equations per
optimization iteration is certainly worthwhile. For 1D initial-boundary problems (i.e.,

4 B. HE AND O. GHATTAS AND J.F. ANTAKI

when the PDEs are posed in one spatial dimension, and time represents the other),
the storage associated with discretizing the time-space continuum is not onerous, and
there is no reason not to use a RSQP method; see [26] for an application to boundary
control involving nonlinear heat conduction. Another example of memory being less
important than computational work is when the state equations are naturally discrete
in “space,” and are posed as (ordinary) differential-algebraic equations in time. In
this case, RSQP is also a good idea. An example application is optimal control of
robots, the behavior of which is governed by rigid multibody dynamics. [43].

In the remainder of this article, we will define the continuous optimization prob-
lem, discuss it spatial and temporal discretization, develop sensitivity expressions,
consider grid sensitivities, and apply the method to two time-dependent Navier-Stokes
shape optimization model problems. More extensive discussion can be found in [20].

2. Mathematical model. In this section we state the continuous form of the
mathematical model of the shape optimization problem addressed in this paper. Let
Q) denote an open, bounded, and possibly multiply connected domain in R? or R2.
Let , denote the boundary of 2. The laminar time-dependent flow of a homogeneous,
incompressible, Newtonian fluid inside 2 is governed by the Navier-Stokes equations,
i.e. the conservation of linear momentum equation

ov

(2.1) PE

+p(v-V)v—-V.-0c-£f=0 in Qx[0,17,
the constitutive law

(2.2) o=—pl+p(Vv+(Vv)T) in Qx[0,7],
and the conservation of mass equation

(2.3) V-v=0 in Qx[0,17,

where V is the spatial gradient vector, v the fluid velocity, o the stress tensor, p the
pressure, f the body force, p the fluid density, and p the dynamic viscosity.

The initial-boundary value problem requires the imposition of boundary condi-
tions, which may consist of the Dirichlet condition

(2.4) v(x,t) = vy(t) in ,qx[0,7],

and the Neumann condition

(2.5) o(x,t) -n(x) = t,(t) in,,x[0,T],

as well as an initial condition

(2.6) v(x,0) = vo(x) in Q,

where x is the spatial coordinate, n(x) the outward normal unit vector at , ,, and
(2.7) v dU, n=, .

We consider the following local (defined at a point in space and an instant in
time) and global (integrated over the problem domain and time interval of interest)

SHAPE OPTIMIZATION OF TIME-DEPENDENT NAVIER-STOKES FLOWS)

functions as objective (or constraint) functions in the optimization problem: the rate
of energy dissipation due to viscosity,

(2.8) ¢ = %,u [Vv+ (Vv)T]: [Vv + (Vv)T],

the maximum shear stress, e.g. in two dimensions,

2

the magnitude of vorticity,

(2.10) w=|Vxv|,

the spatially and temporally averaged dissipation function, both unscaled and scaled
by area or volume of the domain,

~ tm ~)
(2.11) ¢, = / /cbdﬂdt, o, = 2,
tr Q S

the spatially and temporally averaged maximum shear stress, both unscaled and
scaled,

tnm 5_\
(2.12) Ty = / /72 dQadt , Ty = —,
tr Q S

and the spatially and temporally averaged vorticity magnitude, both unscaled and
scaled,

tavr l%
(2.13) @y = / /w2 dQdt , Wy = —,
tr Q S

S:/dQ
Q

is the area or volume of the flow domain , and [¢1,, 5] is a characteristic time interval.
Definitions of ¢;, and t,; are problem dependent. For instance, if the optimization
problem of interest involves flow with initial-condition-generated transients that are
damped out, the characteristic time interval may be chosen to start at the initial time,
and end after steady state is reached. On the other hand, if the fluid motion is periodic
and the influence of the initial condition is irrelevant to the design problem, we may
set t7, to be large enough so that viscous damping filters out the contribution of the
initial condition, and [tr,,tar] should span one or several periods of flow oscillation.
These functions are inspired directly or indirectly by the desire to avoid blood damage
by thrombosis and hemolysis in artificial heart devices [2].

Later in this article we describe a code we have developed that implements any
convex combination of the six global functions in Equations (2.11)—(2.13) as the objec-
tive function. In addition, limits on allowable values of the local functions (2.8)—(2.10)
may be introduced as inequality constraints. Conditions that ensure a valid shape

where

6 B. HE AND O. GHATTAS AND J.F. ANTAKI

and limit the size and position of the shape have to be introduced as geometric con-
straints. We will discuss such geometric constraints in Sections 5 and 6 in the context
of some specific geometries. An example shape optimization problem that might arise
in artificial heart design is to minimize the global dissipation ® in (2.11), subject
to geometry and physics constraints, including equalities in the form of the Navier-
Stokes equations (2.1)—(2.3), and inequalities induced by demanding that the local
maximum shear stress (2.9) not exceed an allowable value throughout the domain.
Since the aspect of the design that is under our control is the domain boundary (or
part of it), this problem is one of shape optimization.

Since it is in general impossible to solve the infinite dimensional shape optimiza-
tion problem in closed form, we resort to numerical approximation in both space and
time, as well as representing the shape by a finite number of design parameters. These
issues will be addressed in subsequent sections. The resulting optimization problem
can then be stated as finding, from the space of shapes spanned by the design variables,
the one that minimizes a numerical approximation of the objective while satisfying
the discrete time-dependent Navier-Stokes equations, as well as discretized geometric
and flow-related inequality constraints. The problem can thus be transformed into
a smooth, large-scale, nonlinear programming problem (NLP). In the next section
we discuss spatial and temporal discretization of the flow equations and functions of
interest.

3. Spatial and temporal discretization. We use finite elements in space and
finite differences in time to numerically approximate the flow equations. For spatial
approximation, we choose the Galerkin finite element method, which begins with a
weak form of the equations. Let H' (Q2 x [0,7]) denote the Sobolev space of all func-
tions whose first derivatives are square integrable over {2 x [0, T'] and let L? (Q x [0,T1])
denote the space of functions that are square integrable over 2 x [0,7]. We restrict
ourselves to the following subspaces,

V={v|ve[HQx][0,T])]“™ and v satisfies (2.4)},

W={w|we[H (Qx[0,T)]*" andw =0on, 4 x[0,T]},
and
P={plpeL*(@x[0,T]},

where din = 2 and 3 for two and three dimensional problems, respectively.

Stress variables are eliminated from the flow equations by substituting (2.2) into
(2.1). The weak form of (2.1) and (2.3) can then by stated as: Find v €V and p € P
satisfying the initial conditions (2.6), such that

(31) A(OY W)+ a(v,w) + b(p, w) + (v, v, w) + g(w) = 0 for all w € W(),
(3.2) b(qg,v)=0 for all g € P,
where

ov ov
(3.3) h(E,w>— QpE-wdQ,

SHAPE OPTIMIZATION OF TIME-DEPENDENT NAVIER-STOKES FLOWS 7

(3.4) a(v,w) = /Q % (Vv + (Vv)T) : (Vw + (Vw)T) dQ,
(3.5) b(p,w) = — /va -w df),

(3.6) c(v,v,w):/gpw-(v-V)de,

and

(3.7) g(w):—/Qf-wdQ—/Fntn-wd,n.

Since the weak formulation explicitly involves traction on the boundary, (2.5) is easily
enforced.

Galerkin finite element approximation begins by meshing the flow domain €2 with
nodes and elements. Finite element spaces Vy,, Wy, and Pp,, which are subspaces of
V, W, and P, respectively, can then be established as

N
(3.8) Vi ={vi|vh = ¢ivi, and v, satisfies (2.4)},
i=1
e
(3.9) WhZ{Wh|Wh=Z¢>iWi,andWhZOOH,dX[O;T]};
i=1
and
NP
(3.10) P={pnlpn=>_vipi},

Jj=1

where NV and NP are the number of nodes for, respectively, velocity and pressure
unknowns; the basis functions ¢1,...,¢n» and 1, ...,%¥ e are continuous piecewise
polynomials; and v; € R¥™ w; € R¥™ and p; € R. Since the ¢; and ¢); are finite
element basis functions, v; and p; are just velocity and pressure values at nodes ¢ and
j, respectively.

In the case of isoparametric finite elements, the transformation between the spatial
coordinate x and the curvilinear coordinate & is given by

N
(3.11) x = (&) xx,
k=1

where x;, is the spatial coordinate at node k. The Jacobian matrix and determinant
of the transformation are

(3.12) J = 6_X ! € Jpdimxdim
. - a£)

(3.13) J=det(J) € R.

8 B. HE AND O. GHATTAS AND J.F. ANTAKI

Note that the curvilinear coordinate £ is defined locally with respect to each element,
so that each element has its own coordinate transformation. When we refer to &
globally, what we have in mind is the local curvilinear coordinate system corresponding
to the particular element that is referenced.

Making use of (3.8)—(3.13) for spatial discretization of (3.1)—(3.2), we obtain a
system of ordinary differential-algebraic equations (DAEs) in time ¢,

NP

ov . v
(3.14) ZMZ,6t’+ZA”v]+ZBmpk+f_o i=1,...,N",
k=1
(3.15) > Byv; =0 k=1,...,NP,

where
MU:/ poip; 1.J dOS
(913
Ajj =/ I (V) (VE)T I+ (Vo) T T2 37T (VEg,) 1] J dOF
(913
4 [pon (V0" I v 1 de,
Q¢
By, = _/ U (Ve T I71 JdQF,
(913

f; :—/ deQE—/ pit,nT I TntJd, ¢,
Q€ ré

Here, V¢ is the gradient vector in the curvilinear coordinate space; Q¢ and , ¢ are the
images in curvilinear coordinate space of, respectively, 2 and , in physical space; and
n¢ and n are the outward normal unit vectors at the boundaries in curvilinear and
physical coordinate spaces, respectively. All of these symbols are defined element-by-
element.

Let 0 = tp < ... <ty < ... < tyy = T be a uniform partition in the time
dimension. Equations (3.14) and (3.15) are transformed into a system of algebraic
equations by finite differencing in time. Consider a family of single-step methods,

m+1
Z M, Z ATV 4 Z Bipy 4+
(316) ZAU J +ZBlkp2:n+fzm =0 izl:"'an:
(3.17) ZB,W vt L (1= =0 k=1,...,N?,
where At = ty,41 — tm; v}, Py, £, and A} are values of vj, p, f;, and A;; at time

tm, respectively; and 0 S f < 1 is an algorithm parameter. The Crank-Nicholson

SHAPE OPTIMIZATION OF TIME-DEPENDENT NAVIER-STOKES FLOWS 9

scheme, which is second-order accurate in time, is obtained by setting 8 = 0.5. First-
order accurate Euler forward and backward schemes are obtained with § = 0 and
1, respectively. The scheme is implicit whenever 6 # 0. Equations (3.16) and (3.17)
constitute a set of coupled nonlinear (§ # 0) algebraic equations with unknowns v+

i
and pTT!

7", which can be solved given velocity field vi"* and pressure field p* at t = t,,.
Upon completion of this step we march forward in time, solving for flow variables at
time t,,42, and so on.

The spatio-temporally discretized Navier-Stokes equations (3.16)—(3.17) can be
solved at each time step by Newton’s method, which yields the linear system

N* NP
1 v
> (Kt M;; +60 Al + 0 cy;“) AV 40 B Appt! = —h

j=1 k=1
(3.18) i=1,...,N",
N
(3.19) 0> By Avit=—hl k=1,...,N?,
j=1

where the “momentum residual” hY is the lefthand side of (3.16), the “mass residual”
h% is the lefthand side of (3.17), and

N©
Cij = /5 poid; D Vi (Vegi)" 3717 das .
@ k=1

The Newton step (3.18)—(3.19) is a set of nonsymmetric linear equations that, given

current values of the the pair (V;’H‘1 , pzﬁ'l), can be solved for the increment in velocity
Avlm'H and the increment in pressure Ap}”“. In our 2D implementation, we use a

sparse direct method to solve this linear system; in 3D one would probably want to
use a preconditioned Krylov subspace method. Once computed, the increments are
used to update the estimate of velocity and pressure at time ¢,,11 according to

v?“(—v?“—l—AV?H i=1,...,N",

Pt pl 4 Ap ! j=1,...,NP.

The coefficient matrix and righthand side of the Newton step (3.18)—(3.19) are then
reevaluated with the updated values of v"*! and p;-”“, and the process is iterated
until the nonlinear equations (3.16)—(3.17) are satisfied to within a tolerance.

Flow functions (2.8)—(2.13) are also spatially discretized using the finite element
spaces Vy, and Pp, and time integration is performed using the trapezoidal rule, which
is second-order accurate. For instance, the viscous energy dissipation in (2.8), as a

function of space and time, is approximated by

N N®

d = %MZ Z [J—T(Vi(pi)vf + Vi(ngﬁi)TJ—l] : [J_T(ngﬁj)va + Vj(v£¢j)TJ_1] 7
=1 j=1

320

and the spatially and temporally integrated dissipation functions in (2.11) are dis-
cretized as

~

M—1
~ 1 ~ ®
321) 3, = = At / q>;”JdQ£+/ <I>um“,]d95>, o, =
(3.21) 2 = (Q¢ Q¢ Jae JAQE

10 B. HE AND O. GHATTAS AND J.F. ANTAKI

The global flow functions in (3.21) depend on a sequence of velocity fields vZ, ..., v}M.
It appears necessary to store all flow variables within the time interval [t1,tas]. How-
ever, we can avoid storing the flow history due to the fact that we are using a one-step
method to integrate the DAEs and a one-step integration rule to evaluate flow func-
tions. In this case the flow functions in (3.21) are accumulated at each time step
rather than after the complete flow solution; hence only the current and previous
velocity fields are needed.

Spatial and temporal discretization now renders the flow constraints and variables
finite dimensional. As will be illustrated in Sections 5 and 6, the shape of the flow
domain will be parameterized with a finite number of design variables. The shape
optimization problem may then be represented as follows:

(3.22) minimize ¥ (uL, co,uM, 7r) ,

subject to h (u™,u™t!) = 0 m=0,...,L,...,M—1,
r(u™,m >0 m=0L,...,M,
q(m) > 0

where u™ denotes the vector of nodal velocities and pressures at the m-th time step, 7
the vector of design variables, ¥ any convex combination of the global flow functions
in (2.11)—(2.13), h the system of nonlinear algebraic equations representing the spatio-
temporally discretized Navier-Stokes equations (3.16)—(3.17), r the vector representing
the difference between the allowable and actual values of the local flow functions in
(2.8)—(2.10) at time m, and q the vector representing the geometry constraints, i.e.
those depending solely on the design, and not flow, variables.

4. Sensitivity analysis. As discussed in the introduction, we use a GRG treat-
ment of the flow equations h=0, and an SQP treatment of the remaining inequality
constraints to solve the NLP problem (3.22). That is, the flow equations and vari-
ables are eliminated from the optimization problem by sequentially stepping through
time and solving the nonlinear algebraic equations (3.16)—(3.17) that arise at each
time step. The values of the flow variables computed at each time step are used to
both evaluate the (active) inequality constraints r'™ as well as to contribute to the
evaluation of the objective function. The gradient of the objective and the Jacobian
of the inequality constraints can then be found through the implicit function theorem.
This generates a small, dense constraint Jacobian matrix (and a small, dense Hessian
matrix of the Lagrangian function). Thus, standard dense SQP methods are appropri-
ate. In fact, in this work we use the IMSL implementation of NLPQL, Schittkowski’s
dense BFGS-SQP code [42].

In this section we discuss sensitivity analysis, i.e. how we compute derivatives of
flow quantities of interest with respect to design variables. Since the BFGS method is
used to update a quasi-Newton approximation of the Hessian of the Lagrangian func-
tion, only first derivatives of the objective and active inequality constraint functions
with respect to design variables are needed. Broadly speaking, one has two choices
for computing sensitivities: differentiate first then discretize, or discretize first then
differentiate. The latter choice is often referred to as “discrete sensitivities” and the
former “discretized continuous sensitivities,” or “continuous sensitivities” for short.
Generally, the two operations need not commute, and the two are equivalent only in
the limit of infinitesimal mesh size (in certain special cases, equivalence is obtained
independent of mesh size). See the discussion in [1] for inviscid and viscous flows, and

SHAPE OPTIMIZATION OF TIME-DEPENDENT NAVIER-STOKES FLOWS 11

[27] for a more general setting. For time-dependent Navier-Stokes equations, finding
continuous sensitivities requires solving a final-boundary value problem in the ad-
joint variables [23]. This PDE has time-dependent coefficients that depend on the
velocities, which are found by solving the forward problem. Thus storage of the state
variable history for all time is required. In contrast, by taking a discrete sensitivity
approach, the necessity for this storage is eliminated, as we shall see below.

The (unknown) state variables at time t,,.1, u™"!, are related to the design
variables 7 and to the (known) state variables at time t,,, u™, through the spatio-
temporally discretized Navier-Stokes equations (3.16)—(3.17), which can be repre-
sented symbolically as

(4.1) h(um(w),um+1(7r),7r,) =0, m=0,...,L,...,M — 1.

First-order sensitivity equations are obtained through the implicit function theorem,
resulting in the linear system

dum+l oh ou™ oh Oh
(4.2) S G =~ 5 o 5 M= 0L M1

which can be solved for the state variable sensitivities Gu™*! /9 at time t,, ;.

The sensitivity equations, at each time step, are linear and have coefficient matrix
(0h/0u)T that is just the asymptotic Jacobian matrix of the discretized Navier-Stokes
equations (3.16)—(3.17) i.e. the coefficient matrix of the Newton step (3.18)—(3.19),
evaluated at t,,4+1. It is thus natural to use the same linear solver to solve both the
time dependent equations and the sensitivity equations. Furthermore, the sensitivity
equations are initialized with the state variable sensitivity at time 0, Ou®/dgbfm,
and are thus an initial value problem. Therefore, they can lag the (nonlinear) state
equation solve at each time step, and storage of the entire state history is not required.
Solving the sensitivity equations (4.2 involves a single factorization of the Jacobian
evaluated at the current design variables and converged flow variables, followed by
pairs of triangular solves for each of the right hand side vectors, whose number is
equal to the number of design variables N™. The need to obtain accurate sensitivities
at each time step is of course in marked contrast to (non-history-dependent) steady
problems, in which one must solve the sensitivity equations only at the asymptotic
solution, and not at each “pseudo time-step.”

The method (4.2 is a discrete direct sensitivity method, in the sense that the
derivatives of the state variables with respect to the design variables are found. A
discrete adjoint method is also possible, which would have the same low storage as
the discrete direct method, but would involve as many pairs of triangular solves as
there are active flow constraints, plus one. Since we use a direct method to solve the
sensitivity system, the cost is asymptotically dominated by the LU factorization, so
there is no advantage to this discrete adjoint method, even if the active flow constraints
number less than the design variables.

The remaining unexplained term in (4.2) is the derivative of the residual with
respect to the design variables, Oh/0m, which is given for the momentum equations
by

NV 1 m NV 1 NP
Ohy _ <~ OM; vt — v w AT gt aBﬁpm o ofmtt
on = on At om 7 om "k on

j=1 k=1

12 B. HE AND O. GHATTAS AND J.F. ANTAKI

N? N?
OAT: OB of"
_ Y ,m ik . m i P v
4.3) +(1 0)(o Vi +k§:1 o Pk + 67r) i=1,...,N",

and for the mass equations by

p N]
(4.4) %:Z%[evm“ﬂl—e)vm] k=1,...,N”.

In these expressions,

OM,;;
(4_5) 6—71'] :/Q p¢l¢JI_dQ£
oA) . aJ
a—#/mu[J T(VE0y) (V)T T 4 (Vo0n) "I I T (VE,) 1] a0t

(VE0,) (Vér) 37" +377 (V9,) (VE0)

T 0J~
(083
L

931 93-T
+ /m " {(v%i)T ST (Veey) + (VEp) 37! S (v%j)] 1Jd0¢

(vEgT (93 14, 27 140
(4.6) +/Q£p¢l(v é;) <87r vid + 37t) Tage,

0J1 oJ
vt -1 77 3

7 § _ E § _ § 77
/E — dQ) / pityn? I Tn d / pitnT I Tn

-T
_/Ed)z |:aat;r TJT+tnaa—7rJT+tnnTa;—7r:|n§Jd,§
rs
(4.8) _/5¢i |:aa—tnTJT+taaLTJT+tnTa‘;_T:|n5Jd,§.
ré iy iy by

Since the domain ¢, the boundary , ¢, and the finite element basis functions ¢; and
1, have been defined with respect to curvilinear coordinates, they are independent

of the design variables . Hence, we may treat them as constants in the above
differentiation operations. This is one of the advantages of working with isoparametric
finite elements: the sensitivity of the shape change can be limited to terms involving
the Jacobian of the mapping, J (e.g. [7]). The derivative of J with respect to the

design variables is given by

oJ 0x;
o 2 o = (Vg%))

=1

and of its determinant, .J, by

__Jzaxl vgd)l

SHAPE OPTIMIZATION OF TIME-DEPENDENT NAVIER-STOKES FLOWS 13

The critical quantity, then, is 0x/d, often called the grid sensitivity or design velocity
field. 1t reflects how the locations of the nodes change as the design variables change,
and can be symbolically represented as

Ox 0x 0s

omr 0Osom’
where s are the coordinates of the surface nodes. The use of the chain rule above
exposes the dependence of the grid sensitivities on the derivative of the “solid mod-
eler” (i.e. how the surface nodes move as the design variables change), as well as the
derivative of the “mesh generator” (i.e. how the interior nodes move as the surface
nodes move). So in general, grid sensitivities depend on the particular form of mesh
generation and solid modeling used (which in some cases may not even be differen-
tiable!). We return to this subject in the next sections, in which two examples are
solved utilizing different approaches to computing these expressions. The remaining
terms in (4.5)—(4.8) are the derivatives of the traction vector, dt, /0w, which are
known from the boundary condition on , ,, and the expression for On/0m on , , and
, p, which can be found straightforwardly from the particular relationship between
surface representation and design variables.

In any case, once the grid sensitivities are known, expressions (4.5)—(4.8) can be
computed, and the residual derivatives (4.3)—(4.4) are readily evaluated. Thus, all
quantities needed for solution of the sensitivity equations (4.2) are known, and this
system can be solved for the state variable sensitivities Ju/0w at time ¢,,+;. Now
we turn our attention to computing design gradients of the local and global derived
quantities (2.8)—(2.13).

Let U1 = ¥(u™ (),) denote any of the local (in space and time) flow func-
tions in (2.8)—(2.10) at time step t,,41, m =0,...,L,...,M — 1. Then D¥'*! /D,
i.e. the gradient of the generic local flow function ¥ with respect to the design variables
at time ¢,,+1, can be found from

DY QUL gumtl gyt
4.9 = =0,...,L,..., M —1.
(4.9) Dr or + or Oumtl’ m e

The state variable sensitivities du/dm enter into the expression for DU /D, as
do the partial derivatives of ¥, with respect to both the state variables as well as the
design variables. The former expressions are straightforward; the latter expressions
are given by, for the rate of energy dissipation due to viscosity,

83T 81
o =N ZZ { (Vepi)vi +vi(VEpy)T o]

i=1 j=1

(4.10) C[ITE(VEG)V +vi(VEe) I
for the maximum shear stress, e.g. in two dimensions,

(0 0% 9 ¢ 9¢; 3¢,
ZZ Vieqa -7, — Viyg_ Vje 7 — Vjy—{
om Ox om Oy ox oy

i=1 j=1

0 59251 0 0¢; 5¢ 0¢;
(4].].) +ZZ ('Uzz + v zyaﬂ_ (32?) (U 8y +tuv Ujy ax>:|

i=1 j=1

14 B. HE AND O. GHATTAS AND J.F. ANTAKI

where

and for the magnitude of vorticity,

v T v
(4.12) == l; 5 (Veoi) vi] l;J (Vi) x vil .

Finally, we show how to compute sensitivities of the global flow functions, once
local function sensitivities have been found. Let \Il and \Ils represent, any of the
unscaled and scaled global flow functions in (2.11)—(2.13), respectively. Thus,

(4.13) :—AtZ/ (u™,)+ ¥ (",)] JdQS, \TISZL,

Joe JdQE
where the time integration is carried out according to the trapezoidal rule. (Although
the unscaled global flow functions involving shear stress and vorticity are, in fact,
defined as

~

T, = / U2 (u,m) JdQF,
[o}3

the following discussion still applies with slight modification.) Again, since the domain
Qf is defined in the curvilinear coordinate space and is independent of design variables,
the differentiation operator with respect to 7 acts directly on the integrand in (4.13).
Thus, we have

Dy™ o 8J Dwmtl ma1 0T\ ¢
(4.14) _—A Z/ (—J F UMt = T+ T aﬂ)dﬂ
(4.15) D¥, D¥,1 VU, 3T e

Dr ~ Dm S S? Jq Om

Thus, the gradients of global flow functions entering into the objective function, as
well as gradients of local (in time and space) flow functions involved in inequality
constraints, can be computed in much the same way as the flow function themselves
are, i.e. time step by time step.

In summary, at each time step,

e the discrete Navier-Stokes equations (3.16)—(3.17) are advanced a step in time;

e the velocities and pressures at the current time step are computed by the
(nonlinear) Newton iteration (3.18)—(3.19);

e the local flow functions are computed at various points in space and at the
current time step, given current velocities and pressures, e.g. for viscous dis-
sipation from (3.20);

e the values of the global flow functions, accumulated up to the current time
step, are incremented using current local function quantities, e.g. for viscous
dissipation by (3.21);

SHAPE OPTIMIZATION OF TIME-DEPENDENT NAVIER-STOKES FLOWS 15

e the (linear) sensitivity equations (4.2) are solved for the velocity and pres-
sure sensitivities corresponding to each design variable at the current time
step, given the current and previous velocities and pressures and the previous
velocity and pressure sensitivities;

e the sensitivities of the local flow functions are computed at various points in
space and at the current time step from (4.9), given current velocities and
pressures and their sensitivities; and

e the values of the sensitivities of global flow functions, accumulated up to the
current time step, are incremented using current local function sensitivities
by (4.14) or (4.15).

Thus, sensitivity computations add little additional work and storage beyond that
required for the flow solution, since they are linear and share the same coefficient
matrix with the converged linearized discrete Navier-Stokes equations at each tie step.
This is especially true when direct LU factorization is used to solve the sensitivity
system, since sensitivity requires just one extra factorization beyond that required
by the flow solver, and the storage associated with Oh/90x is small if the number of
design variables 7 is small.

We have developed a code that implements the algorithms and methods described
in Sections 3 and 4. Spatial discretization is by triangular Taylor-Hood finite elements,
which use piecewise quadratic velocity and piecewise linear pressure basis functions.
The Taylor-Hood element is known to be stable in the sense of Ladyzhenskaya—
Babuska—Brezzi, and produces errors of order h3 for velocity and h? for pressure
[16]. Time-integration is by the Crank-Nicolson method. The multifrontal sparse
LU factorization code UMFPACK [10] is used to solve the linear systems that arise
at each step of Newton’s method. The optimizer used is IMSL’s implementation of
the dense BFGS-SQP code NLPQL [42]. Analytical gradients of the objective and
inequality constraints are found as described in this section. In the next two sections,
we present two time-dependent shape optimization model problems solved using our
code. The first involves finding the best shape of a 90° tube subject to an internal
flow, and uses a logically-rectangular structured mesh. The second problem concerns
finding the best shape of a obstacle subjected to a uniform external flow, and is dis-
cretized by an unstructured mesh. Approaches to computing the grid sensitivities
0x /0w depend on whether the mesh is structured or unstructured, and are described
below for each case. All computations are performed on one processor of a 4-CPU
Digital AlphaServer 8400 5/300 equipped with 4 Gbytes of memory.

5. Shape optimization of flow in a two-dimensional tube. Our first exam-
ple is a two-dimensional tube, shown in Figure 5.1a, in which fluid enters horizontally
from the left, undergoes a 90° bend, and exits vertically downward. This is a sim-
plified model for a blood flow cannula of an artificial heart device. It is assumed
that the tube has a uniform section with a width or diameter d. The problem we
consider is to design the shape of the middle axis of the tube, such that the viscous
dissipation (2.11) is minimized subject to certain geometric constraints. The shape
of the middle axis is taken as a function r(f) in the polar coordinate system, and it
can be represented by a cosine series

P-1
r() =Y ricos(2if), 6 € [0°,90°].
=0

The coefficients r;, i = 0,...,P — 1 are thus the design variables. We generate
a structured mesh similar to the one shown in Figure 5.1b, and compute the grid

Entrance

y-axis

16 B. HE AND O. GHATTAS AND J.F. ANTAKI

X-axis Exit 0 1 2 3 4 5 0 1 2 3 4 5 6 7

@ (b) ©
F1G. 5.1. 2D tube: (a) geometry, (b) computational mesh, (c) invalid shape.

sensitivities analytically. This is straightforwardly done, since the mesh is structured,
and hence closed-form, smooth expressions are available for the grid sensitivities,
0x /0.
The middle axis 7(#) is subject to one of the following end constraints:
e both positions of entrance and exit are fixed, specifically, (90°) = ~; and
r(0°) = 723
e the entrance is fixed while the exit position is allowed to vary within a given
range, i.e., 7(90°) = y; and 74 < r(0°) < ¥
e the entrance position is allowed to vary within a given range while the exit is
fixed, i.e., 7} <7(90°) <~ and 7(0°) = 723
e both positions of entrance and exit are allowed to vary within given ranges,
namely, 7} < 7(90°) < 4" and 7 < r(0°) < 4%
where 1, Y2, 74, 7%, 74, and 4% are all prescribed positive constants. These conditions
impose linear constraints on the design variables, since

P—-1 P—1)
r(0°) = Zr r(90°) = Z(—l)’ri.

In addition, design variables have to satisfy certain conditions to ensure a valid
shape; otherwise, invalid shapes such as the one shown in Figure 5.1c may arise (as
actually happened). Since we deal only with a discretized geometric model of the tube,
shape validity constraints need only be imposed at K distinct points (r(6;),6;), i =
1,..., K, uniformly spaced along the middle axis of the tube. First, r(f) must be
non-negative,

7“(0@)20, izl,...,K.

Second, the shape cannot penetrate itself,

1
(2 — 20,)” + (§ — yo,1)” > Zd2

1

SHAPE OPTIMIZATION OF TIME-DEPENDENT NAVIER-STOKES FLOWS 17

(Z — 20,i41)° + (T — Yo,i41)> > =d°,

i=1,..., K.

e

Here, (20,;,%0.,;) is the Cartesian coordinate of the i-th node along the middle axis of
the tube; (Z, 7) is the coordinate of the intersection point of the two lines perpendicular
to each other and passing through (zo i, ¥0,i) and (zo,i+1,Y0,:+1). The values of (Z,7)
and (zo,;,Y0,;) are computed with the following formulae:

T=N0N,/A, g = Ay/A,
Ag =1y ilyiv1(Yo,i — Yo,it1) + Zo,ila,ily,it1 — To,it1ly,ile,iva
Ay =1y ileiv1(To,it1 — To,i) + Yo,ir1le,ilyivr — Yo,ily,ile,iv1,

A =1y ilyit1 —lyileiv1,

zo,; = r(0;) cos 0; Yo, = 7(0;)sinb;,
L r'(6;) cos8; — r(6;) sin 6; - _ r'(#:)sinb; +r(6;) cosb;
T e+ T @2 e
or(6;)
1(0.\ —
r'(6;) 50

Boundary conditions for solution of the Navier-Stokes equations include Neumann
conditions at the outlet and Dirichlet conditions on the rest of the boundary. Specif-
ically, no-slip boundary conditions are proposed at the walls of the tube, the outflow
is assumed to be traction free, and the inflow is taken to have a parabolic velocity

profile,
6q d d
vzzﬁ y—yo+§ yo_y+§ s ’Uy:O,

where ¢ is the flow rate, and d and yq are, respectively, the diameter and y-coordinate
of the tube centroid at the inlet.

For sensitivity analysis, velocity design gradients vanish on the side walls; the
outflow is kept traction free, which implies sensitivities of the traction at the outlet
are zero; and the inflow velocity preserves its parabolic profile with the same flow
rate, which leads to the following inlet conditions,

ov ov
or ’ or
The flow rate is assumed to be
0.1¢ t €0, 5)
q= 0.5 tes, 8)

0.5 + 0.1sin[27(t — 8)] t €8, o)

Thus, after ¢t > 8, the inflow oscillates with a period of 1 and an amplitude of 0.1. The
diameter of the tube d is kept at 1. Thus, the Reynolds number based on the average
inflow velocity and tube diameter is Re = 500. Let us fix the tube at both the exit
and entrance with 7 = 5.1, and let its shape r(f) be approximated with the first 14
Fourier cosine coefficients. We optimize the tube shape such that the unscaled global
dissipation function ®, in (2.11) is a minimum. The mesh has 31 nodes through the
cross section and 175 nodes along the middle axis, resulting in 2610 elements, 5425
nodes, and 11,471 velocity and pressure unknowns.

18 B. HE AND O. GHATTAS AND J.F. ANTAKI

The initial shape of the tube is described in Table 5.1 under the heading “initial”.
Time histories of the dissipation function fQ ®dS) are computed with time steps At =
0.125 and 0.03125. They are plotted in the left graph of Figure 5.2. A Fourier
transform is performed on these data, and the results are summarized in the right

20

18

— dt=.03125
—dt=.125

181

-
o
T

N -
S kS
T T
e = =
) & o
T T T

=)
=)
®
T

global dissipation function

o
o

H
power of dissipation function
=
)

)
T

o
Iy
T

— dt=.03125
— dt= 125 U

IS
T

=)
o

T

N

)

1 . 1 1
5 10 15 20 25 30 35 40 45 50 0.5 1 15 2 25 3
time frequency

o

F1c. 5.2. Time history of the global dissipation function ®, (left) and its Fourier transforms
(right) corresponding to two different time steps.

graph of Figure 5.2. Several observations can be made based on these plots:
e a time step of At = 0.125 yields a sufficiently accurate flow solution;
e the initial part of the time-dependent solution exhibits transient behavior and
should be ignored for optimization purposes; and
e the rest of the solution oscillates primarily with the same frequency as the
inflow, which is 1.
Therefore, the characteristic time interval for objective function computation is taken
as a multiple of the inflow time period. For this problem, the objective function &,
equals [, ®dS) integrated over

_ [[30, 33] Case I
[t tar] = { 30, 36] CaseIl

which correspond to 3 and 6 inflow periods, respectively. For the remainder of the
computation, we use At = 0.125. Figure 5.3 gives several snapshots in time of velocity
streamlines corresponding to the initial shape. The development and oscillation of a
separated and recirculating flow region is evidenced in the figure, and is induced by
the abrupt change in geometry.

Optimal shape coefficients are tabulated in Table 5.1 under “Case I” and “Case
IT”. The optimal shape for a steady inflow (of Re = 500) coupled with a steady Navier-
Stokes flow model is also included under the heading “Steady” for comparison. The
middle axes defined in Table 5.1 are plotted in Figure 5.4. There is no substantial
difference among the three optimal shapes, although it takes about 42 and 51 hours
of CPU time to reach the optimum for Cases I and II, respectively, while only about
an hour is needed in the steady case. Thus, we see a factor of 40 to 50 increase in
CPU time when the flow model is time-dependent. The large increases in CPU time
over the steady solution are a result of (i) the need for time-accurate integration, (ii)
the necessity of integrating through initial transients to reach periodic solutions, and
(iii) the need for solving sensitivity equations at each time step. For this particular

SHAPE OPTIMIZATION OF TIME-DEPENDENT NAVIER-STOKES FLOWS 19

Fi1G. 5.3. Streamlines taken at t = 12.875 (upper left), 19.125 (upper right), 25.375 (bottom
left), and 31.625 (bottom right) for the initial shape; Re = 500. Colors represent velocity magnitude,
with blue and red corresponding to low and high values, respectively.

problem, it seems to be a waste of time to perform optimization with the time-
dependent Navier-Stokes equations. More generally, however, there is no guarantee
that optimizing with a steady flow model will yield the same optimum shape as with
a time-dependent flow model. This is almost certainly the case when the optimum is
not characterized by steady flow.

The number of complete flow solutions for Cases I and II is, respectively, 31
and 29; the number of optimization iterations is respectively, 24 and 25. (In most
optimization iterations, the initial step length (of 1) is accepted by the optimizer.)
Optimization histories are plotted in Figure 5.5. The left graph shows the value of the
objective function ®,, as a function of the number of optimization iterations. The right
graph plots the Euclidean norm of the Kuhn-Tucker optimality condition (the sum
of the Euclidean norms of the reduced gradient and active constraints) against the
optimization iteration number. The reduction in viscous energy dissipation in both

20 B. HE AND O. GHATTAS AND J.F. ANTAKI

TABLE 5.1
Design variables for 2D tube problem for steady and time-dependent flow.

Variable Initial Steady Case I Case 11
ro 5.6109985 5.1174910 5.0673756 5.0758872
1 0.0000000 0.0502573 0.0432338 0.0431676
ro -0.7800000 | 0.0216108 0.0644936 0.0566008
T3 0.0000000 -0.0233347 | -0.0234054 | -0.0229796
rq 0.2400000 | -0.0131780 | -0.0114753 | -0.0113118
T5 0.0000000 -0.0093722 | -0.0090339 | -0.0087382
6 -0.1100000 | -0.0084052 | -0.0068513 | -0.0071648
r7 0.0000000 | -0.0056902 | -0.0039357 | -0.0041412
T8 0.0600000 -0.0064563 | -0.0049552 | -0.0051214
ro 0.0000000 | -0.0043257 | -0.0025236 | -0.0026561
r10 -0.0300000 | -0.0056489 | -0.0042339 | -0.0043963
ri1 0.0000000 | -0.0037718 | -0.0019915 | -0.0021727
ri2 0.0200000 -0.0054134 | -0.0043535 | -0.0044938
ri3 0.0000000 | -0.0037627 | -0.0023436 | -0.0024798

y-axis

— initial

1k — steady
— Casel|

Case Il

FiGc. 5.4. Initial and optimal tube centerlines.

cases is 50%. The convergence behavior of the two cases is similar, which indicates no
advantage is gained by using an unnecessarily long characteristic period. The optimal
shape, at several instants in time, is shown in Figure 5.6 for the Case I objective (Case
IT is indistinguishable). Gone are the abrupt geometry change and the separated flow
region. Furthermore, the optimum flow field is for the most part time-independent.
Of course, one does not need a sophisticated optimization algorithm to know that
a smoothly curved tube will produce a flow field that dissipates less viscous energy
than one with a sharp corner; however, a problem with such an intuitively-expected
optimal solution is valuable for helping to validate the method and code used.

6. Shape optimization of flow around a two-dimensional obstacle. Plac-
ing a body into a free stream flow generates a disturbance to the fluid motion. If the
body is bluff, separation may result, leading to wake formation and extension down-
stream. Depending on the shape of the body, the flow may be unsteady for Reynolds
number as low as 40, despite the fact that the free stream is steady. As Reynolds
number increases, a vortex street forms and discrete vortices are shed at regular in-
tervals. Therefore, shape optimization of such a system should be performed using a
time-dependent flow model. In this section, we optimize the shape of an obstacle by

SHAPE OPTIMIZATION OF TIME-DEPENDENT NAVIER-STOKES FLOWS 21

IS
S

i —casel
— - casell

w
)
T

w
S
T

N

@
T
[}

N
S
T

~6-0 ©-0-0- ©0-C-0©

=

0® |

value of global dissipation function
Kuhn-Tucker optimality condition (KTO)

L L L L 1 10" L L L 1 1
0 5 10 15 20 25 30 0 5 10 15 20 25 30
number of optimization iterations number of optimization iteration

F1G. 5.5. Objective function (left) and Euclidean norm of Kuhn-Tucker optimality condition
(right) as a function of number of optimization iterations for 2D tube problem.

minimizing the scaled global viscous dissipation function 3, in (2.11). The character-
istic time interval for the objective function evaluation is taken as a multiple of the
vortex shedding period. This can be found from the relationship
fs = %)
where f; is the predominant vortex shedding frequency, U is the speed of the free
stream flow, D is the cylinder diameter, and S is a dimensionless Strouhal number.
The dependence of S on Reynolds number Re has been established experimentally
for Re = 40 to 107 [6].

In the finite element method, it is well known that poor element quality can have
a deleterious effect on the solution. Angles near 0 can lead to ill-conditioning of the
discrete operator [13], while angles near 7 can lead to large approximation errors in
the H; norm [4]. When the geometry undergoes large changes during optimization,
it becomes very difficult, if not impossible, to construct a structured mesh scheme
that maintains element quality for a wide range of shapes. An unstructured mesh
is capable of resolving complicated, deforming geometries with guaranteed aspect
ratio elements (certainly in 2D, less assuredly in 3D), and thus is more appropriate
for general shape optimization problems. Therefore, in anticipation of large shape
changes for the obstacle problem solved in this section, we discretize the computational
domain with unstructured triangular meshes. The central difficulty with the use of
unstructured meshes in shape optimization is the lack of differentiability of typical
mesh generators. That is, the resulting triangulations they produce do not vary
smoothly with the input boundary shapes. For example, we use a state-of-the-art
2D triangular mesh generator, Triangle, which is a constrained Delaunay code that
incorporates adaptive arithmetic for stability and robustness [44]. Triangle makes a
number of binary decisions that render its output a discontinuous function of its input,
including whether edges should be flipped, boundary edges split, triangles refined, etc.
As a consequence, two meshes of related shape may not share the same topology nor
the same number of nodes or elements. Note, however, that differences in functions
such as (2.11)—(2.13) defined as integrals over the two meshes will tend to be small
between such a pair of meshes.

We are lead to adopt the following two-phase strategy for accommodating un-
structured meshes in shape optimization. In the early optimization iterations, shape

22 B. HE AND O. GHATTAS AND J.F. ANTAKI

F1G. 5.6. Flow streamlines at t = 12.875 (upper left), 19.125 (upper right), 25.375 (bottom left),
and 31.625 (bottom right) seconds for the optimal shape. The optimum represents a 50% reduction
in viscous energy dissipation over the initial shape.

change is expected to be very large, which necessitates topological changes to the
mesh to maintain element quality. Thus, in Stage I, the unstructured mesh generator
Triangle is used to completely remesh the flow domain at each iteration. In light of
the discontinuities associated with Delaunay-based meshing algorithms, the question
is: how should 0x /97 be computed? The rows of this matrix corresponding to bound-
ary nodes are easy: they are simply derivatives of the expressions for representing the
shape in terms of the design variables (i.e., derivatives of the “solid modeler”). For
example, a specific parameterization for the obstacle problem is given later in this
section. For rows of 0x/0m corresponding to interior nodes, we discard the idea of
attempting to differentiate Triangle; instead, in Stage I, we simply set these rows,
i.e., the interior grid sensitivities, to zero. The motivation for this is a result from
sensitivity analysis that states that the continuous shape sensitivity of a flow function
is independent of the grid sensitivity of interior points, at least for certain objec-

SHAPE OPTIMIZATION OF TIME-DEPENDENT NAVIER-STOKES FLOWS 23

tive functions expressed in terms of domain integrals [37]. Therefore, for the sake of
speed and simplicity, we might as well take grid sensitivities to be zero. Because the
problem will be solved on a finite mesh, there generally will be a small discrepancy
between the computed gradients and the change in the objective function “seen” by
the optimizer. Far from the optimum, the optimizer takes large steps, so provided a
sufficient decrease in the merit function is observed, this discrepancy and the lack of
smoothness are not a problem. Discussions of the influence of inexact sensitivities on
design optimization can be found in [45].

Close to the optimum, however, we sometimes find that the inconsistency be-
tween the way the mesh is actually moved and the way it is assumed to move results
in premature termination of the optimization iterations. Typically, a vicinity of a sta-
tionary point is reached, but the line search breaks down due to insufficient decrease
in the merit function—a sign that gradients are not consistent with actual changes in
the objective function. To make further progress in these cases, consistent derivatives
and differentiable mesh movement are needed. Both of these conditions can be readily
satisfied by using what we refer to as elastic mesh movement. The algorithm starts
with a mesh of acceptable quality. The change in the location of (a portion of) the
boundary of the computational domain is treated as an imposed displacement—an
inhomogeneous Dirichlet boundary condition—and a linear elasticity boundary value
problem (discretized by finite elements and posed on the same mesh) is solved. The
solution of the elasticity problem, i.e., the displacement field, is taken to be the change
in location of the interior nodes of the mesh. Because the discrete displacement field
depends smoothly on the value of inhomogeneous Dirichlet boundary conditions, this
mesh movement algorithm guarantees that coordinates of interior nodes are smooth
functions of the locations of boundary nodes. Furthermore, since the relationship
between displacement boundary conditions and the resulting solution of the elasticity
problem is explicit in form, interior grid sensitivities are easily found through direct
differentiation. Grid sensitivities are thus exact (modulo rounding errors). Finding
grid sensitivity essentially involves solving the discrete elasticity equations for a num-
ber of right hand sides equal to the number of design variables N™. Using a direct
linear solver, this implies a single factorization coupled with N™ pairs of triangular
solves. The cost of mesh movement and of obtaining grid sensitivities are inconse-
quential compared to solution of the time-dependent Navier-Stokes equations at each
optimization iteration. Note that elastic mesh movement maintains mesh topology,
and therefore may lead to severely stretched or even invalid meshes for large shape
changes. Thus, it is best left for small shape changes contemplated in Stage II. Similar
physically-based mesh moving schemes are popular for moving boundary problems,
and have been in use as early as in [3]. Related mesh moving schemes using networks
of springs have been used in various flow optimization settings in [1] [12] [30] [31].

So in summary, mesh movement is by unstructured mesh generation in Stage I
and elastic mesh movement in Stage II; internal mesh sensitivities are simply taken as
zero in Stage I and computed by taking the derivative of the elastic mesh movement
algorithm in Stage II. Table 6.1 summarizes what each phase of optimization needs
and can tolerate, with respect to meshing and grid sensitivity. Thus, the strategies
of Stages I and II are well-suited to the requirements of Table 6.1. Finally, note that
we have not automated switching between these two strategies; we simply switch to
Stage II if no further progress is possible in Stage I and the current point is not a
stationary point.

We turn now to the shape parameterization. The shape of the obstacle is repre-

24 B. HE AND O. GHATTAS AND J.F. ANTAKI

TABLE 6.1
Meshing and grid sensitivity requirements of different phases of optimization.

Phase Meshing Grid sensitivity
far from optimum | need: accommodate large shape change need: speed
tolerate: discontinuity or nonsmoothness tolerate: inaccuracy
near optimum need: differentiability need: accuracy
tolerate: restriction to small shape change | tolerate: cost

sented by two Bezier curves,

K K
T'(s) = > pl Bi,(s), ¥'(s) =D ¢! Br(s)
i=0 =0
for the upper boundary; and
K K
z'(s) =Y ph Brj(s), 7'(s) =Y _ q} Bk (s)
i=0 =0

for the lower boundary. Here, (p§, ¢}) and (p}, ¢}) are coordinates of Bezier control
points,

K!

PRI = G =
is a Bernstein polynomial, K is the order of the Bernstein polynomial, and s € [0, 1]
is a parameter. As s sweeps over [0,1], (Z'(s), 7'(s)) and (Z°(s), ¥°(s)) depict the
upper and lower surfaces of the obstacle, respectively. Bezier parameterization de-
fines a smooth curve that falls into a polygon determined by Bezier points and passes
the two Bezier end points, i.e., (po,qo) and (pk,qk). The shape of a Bezier curve is
anticipated by that of the containing polygon; thus, Bezier parameterization is con-
trollable. Shape design variables are the 2(K + 1) Bezier points (pf, ¢b), ..., (P, d%)
and (p§,48),- - -, (P a%)-

Similarly to the previous section, we propose the following end conditions to limit
the size and position of the obstacle:

e the position of both leading and trailing edges of the obstacle are fixed, i.e.,
ph, ab, plc, and ¢l are prescribed;

o the leading edge is fixed while the trailing edge is free to move within a
range, i.e., ph and g} are specified while p. and ¢ may change within certain
intervals;

e the position of the leading edge is allowed to change within a range while the
trailing edge is fixed, i.e., p§ and ¢f may vary within specified intervals while
pl and ¢l are equal to assigned values;

e both edges are free to move within specified ranges, i.e., p, ¢, pl;, and g%
may all vary within given intervals.

To prevent separation of the two Bezier curves at the leading and trailing edges, we
must enforce

sI(1—s)Kd

Po = Pp and dk = i -
We require that the obstacle area S exceeds a certain minimum value, for example to
insure structural integrity of the obstacle. Thus,

S>8

min *

SHAPE OPTIMIZATION OF TIME-DEPENDENT NAVIER-STOKES FLOWS 25

The upper and lower surfaces of the obstacle may overlap during optimization itera-
tions. To inhibit such an invalid shape, we choose N nodes on the top surface and NV
corresponding nodes on the bottom of the obstacle, which correspond to

=8, = —— =0,...,N—1.
s=s N1 m =20

Then, we triangulate the area contained within these nodes, as shown (coarsely) in
Figure 6.1. Shape constraints are that all triangles within the obstacle must have

F1c. 6.1. Triangulation of the obstacle for exclusion of invalid shapes.

non-negative areas. For instance, the area of triangle ijk must be nonnegative. We
obtain 2(N —2) such conditions in total. Gradients of these geometric constraints can
be readily evaluated once grid sensitivity fields become available.
Finally, we consider boundary conditions for solution of the Navier-Stokes equa-
tions:
e the inflow velocity is uniform and the attack angle is a to the horizontal,
which leads to

vy =Ucosa, vy = Usina,

where U is the magnitude of the inflow velocity;
e a no-slip condition is assumed on the obstacle boundary, i.e.,

Uy =vy =0;

e the outflow is traction-free, namely,

These conditions are invariant to modification of the obstacle shape. Thus, as in the
previous example, discrete design sensitivities of these boundary conditions vanish.
The line integrals in (3.7) and the corresponding sensitivity equations vanish under
this set of boundary conditions. The fluid is assumed to be still initially.

In the specific problem solved below, the obstacle surfaces are represented by
two fourth-order Bezier curves. The initial shape is a circle, for which the 20 Bezier
coefficients are tabulated in Table 6.2 under the heading “initial.” Figure 6.2 shows the
initial computational domain and mesh. The mesh has 7,373 nodes, 3,539 quadratic
triangular elements, and 15,581 velocity and pressure unknowns. The diameter of the
cylinder is D = 1.

26 B. HE AND O. GHATTAS AND J.F. ANTAKI

0 2 4 6 8 10 12
Fic. 6.2. Computational domain and mesh for flow around obstacle.

TABLE 6.2
Bezier coefficients for initial and optimal shapes for flow around a 2D obstacle.

Variable || Initial Stage 1 Stage 11
pé 3.00 3.00000000 | 3.00000000
p% 3.03 3.02013099 | 3.12910217
D5 3.50 3.69794100 | 3.70840703
p% 3.97 | 4.34598915 | 4.36940633
j2A 4.00 4.51956184 | 4.96051309
qé 3.50 3.50000000 | 3.50000000
q% 4.00 3.69582998 | 3.59317261
a5 4.20 3.53482103 | 3.61930290
q% 4.00 3.71255744 | 3.58691209
q, 3.50 3.46783775 | 3.48024608
pg 3.00 3.00000000 | 3.00000000
p% 3.03 2.96428727 | 2.97515449
pg 3.50 3.53084206 | 3.52474404
pg 3.97 | 3.98254581 | 3.96751124
Py 4.00 4.51956184 | 4.96051309
q% 3.50 3.50000000 | 3.50000000
q] 3.00 3.31686601 | 3.42029354
q%’ 2.80 3.37770498 | 3.34979508
qg 3.00 3.35356769 | 3.31674445
q4 3.50 3.46783775 | 3.48024608

We first compare vortex shedding frequencies computed with our code and those
obtained experimentally. This step serves two purposes: validation of our program
and identification of an appropriate time step. Several flow problems with different
Reynolds numbers and time steps are solved:

e Re = 1000 and At = 0.125,

e Re =500 and At = 0.5, and

e Re =200 and At = 0.125.
All Reynolds numbers in this section are based on the freestream velocity and the
diameter of the cylinder, that is the initial shape. Scaled viscous dissipation functions

SHAPE OPTIMIZATION OF TIME-DEPENDENT NAVIER-STOKES FLOWS

27

Jo, ®dQ/ [, d2 are plotted in Figure 6.3. Clearly, the functions begin to oscillate

4.4

4.2

3.8

3.6

3.4

3.2

ion
[=d
o
g
S

0.04

0.036

energy dissipation functi

0.034

energy dissipation function
1)
w

o o
N N
i o

o
N
N}

o
N

F1G. 6.3. Time histories of the scaled dissipation function ®s for Re = 200 (top), 500 (middle),

and 1000 (bottom).

after some time. The oscillation frequencies are equal to those of vortex shedding.
Table 6.3 compares frequencies obtained numerically and experimentally, and we see
very good agreement between the two. Strouhal numbers in Table 6.3 are from [6].
In all calculations, we have used the upper bounds of the Strouhal number, which

correspond to a cylinder with a smooth surface.

At Reynolds number 500, [, ®dQ/ [, dQ oscillates with a period of about 9.
Thus, it is reasonable, with a second-order method such as Crank-Nicolson, to use a
time step At = 0.5 for the flow simulation. If the characteristic time for objective

28 B. HE AND O. GHATTAS AND J.F. ANTAKI

TABLE 6.3
Ezperimental and numerical vortex shedding frequencies for flow around a cylinder.

Reynolds number | Strouhal number | Experimental | Numerical
200 0.20 0.039 0.041
500 0.22 0.110 0.114
1000 0.21 0.210 0.219

function evaluation is taken as one vortex shedding period, then we may integrate
Jo ®dQ/ [, dY over [tr,tar] to get @y, where t, = 90 and t3; = 99. Several snapshots
of flow streamlines are shown in Figure 6.4. Gradual formation of the von Karman

F1G. 6.4. Streamlines for 2D obstacle problem at t = 10 (upper left), 20 (upper right), 30
(bottom left), and 100 (bottom right) for the initial shape. Re = 500.

vortex street is evident from the figure.
Optimization constraints include the minimum area requirement S > 0.3, and
constraints on the position of leading and trailing edges:

ph=3.0, ¢,=35 35<pi<50, and 1.0<¢q} <20.

SHAPE OPTIMIZATION OF TIME-DEPENDENT NAVIER-STOKES FLOWS 29

The objective is to minimize <f>s at Re = 500. The optimization process is divided into
two stages: in Stage I, the mesh is updated by a complete remeshing using Triangle,
and internal grid sensitivities are assigned zero values; in Stage II, we begin with
the optimal shape from Stage I, but mesh updating and sensitivity analysis are both
carried out by the elastic mesh movement algorithm. Table 6.2 gives the optimal
Bezier coefficients after each stage of optimization under “Stage I” and “Stage II.”
Figure 6.5 shows the evolution of shapes—from the initial to the optimum of Stage I,

4.2+ B
— initial
Stage |

2.8- 1

F1c. 6.5. Evolution of shapes for 2D obstacle problem, Re = 500.

and then to the optimum of Stage II. Shape modification is very large in Stage I, and
thus remeshing is the better strategy for updating the mesh. But this results in (small)
discontinuities in the objective function and optimization finally terminates due to an
unsuccessful line search. The shape obtained is a not quite symmetric airfoil. Better
shapes are possible; a smooth mesh movement scheme as well as consistent derivatives
are required if the optimizer is to find them. Shape change is relatively small in
Stage II, so it is appropriate to enlist the elastic mesh movement scheme for both
mesh updating and sensitivity analysis. Still, we have to remesh three times in this
stage of optimization due to invalid meshes produced by the elastic mesh movement
algorithm. The final optimal shape of Stage II encounters the area bound of 0.3, and
the horizontal coordinate of the trailing edge nearly reaches its upper bound of 5. The
resulting slender and almost symmetric profile is what we might expect for the shape
of a zero angle of attack body that minimizes dissipation while meeting constraints
on area and chord length.

The optimization takes about 100 CPU hours to complete. The objective function
value and Euclidean norm of the Kuhn-Tucker optimality conditions (KTO) for the
initial, Stage I optimal, and Stage IT optimal shapes are given in Table 6.4. In addition,
the table lists the number of optimization iterations and number of complete flow
solutions taken to reach the optimal solution for each stage. The optimum represents
an 82% reduction in the viscous energy dissipation relative to the initial circular
shape. Several snapshots of flow streamlines corresponding to the Stage II optimal
shape are shown in Figure 6.6. The figure shows that the flowfield is largely time-
independent, vortex shedding is eliminated, and the wake region is greatly reduced

30 B. HE AND O. GHATTAS AND J.F. ANTAKI

TABLE 6.4
Solution parameters, shape optimization of flow around a 2D obstacle.

Stage Number of Number of Objective KTO
iterations | flow solutions function
initial - - 0.42022025 0.3051
Stage I 16 23 0.14259630 | 1.375e-3
Stage II 19 27 0.07740351 | 9.250e-6

F1G. 6.6. Streamlines at t = 2.5 (upper left), 12.5 (upper right), 22.5 (bottom left), and 32.5
(bottom right) for the optimal shape of the 2D obstacle problem. Re = 500. The optimum represents
a 82% reduction in viscous energy dissipation over the initial shape.

in size. Note that the optimizer has found a symmetric optimum shape, despite the
fact that symmetry has not been imposed as a constraint in this problem, and the
unstructured mesh produced by Triangle is not symmetric.

7. Final remarks. We have considered the problem of shape optimization of
two-dimensional flows governed by the time-dependent Navier-Stokes equations. For
this problem we have proposed computational strategies with respect to optimization

SHAPE OPTIMIZATION OF TIME-DEPENDENT NAVIER-STOKES FLOWS 31

method, sensitivity method, and unstructured meshing scheme. We have argued that,
despite their superiority for steady Navier-Stokes flow optimization, reduced SQP
methods are too memory-intensive for the time-dependent problem. Instead, we have
advocated a combination of GRG (for the flow equation constraints) and SQP (for
the remaining inequality constraints). With respect to sensitivity method, we have
favored discrete sensitivities, which can be implemented with little additional storage
or work beyond that required for solution of the flow equations, and thus possess a
distinct advantage over discretized continuous sensitivities, which require knowledge
of the entire time history of the flow variables. Finally, we have taken a two-phase
approach to unstructured meshing and grid sensitivities. Far from the optimum, we
have remeshed completely using an unstructured mesh generator to accommodate the
large shape changes that are anticipated in this phase, while an inconsistent but easily
computed form of grid sensitivities has been employed. Close to the optimum, where
differentiability of the mesh movement scheme and consistency of grid sensitivities
are desirable, we have used elastic mesh movement to generate meshes corresponding
to new shapes. Elastic mesh movement is valid only for small shape changes but is
differentiable and permits computation of exact grid sensitivities in a straightforward
manner.

Two examples characterized by viscous dissipation objective functions illustrated
the approach. The latter example involved finding the geometrically-constrained op-
timum shape of an initially circular cylinder placed in a uniform flow at Re = 500 and
described by 20 Bezier shape variables and over 15,000 spatial flow variables. The
optimum shape, a symmetric airfoil, was found in a total of 35 iterations, 50 flow
solutions, and 100 CPU hours (on a DEC Alpha system). The CPU time taken rep-
resents over an order of magnitude increase over a similar, but steady, problem—this
is the price paid for optimizing with a time-dependent model of the flow.

What can be done to reduce computational work (without significantly increasing
storage)? First, in order to reduce work per optimization iteration, one might try to
strike a compromise between GRG (no state variable time history stored) and SQP
(entire time history stored) by storing an approximation of the state variables at a
portion (depending on available storage) of the time steps; iterating on the nonlinear
equations that update the states can then be integrated with updates of the design
variables, a la SQP. For example, one might use a multiple shooting method for solv-
ing the system of DAEs (as was done in [36] for a time-dependent heat equation),
or a very high order method in time. Second, with the goal of reducing the number
of optimization iterations, one might pursue incorporating second order derivatives
for use in a Newton method. Our experience (for a problem in optimal boundary
control of Navier-Stokes flows [14]) is that use of exact Hessians cuts the number of
iterations significantly (in half or third); however, the reduction in CPU time is not
as substantial, due to the additional work involved in computing second derivatives.
Finally, CPU time can certainly be reduced through parallel computing. In earlier
work, we devised and implemented parallel RSQP algorithms for full potential flow
optimal design problems [33], [15]; recently, parallel implementations of GRG-based
optimal design methods for Euler flows have appeared [38]. We have recently imple-
mented a parallel SQP method for general 3D unstructured mesh shape optimization
problems on a Cray T3E [29], and are currently tailoring the code to incompressible
Navier-Stokes flows. Speedups induced by domain-based parallelism seem to offer the
best hope for significant reductions in computing time necessary for practical shape
optimization of time-dependent Navier-Stokes flows.

32

B. HE AND O. GHATTAS AND J.F. ANTAKI

Acknowledgments. We thank Greg Burgreen for sharing his experiences in

shape optimization and geometry modeling with us.

(1]

2]
(3]
(4]

(12]

(13]

(14]

(23]

[24]

REFERENCES

W. K. ANDERSON AND V. VENKATAKRISHNAN, Aerodynamic design optimization on unstruc-
tured grids with a continuous adjoint formulation, Tech. Rep. 97-9, Institute for Computer
Applications in Science and Engineering, NASA Langley Research Center, Hampton, VA,
Jan. 1997.

J. ANTAKI, O. GHATTAS, G. BURGREEN, AND B. HE, Computational flow optimization of rotory
blood pump components, Artifical Organs, 19 (1995), pp. 608—615.

J. ArRGYRIs, J. Dortsinis, H. FISCHER, AND H. WUSTENBERG, Ta wavta per, Computer
Methods in Applied Mechanics and Engineering, 51 (1985), pp. 289-362.

1. BABUSKA AND A. Az1z, On the angle condition in the finite element method, STAM Journal
on Numerical Analysis, 13 (1976), pp. 214-227.

L. T. BIEGLER, J. NOCEDAL, AND C. SCHMID, A reduced Hessian method for large-scale con-
strained optimization, STAM Journal on Optimization, 5 (1995), pp. 314-347.

R. D. BLEVINS, Flow-Induced Vibration, Van Nostrand Reinhold, 1990.

R. A. BROCKMAN, Geometric sensitivity analysis with isoparametric finite element, Commu-
nications in Applied Numerical Methods, 3 (1987), pp. 495-499.

G. W. BURGREEN AND J. F. ANTAKI, CFD-based design optimization of a three-dimensional
rotary blood pump, in Proceedings of the Sixth AIAA/NASA/ISSMO Symposium on Mul-
tidisciplinary Analysis and Optimization, AIAA, September 1996.

R. H. BYRD AND J. NOCEDAL, An analysis of reduced Hessian methods for constrained opti-
mization, Mathematical Programming, 49 (1991), pp. 285-323.

T. Davis, Users’ guide for the unsymmetric pattern multifrontal package (UMFPACK), Tech.
Rep. TR-93-020, University of Florida, Gainesville, FL, 1993.

J. E. DENNIS AND R. M. LEWIS, A comparison of nonlinear programming approaches to an
elliptic inverse problem and a new domain decomposition approach, Tech. Rep. TR94-33,
Department of Computational and Applied Mathematics, Rice University, 1994.

J. ELLIOTT AND J. PERAIRE, Practical 3D aerodynamic design and optimization using unstruc-
tured meshes, in Proceedings of the Sixth ATAA/NASA/ISSMO Symposium on Multidis-
ciplinary Analysis and Optimization, ATAA, September 1996.

I. FRIED, Condition of finite element matrices generated from nonuniform meshes, AIAA Jour-
nal, 10 (1972), pp. 219-221.

O. GHATTAS AND J. BARK, Optimal control of two- and three-dimensional Navier-
Stokes flows, Journal of Computational Physics, (1997). In press. Available from
http://www.cs.cmu.edu/~oghattas.

O. GHATTAS AND C. E. OROZCO, A parallel reduced Hessian SQP method for shape opti-
mization, in Multidisciplinary Design Optimization: State-of-the-Art, N. Alexandrov and
M. Hussaini, eds., SIAM, 1997, pp. 133—-152.

M. GUNZBURGER, Finite Element Methods for Viscous Incompressible Flows, Academic Press,
1989.

M. D. GUNZBURGER, L. S. Hou, AND T. P. SVOBODNY, Optimal control and optimization of
viscous, incompressible flows, in Incompressible Computational Fluid Dynamics, M. D.
Gunzburger and R. A. Nicolaides, eds., Cambridge, 1993, ch. 5, pp. 109-150.

R. T. HAFTKA AND Z. GURDAL, Elements of Structural Optimization, Kluwer Academic,
third ed., 1991.

E. HAuG AND J. ARORA, Applied Optimal Design, Wiley Interscience, 1979.

B. HE, Shape Optimization of Navier-Stokes Flows, with Application to Design of Artificial
Heart Devices, PhD thesis, Carnegie Mellon University, 1996.

M. HEINKENSCHLOSS, Numerical solution of optimal control problems governed by the Navier-
Stokes equations using sequential quadratic programming. In preparation.

, Formulation and analysis of a sequential quadratic programming method for the optimal
Dirichlet boundary control of Navier-Stokes flow, Tech. Rep. TR97-14, Department of
Computational and Applied Mathematics, Rice University, May 1997.

R. D. JosuiN, M. D. GUNZBURGER, R. A. NICOLAIDES, G. ERLBACHER, AND M. Y. HUSSAINI,
Self-contained automated methodology for optimal flow control, AIAA Journal, 35 (1997),
pp. 816-824.

K. KuNiscH AND E. W. SACHS, Reduced SQP methods for parameter identification problems,
SIAM Journal on Numerical Analysis, 29 (1992), pp. 1793-1820.

25]

(26]

(27]

(28]

(29]

(30]

(31]
(32]
(33]
(34]
35]

(36]

(37]

38]

SHAPE OPTIMIZATION OF TIME-DEPENDENT NAVIER-STOKES FLOWS 33

F.-S. KUPFER, An infinite-dimensional convergence theory for reduced SQP methods in Hilbert
space, SIAM Journal on Optimization, 6 (1996), pp. 126-163.

F.-S. KUPFER AND E. W. SACHS, Numerical solution of a nonlinear parabolic control problem by
a reduced SQP method, Computational Optimization and Applications, 1 (1992), pp. 113—
135.

R. M. LEwis, A nonlinear programming perspective on sensitivity calculations for systems
governed by state equations, Tech. Rep. 97-12, Institute for Computer Applications in
Science and Engineering, NASA Langley Research Center, Hampton, VA, Feb. 1997.

R. M. LEwis, Practical aspects of variable reduction formulations and reduced basis algorithms
in multidisciplinary design optimization, in Multidisciplinary Design Optimization: State-
of-the-Art, N. Alexandrov and M. Hussaini, eds., SIAM, 1997, pp. 172—-188.

I. MALCEVIC, Large-scale unstructured mesh shape optimization on parallel computers, Master’s
thesis, Carnegie Mellon University, 1997.

J. NEWMAN AND A. TAYLOR, Three-dimensional aerodynamic shape sensitivity analysis and
design optimization using the Fuler equations on unstructured grids, 1996. AIAA Paper
96-2464.

J. NEWMAN, A. TAYLOR, AND G. BURGREEN, An unstructured grid approach to sensitivity
analysis and shape optimization using the Euler equations, 1995. ATAA Paper 95-1646.

J. NOCEDAL AND M. OVERTON, Projected Hessian updating algorithms for nonlinearly con-
strained optimization, STAM Journal on Numerical Analysis, 22 (1985), pp. 821-850.

C. E. Orozco AND O. GHATTAS, Massively parallel aerodynamic shape optimization, Comput-
ing Systems in Engineering, 1-4 (1992), pp. 311-320.

, Infeasible path optimal design methods, with application to aerodynamic shape opti-

mization, ATAA Journal, 34 (1996), pp. 217-224.

, A reduced SAND method for optimal design of nonlinear structures, International Jour-
nal for Numerical Methods in Engineering, (1997). To appear.

L. PETzoLDp, J. B. ROSEN, P. E. GiLL, L. O. JAY, AND K. PARK, Numerical optimal control
of parabolic PDEs using DASOPT, Tech. Rep. NA 96-3, Department of Mathematics,
University of California, San Diego, 1996.

O. PIRONNEAU, On optimum design in fluid mechanics, Journal of Fluid Mechanics, 64 (1974),
pp. 97-110.

J. REUTHER, J. J. ALONSO, M. J. RIMLINGER, AND A. JAMESON, Aerodynamic shape optimiza-
tion of supersonic aircraft configurations via an adjoint formulation on parallel computers,
Tech. Rep. 96.17, RIACS, NASA Ames Research Center, Sept. 1996.

U. RINGERTZ, Optimal design of nonlinear shell structures, Tech. Rep. FFA TN 91-18, The
Aeronautical Research Institute of Sweden, 1991.

, An algorithm for optimization of nonlinear shell structures, International Journal for
Numerical Methods in Engineering, 38 (1995), pp. 299-314.

A. SAHRAPOUR, N. U. AHMED, AND S. TAVOULARIS, Boundary control of the Navier-Stokes
equations with potential applications to artificial hearts, in Proceedings of the 2nd Con-
ference of the CFD Society of Canada, J. Gottlieb and C. Ethier, eds., Toronto, 1994,
pp. 387-394.

K. ScHITTKOWSKI, NLPQL: A Fortran subroutine for solving constrained nonlinear program-
ming problems, Annals of Operations Research, 5 (1985/86), pp. 485-500.

V. H. ScHuLZ AND H. G. BOCK, Partially reduced SQP methods for large-scale nonlinear
optimization problems, in Proceedings of the Second World Congress of Nonlinear Analysis,
Elsevier Verlag, 1997.

J. R. SHEWCHUK, Triangle: Engineering a 2D quality mesh generator and Delaunay triangu-
lator, in First Workshop on Applied Computational Geometry, Association for Computing
Machinery, May 1996, pp. 124-133.

D. P. Young, W. P. HurFMAN, R. G. MELVIN, M. B. BIETERMAN, C. L. HILMES, AND F. T.
JOHNSON, Inezactness and global convergence in design optimization, in Proceedings of
the 5th ATAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Opti-
mization, Panama City, Florida, September 1994.

