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Abstract. We consider the problem of shape optimization of two-dimensional 
ows governed by

the time-dependent Navier-Stokes equations. For this problem we propose computational strategies

with respect to optimization method, sensitivity method, and unstructured meshing scheme. We

argue that, despite their superiority for steady Navier-Stokes 
ow optimization, reduced sequential

quadratic programming (RSQP) methods are too memory-intensive for the time-dependent prob-

lem. Instead, we advocate a combination of generalized reduced gradients (for the 
ow equation

constraints) and SQP (for the remaining inequality constraints). With respect to sensitivity method,

we favor discrete sensitivities, which can be implemented with little additional storage or work be-

yond that required for solution of the 
ow equations, and thus possess a distinct advantage over

discretized continuous sensitivities, which require knowledge of the entire time history of the 
ow

variables. Finally, we take a two-phase approach to unstructured meshing and grid sensitivities. Far

from the optimum, we remesh each new shape completely using an unstructured mesh generator to

accommodate the large shape changes that are anticipated in this phase, while an inconsistent but

easily computed form of grid sensitivities is employed. Close to the optimum, where di�erentiability

of the mesh movement scheme and consistency of grid sensitivities are desirable, we use elastic mesh

movement to generate meshes corresponding to new shapes. Elastic mesh movement is valid only

for small shape changes but is di�erentiable and permits computation of exact grid sensitivities in

a straightforward manner. Two examples characterized by a viscous dissipation objective function

illustrate the approach.

1. Introduction. The problem of �nding the optimal design of a system gov-
erned by the incompressible Navier-Stokes equations arises in many design problems
in aerospace, automotive, hydraulic, ocean, structural, and wind engineering. Exam-
ple applications include aerodynamic design of automotive vehicles, trains, low speed
aircraft, sails, and 
exible structures, and hydrodynamic design of ship hulls, pro-
pellers, turbomachinery, and o�shore structures. In many cases, the 
ow equations
do not admit steady-state solutions, and the optimization model must incorporate
the time-dependent form of the Navier-Stokes equations.

Most of the theoretical and numerical work on optimization of Navier-Stokes 
ows
has been done in the context of both optimal control and steady 
ows (see [17] for
an overview). A few studies have considered optimal control of time-dependent 
ows,
where the control is in the form of boundary velocities [23] [41]. Our concern in
this article is on shape optimization of time-dependent Navier-Stokes 
ows, and in
particular on devising e�cient numerical strategies for solution of two-dimensional
(2D) realizations of such problems. Our ultimate goal is to solve three-dimensional
(3D) shape optimization problems arising in the design of arti�cial heart devices [2]
[8].
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One of the major di�culties in numerically solving optimization problems gov-
erned by time-dependent Navier-Stokes 
ows is the large number of equality con-
straints that arise upon space and time discretization of the 
ow equations. The size
of this constraint set is the number of spatial 
ow variables multiplied by the number
of time steps, and can be of the order of millions for typical 2D problems, such as those
solved in this paper; several orders of magnitude larger can be expected in 3D. This
puts the time-dependent Navier-Stokes optimization problem in the category of ex-
tremely large scale, nonlinearly-constrained optimization. In general, problems with
numbers of constraints as large as these pose di�culties for such modern nonlinear
optimization methods as the sequential quadratic programming (SQP) method.

One approach common in optimal design for accommodating large constraints
sets arising from discretized partial di�erential equations (PDEs) is to eliminate the
state equations and state variables at each optimization iteration. This is done by
solving the state equations for the states variables given values of the design variables.
The state variables are then used to evaluate the objective function and remaining
constraints, and the implicit function theorem is invoked for derivative computations.
See, for example, [18] [19]. This method therefore treats the equality constraints in
a generalized reduced gradient (GRG) fashion, since it satis�es them exactly at each
optimization iteration. The remaining constraints are then treated using one's favorite
nonlinear optimizer. The GRG idea greatly reduces the size of the optimization
problem, since it is now of dimension of the design variables, and relieves the optimizer
from its role as PDE solver. On the other hand, the disadvantage of this method is
that the state equations must be completely solved for a given set of design variables;
this can be quite onerous when the state equations are highly nonlinear.

A di�erent approach that is particularly e�ective for optimization problems gov-
erned by nonlinear boundary value problems has emerged in recent years. The state
equations are retained as constraints, and the optimization problem is solved by a
reduced SQP (RSQP) method. Two key ideas are: unlike GRG (but like full-space
SQP), only a linear approximation of the state equations is satis�ed at each iteration;
and unlike full space SQP (but like GRG), curvature information is required only in
a subspace de�ned by the null space of the Jacobian of the state equations, which
is of the dimension of the design variable vector, and is thus typically small relative
to the number of state variables. When second derivatives are di�cult to compute,
as is often the case in optimal design, this reduced Hessian can be approximated
cheaply by a quasi-Newton update. In a sense, RSQP combines the best of GRG and
full-space SQP. Indeed, there is an intimate connection between GRG and RSQP for
optimization problems governed by state equations. The two can be seen roughly as
extremes of a continuum, the endpoints of which are: completely converging the state
equations at each optimization iteration versus performing a single Newton step on
them (see [28]). The e�cacy of RSQP for PDE-constrained optimization problems
has been demonstrated in a number of applications including structural optimization
[35] [39] [40], heat equation boundary control [26], compressible 
ow airfoil design
[33] [34] [43], boundary control of viscous incompressible 
ows [14] [21], and inverse
parameter estimation problems [11] [24]. Reduced SQP methods have been analyzed
for the �nite dimensional case in [5] [9] [32], and for in�nite dimensions in [22] [25].

In light of its vastly superior performance over GRG (for steady optimal boundary
velocity control [14]), our initial idea was to use RSQP for solution of the time-
dependent Navier-Stokes shape optimization problem. However, the large size of state
constraints in the form of the spatio-temporally discretized Navier-Stokes equations
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forced us to rethink that desire. In exchange for not completely solving the state
constraints at each time step|instead satisfying the 
ow equations asymptotically
as the optimum is approached|RSQP requires storage of the entire time history
of 
ow variables. This is a serious drawback. Indeed, the very advantage of SQP
has turned out to result in a disadvantage: simultaneous storage of 
ow variables at
all time steps is needed precisely because we are permitted to update them at each
optimization iteration|with the goal of eventually converging the nonlinear algebraic
equations characterizing a time step. GRG does not su�er from this storage problem:
because the time dimension represents the \initial" part of the initial-boundary value
problem, the states evolve through time, and a numerical algorithm for time-stepping
simply replaces one time step's 
ow variables with the next. The advantage of RSQP
in this context is the reduction in computational e�ort per optimization iteration, by
avoiding solution of the 
ow equations in favor of a single Newton step that updates
them. Here, however, the 
ow equations are not terribly nonlinear; since time steps
are chosen for time-accuracy, it is usually the case that the 
ow equations for a given
time step can be solved for the 
ow variables at the next time step, given the current

ow variables, in just two or three Newton iterations (provided the 
ow is away from
turning or bifurcation points). So time-accurate integration of the spatially-discretized

ow equations|as necessitated by the time-dependent nature of the objective and
inequality constraints|has rendered the fully-discretized state equations only weakly
nonlinear, and RSQP's contribution is limited to reducing those two or three Newton
steps to just one. Thus, the bene�t of RSQP relative to GRG for time-dependent 
ow
optimization is not as great as the steady case, in which over an order of magnitude
improvement has been observed [14].

Instead, we pursue here a combination of SQP and GRG. At each optimization
iteration, we solve the equality state constraints (i.e. the spatio-temporally discretized
Navier-Stokes equations) completely, by stepping sequentially through time, obtaining
the 
ow variables at the next time step given those of the current. Sensitivity deriva-
tives are found discretely also at each time step, again obviating the need to store the
entire time history of 
ow variables, as would be required with discretized continuous
sensitivities. Objective and constraint functions de�ned as integrals over time are
simply accumulated step-by-step using a quadrature rule, as are their derivatives. In
exchange for a big reduction in storage, we do some more work. This is the GRG
component of the method. The treatment of the remaining, inequality, constraints is
in the fashion of SQP; only a linear approximation of the active constraints is satis�ed
at any optimization iteration. The storage thus required can be as little as the current
and previous 
ow �eld (if a matrix-free method is used to solve the state equations).
We stress that this approach to state equation-constrained optimization problems is
not novel: indeed this is the usual way design optimization problems are solved, and
is what is usually referred to in the engineering literature as an \SQP method."

Several caveats are in order here. First, if the nonlinear iteration used to solve the

ow equations at each time step is not a true Newton method (i.e. it doesn't compute
the exact Jacobian), it may require many more iterations at each time step, and so the
reduction to a single linear solve of the state equations o�ered by RSQP may result in
a substantial reduction in computational e�ort. Second, this situation is an example of
the classic time{memory tradeo�. For us, storage wins out, since unstructured mesh
methods are already very memory intensive. However, when memory is not a problem,
RSQP's o�er of a reduction to just one Newton step on the state equations per
optimization iteration is certainly worthwhile. For 1D initial-boundary problems (i.e.,
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when the PDEs are posed in one spatial dimension, and time represents the other),
the storage associated with discretizing the time-space continuum is not onerous, and
there is no reason not to use a RSQP method; see [26] for an application to boundary
control involving nonlinear heat conduction. Another example of memory being less
important than computational work is when the state equations are naturally discrete
in \space," and are posed as (ordinary) di�erential{algebraic equations in time. In
this case, RSQP is also a good idea. An example application is optimal control of
robots, the behavior of which is governed by rigid multibody dynamics. [43].

In the remainder of this article, we will de�ne the continuous optimization prob-
lem, discuss it spatial and temporal discretization, develop sensitivity expressions,
consider grid sensitivities, and apply the method to two time-dependent Navier-Stokes
shape optimization model problems. More extensive discussion can be found in [20].

2. Mathematical model. In this section we state the continuous form of the
mathematical model of the shape optimization problem addressed in this paper. Let

 denote an open, bounded, and possibly multiply connected domain in <2 or <3.
Let � denote the boundary of 
. The laminar time-dependent 
ow of a homogeneous,
incompressible, Newtonian 
uid inside 
 is governed by the Navier-Stokes equations,
i.e. the conservation of linear momentum equation

�
@v

@t
+ �(v � r)v �r � � � f = 0 in 
� [0; T ] ;(2.1)

the constitutive law

� = �pI+ �
�
rv + (rv)T

�
in 
� [0; T ] ;(2.2)

and the conservation of mass equation

r � v = 0 in 
� [0; T ] ;(2.3)

where r is the spatial gradient vector, v the 
uid velocity, � the stress tensor, p the
pressure, f the body force, � the 
uid density, and � the dynamic viscosity.

The initial-boundary value problem requires the imposition of boundary condi-
tions, which may consist of the Dirichlet condition

v(x; t) = vd(t) in �d � [0; T ] ;(2.4)

and the Neumann condition

�(x; t) � n(x) = tn(t) in �n � [0; T ] ;(2.5)

as well as an initial condition

v(x; 0) = v0(x) in 
 ;(2.6)

where x is the spatial coordinate, n(x) the outward normal unit vector at �n, and

�d [ �n = � :(2.7)

We consider the following local (de�ned at a point in space and an instant in
time) and global (integrated over the problem domain and time interval of interest)
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functions as objective (or constraint) functions in the optimization problem: the rate
of energy dissipation due to viscosity,

� =
1

2
�
�
rv + (rv)T

�
:
�
rv + (rv)T

�
;(2.8)

the maximum shear stress, e.g. in two dimensions,

� =

s�
�xx � �yy

2

�2
+ �2xy ;(2.9)

the magnitude of vorticity,

$ = j r � v j ;(2.10)

the spatially and temporally averaged dissipation function, both unscaled and scaled
by area or volume of the domain,

b�u =

Z tM

tL

Z



� d
dt ; b�s =
b�u

S
;(2.11)

the spatially and temporally averaged maximum shear stress, both unscaled and
scaled,

b�u =

Z tM

tL

Z



�2 d
dt ; b�s =
b�u
S
;(2.12)

and the spatially and temporally averaged vorticity magnitude, both unscaled and
scaled,

b$u =

Z tM

tL

Z



$2 d
dt ; b$s =
b$u

S
;(2.13)

where

S =

Z



d


is the area or volume of the 
ow domain 
, and [tL; tM ] is a characteristic time interval.
De�nitions of tL and tM are problem dependent. For instance, if the optimization
problem of interest involves 
ow with initial-condition-generated transients that are
damped out, the characteristic time interval may be chosen to start at the initial time,
and end after steady state is reached. On the other hand, if the 
uid motion is periodic
and the in
uence of the initial condition is irrelevant to the design problem, we may
set tL to be large enough so that viscous damping �lters out the contribution of the
initial condition, and [tL; tM ] should span one or several periods of 
ow oscillation.
These functions are inspired directly or indirectly by the desire to avoid blood damage
by thrombosis and hemolysis in arti�cial heart devices [2].

Later in this article we describe a code we have developed that implements any
convex combination of the six global functions in Equations (2.11){(2.13) as the objec-
tive function. In addition, limits on allowable values of the local functions (2.8){(2.10)
may be introduced as inequality constraints. Conditions that ensure a valid shape
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and limit the size and position of the shape have to be introduced as geometric con-
straints. We will discuss such geometric constraints in Sections 5 and 6 in the context
of some speci�c geometries. An example shape optimization problem that might arise
in arti�cial heart design is to minimize the global dissipation b� in (2.11), subject
to geometry and physics constraints, including equalities in the form of the Navier-
Stokes equations (2.1)|(2.3), and inequalities induced by demanding that the local
maximum shear stress (2.9) not exceed an allowable value throughout the domain.
Since the aspect of the design that is under our control is the domain boundary (or
part of it), this problem is one of shape optimization.

Since it is in general impossible to solve the in�nite dimensional shape optimiza-
tion problem in closed form, we resort to numerical approximation in both space and
time, as well as representing the shape by a �nite number of design parameters. These
issues will be addressed in subsequent sections. The resulting optimization problem
can then be stated as �nding, from the space of shapes spanned by the design variables,
the one that minimizes a numerical approximation of the objective while satisfying
the discrete time-dependent Navier-Stokes equations, as well as discretized geometric
and 
ow-related inequality constraints. The problem can thus be transformed into
a smooth, large-scale, nonlinear programming problem (NLP). In the next section
we discuss spatial and temporal discretization of the 
ow equations and functions of
interest.

3. Spatial and temporal discretization. We use �nite elements in space and
�nite di�erences in time to numerically approximate the 
ow equations. For spatial
approximation, we choose the Galerkin �nite element method, which begins with a
weak form of the equations. Let H1 (
� [0; T ]) denote the Sobolev space of all func-
tions whose �rst derivatives are square integrable over 
�[0; T ] and let L2 (
� [0; T ])
denote the space of functions that are square integrable over 
 � [0; T ]. We restrict
ourselves to the following subspaces,

V = fv j v 2 [H1(
� [0; T ])]dim and v satis�es (2.4)g ;

W = fw j w 2 [H1(
� [0; T ])]dim and w = 0 on �d � [0; T ]g ;

and

P = fp j p 2 L2 (
� [0; T ])g ;

where dim = 2 and 3 for two and three dimensional problems, respectively.
Stress variables are eliminated from the 
ow equations by substituting (2.2) into

(2.1). The weak form of (2.1) and (2.3) can then by stated as: Find v 2 V and p 2 P
satisfying the initial conditions (2.6), such that

h(
@v

@t
;w) + a(v;w) + b(p;w) + c(v;v;w) + g(w) = 0 for all w 2 W (
) ;(3.1)

b (q;v) = 0 for all q 2 P ;(3.2)

where

h

�
@v

@t
;w

�
=

Z



�
@v

@t
�w d
 ;(3.3)



SHAPE OPTIMIZATION OF TIME-DEPENDENT NAVIER-STOKES FLOWS 7

a(v;w) =

Z



�

2

�
rv + (rv)T

�
:
�
rw + (rw)T

�
d
 ;(3.4)

b(p;w) = �

Z



pr �w d
 ;(3.5)

c(v;v;w) =

Z



�w � (v �r)v d
 ;(3.6)

and

g(w) = �

Z



f �w d
�

Z
�n

tn �w d�n :(3.7)

Since the weak formulation explicitly involves traction on the boundary, (2.5) is easily
enforced.

Galerkin �nite element approximation begins by meshing the 
ow domain 
 with
nodes and elements. Finite element spaces Vh, Wh, and Ph, which are subspaces of
V , W , and P , respectively, can then be established as

Vh = fvh j vh =

NvX
i=1

�i vi ; and vh satis�es (2.4)g ;(3.8)

Wh = fwh j wh =

NvX
i=1

�i wi ; and wh = 0 on �d � [0; T ]g ;(3.9)

and

P = fph j ph =
NpX
j=1

 j pjg ;(3.10)

where Nv and Np are the number of nodes for, respectively, velocity and pressure
unknowns; the basis functions �1; : : : ; �Nv and  1; : : : ;  Np are continuous piecewise
polynomials; and vi 2 <

dim, wi 2 <
dim, and pj 2 <. Since the �i and  j are �nite

element basis functions, vi and pj are just velocity and pressure values at nodes i and
j, respectively.

In the case of isoparametric �nite elements, the transformation between the spatial
coordinate x and the curvilinear coordinate � is given by

x =

NvX
k=1

�k(�) xk ;(3.11)

where xk is the spatial coordinate at node k. The Jacobian matrix and determinant
of the transformation are

J =

�
@x

@�

�T

2 <
dim�dim ;(3.12)

J = det(J) 2 < :(3.13)
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Note that the curvilinear coordinate � is de�ned locally with respect to each element,
so that each element has its own coordinate transformation. When we refer to �

globally, what we have in mind is the local curvilinear coordinate system corresponding
to the particular element that is referenced.

Making use of (3.8){(3.13) for spatial discretization of (3.1){(3.2), we obtain a
system of ordinary di�erential-algebraic equations (DAEs) in time t,

NvX
j=1

Mij
@vj

@t
+

NvX
j=1

Aijvj +

NpX
k=1

BT
ikpk + fi = 0 i = 1; : : : ; Nv;(3.14)

NvX
j=1

Bkjvj = 0 k = 1; : : : ; Np;(3.15)

where

Mij =

Z

�

��i�j I J d

� ;

Aij =

Z

�

� [J�T (r��j)(r
��i)

T J�1 + (r��i)
T J�1 J�T (r��j) I] J d


�

+

Z

�

��i (r
��j)

T J�1 vh I J d

� ;

Bkj = �

Z

�

 k (r
��j)

T J�1 J d
� ;

fi = �

Z

�

f J d
�
�

Z
�
�

n

�i tn n
T J�T n� J d�� :

Here, r� is the gradient vector in the curvilinear coordinate space; 
� and �� are the
images in curvilinear coordinate space of, respectively, 
 and � in physical space; and
n� and n are the outward normal unit vectors at the boundaries in curvilinear and
physical coordinate spaces, respectively. All of these symbols are de�ned element-by-
element.

Let 0 = t0 < : : : < tL < : : : < tM = T be a uniform partition in the time
dimension. Equations (3.14) and (3.15) are transformed into a system of algebraic
equations by �nite di�erencing in time. Consider a family of single-step methods,

NvX
j=1

Mij

vm+1j � vmj

�t
+ �

0
@NvX

j=1

Am+1
ij vm+1j +

NpX
k=1

BT
ikp

m+1
k + f

m+1
i

1
A

+(1� �)

0
@NvX

j=1

Am
ijv

m
j +

NvX
k=1

BT
ikp

m
k + fmi

1
A = 0 i = 1; : : : ; Nv ;(3.16)

NvX
j=1

Bkj

�
�vm+1j + (1� �)vmj

�
= 0 k = 1; : : : ; Np ;(3.17)

where �t = tm+1� tm; v
m
j , p

m
k , f

m
i , and Am

ij are values of vj , pk, fi, and Aij at time
tm, respectively; and 0 � � � 1 is an algorithm parameter. The Crank-Nicholson
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scheme, which is second-order accurate in time, is obtained by setting � = 0:5 . First-
order accurate Euler forward and backward schemes are obtained with � = 0 and
1, respectively. The scheme is implicit whenever � 6= 0. Equations (3.16) and (3.17)
constitute a set of coupled nonlinear (� 6= 0) algebraic equations with unknowns vm+1i

and pm+1j , which can be solved given velocity �eld vmi and pressure �eld pmj at t = tm.
Upon completion of this step we march forward in time, solving for 
ow variables at
time tm+2, and so on.

The spatio-temporally discretized Navier-Stokes equations (3.16){(3.17) can be
solved at each time step by Newton's method, which yields the linear system

NvX
j=1

�
1

�t
Mij + �Am+1

ij + �Cm+1
ij

�
�vm+1j + �

NpX
k=1

BT
ik �p

m+1
k = �hvi

i = 1; : : : ; Nv;(3.18)

�

NvX
j=1

Bkj �v
m+1
j = �hpk k = 1; : : : ; Np;(3.19)

where the \momentum residual" hvi is the lefthand side of (3.16), the \mass residual"
h
p
k is the lefthand side of (3.17), and

Cij =

Z

�

� �i�j

NvX
k=1

vk
�
r
��k

�T
J�1 J d
� :

The Newton step (3.18){(3.19) is a set of nonsymmetric linear equations that, given
current values of the the pair (vm+1j ; pm+1k ), can be solved for the increment in velocity

�vm+1i and the increment in pressure �pm+1j . In our 2D implementation, we use a
sparse direct method to solve this linear system; in 3D one would probably want to
use a preconditioned Krylov subspace method. Once computed, the increments are
used to update the estimate of velocity and pressure at time tm+1 according to

vm+1i  vm+1i +�vm+1i i = 1; : : : ; Nv;

pm+1j  pm+1j +�pm+1j j = 1; : : : ; Np :

The coe�cient matrix and righthand side of the Newton step (3.18){(3.19) are then
reevaluated with the updated values of vm+1i and pm+1j , and the process is iterated
until the nonlinear equations (3.16){(3.17) are satis�ed to within a tolerance.

Flow functions (2.8){(2.13) are also spatially discretized using the �nite element
spaces Vh and Ph, and time integration is performed using the trapezoidal rule, which
is second-order accurate. For instance, the viscous energy dissipation in (2.8), as a
function of space and time, is approximated by

� =
1

2
�

NvX
i=1

NvX
j=1

�
J�T (r��i)v

T
i + vi(r

��i)
TJ�1

�
:
�
J�T (r��j)v

T
j + vj(r

��j)
TJ�1

�
;

(3.20)
and the spatially and temporally integrated dissipation functions in (2.11) are dis-
cretized as

b�u =
1

2
�t

M�1X
m=L

�Z

�

�m
u Jd


� +

Z

�

�m+1
u Jd
�

�
; b�s =

b�uR

�
Jd
�

:(3.21)
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The global 
ow functions in (3.21) depend on a sequence of velocity �elds vLi ; : : : ;v
M
i .

It appears necessary to store all 
ow variables within the time interval [tL; tM ]. How-
ever, we can avoid storing the 
ow history due to the fact that we are using a one-step
method to integrate the DAEs and a one-step integration rule to evaluate 
ow func-
tions. In this case the 
ow functions in (3.21) are accumulated at each time step
rather than after the complete 
ow solution; hence only the current and previous
velocity �elds are needed.

Spatial and temporal discretization now renders the 
ow constraints and variables
�nite dimensional. As will be illustrated in Sections 5 and 6, the shape of the 
ow
domain will be parameterized with a �nite number of design variables. The shape
optimization problem may then be represented as follows:

minimize b	 �uL; : : : ;uM ;�� ;(3.22)

subject to h
�
um;um+1;�

�
= 0 m = 0; : : : ; L; : : : ;M � 1 ;

r (um;�) � 0 m = L; : : : ;M ;

q (�) � 0

where um denotes the vector of nodal velocities and pressures at the m-th time step, �
the vector of design variables, b	 any convex combination of the global 
ow functions
in (2.11){(2.13), h the system of nonlinear algebraic equations representing the spatio-
temporally discretized Navier-Stokes equations (3.16){(3.17), r the vector representing
the di�erence between the allowable and actual values of the local 
ow functions in
(2.8){(2.10) at time m, and q the vector representing the geometry constraints, i.e.
those depending solely on the design, and not 
ow, variables.

4. Sensitivity analysis. As discussed in the introduction, we use a GRG treat-
ment of the 
ow equations h=0, and an SQP treatment of the remaining inequality
constraints to solve the NLP problem (3.22). That is, the 
ow equations and vari-
ables are eliminated from the optimization problem by sequentially stepping through
time and solving the nonlinear algebraic equations (3.16){(3.17) that arise at each
time step. The values of the 
ow variables computed at each time step are used to
both evaluate the (active) inequality constraints rm as well as to contribute to the
evaluation of the objective function. The gradient of the objective and the Jacobian
of the inequality constraints can then be found through the implicit function theorem.
This generates a small, dense constraint Jacobian matrix (and a small, dense Hessian
matrix of the Lagrangian function). Thus, standard dense SQP methods are appropri-
ate. In fact, in this work we use the IMSL implementation of NLPQL, Schittkowski's
dense BFGS-SQP code [42].

In this section we discuss sensitivity analysis, i.e. how we compute derivatives of

ow quantities of interest with respect to design variables. Since the BFGS method is
used to update a quasi-Newton approximation of the Hessian of the Lagrangian func-
tion, only �rst derivatives of the objective and active inequality constraint functions
with respect to design variables are needed. Broadly speaking, one has two choices
for computing sensitivities: di�erentiate �rst then discretize, or discretize �rst then
di�erentiate. The latter choice is often referred to as \discrete sensitivities" and the
former \discretized continuous sensitivities," or \continuous sensitivities" for short.
Generally, the two operations need not commute, and the two are equivalent only in
the limit of in�nitesimal mesh size (in certain special cases, equivalence is obtained
independent of mesh size). See the discussion in [1] for inviscid and viscous 
ows, and
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[27] for a more general setting. For time-dependent Navier-Stokes equations, �nding
continuous sensitivities requires solving a �nal{boundary value problem in the ad-
joint variables [23]. This PDE has time-dependent coe�cients that depend on the
velocities, which are found by solving the forward problem. Thus storage of the state
variable history for all time is required. In contrast, by taking a discrete sensitivity
approach, the necessity for this storage is eliminated, as we shall see below.

The (unknown) state variables at time tm+1, u
m+1, are related to the design

variables � and to the (known) state variables at time tm, u
m, through the spatio-

temporally discretized Navier-Stokes equations (3.16){(3.17), which can be repre-
sented symbolically as

h
�
um(�);um+1(�);�;

�
= 0 ; m = 0; : : : ; L; : : : ;M � 1:(4.1)

First-order sensitivity equations are obtained through the implicit function theorem,
resulting in the linear system

@um+1

@�

@h

@um+1
= �

@um

@�

@h

@um
�
@h

@�
; m = 0; : : : ; L; : : : ;M � 1;(4.2)

which can be solved for the state variable sensitivities @um+1=@� at time tm+1.

The sensitivity equations, at each time step, are linear and have coe�cient matrix
(@h=@u)T that is just the asymptotic Jacobian matrix of the discretized Navier-Stokes
equations (3.16){(3.17) i.e. the coe�cient matrix of the Newton step (3.18){(3.19),
evaluated at tm+1. It is thus natural to use the same linear solver to solve both the
time dependent equations and the sensitivity equations. Furthermore, the sensitivity
equations are initialized with the state variable sensitivity at time 0, @u0=@gbf�,
and are thus an initial value problem. Therefore, they can lag the (nonlinear) state
equation solve at each time step, and storage of the entire state history is not required.
Solving the sensitivity equations (4.2 involves a single factorization of the Jacobian
evaluated at the current design variables and converged 
ow variables, followed by
pairs of triangular solves for each of the right hand side vectors, whose number is
equal to the number of design variables N�. The need to obtain accurate sensitivities
at each time step is of course in marked contrast to (non-history-dependent) steady
problems, in which one must solve the sensitivity equations only at the asymptotic
solution, and not at each \pseudo time-step."

The method (4.2 is a discrete direct sensitivity method, in the sense that the
derivatives of the state variables with respect to the design variables are found. A
discrete adjoint method is also possible, which would have the same low storage as
the discrete direct method, but would involve as many pairs of triangular solves as
there are active 
ow constraints, plus one. Since we use a direct method to solve the
sensitivity system, the cost is asymptotically dominated by the LU factorization, so
there is no advantage to this discrete adjoint method, even if the active 
ow constraints
number less than the design variables.

The remaining unexplained term in (4.2) is the derivative of the residual with
respect to the design variables, @h=@�, which is given for the momentum equations
by

@hvi
@�

=

NvX
j=1

@Mij

@�

vm+1j � vmj

�t
+ �

0
@NvX

j=1

@Am+1
ij

@�
vm+1j +

NpX
k=1

@BT
ik

@�
pm+1k +

@fm+1i

@�

1
A
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+(1� �)

0
@NvX

j=1

@Am
ij

@�
vmj +

NvX
k=1

@BT
ik

@�
pmk +

@fmi
@�

1
A i = 1; : : : ; Nv ;(4.3)

and for the mass equations by

@h
p
k

@�
=

NvX
j=1

@Bkj

@�

�
�vm+1 + (1� �)vm

�
k = 1; : : : ; Np :(4.4)

In these expressions,

@Mij

@�
=

Z

�

��i�j I
@J

@�
d
� ;(4.5)

@Aij

@�
=

Z

�

�
h
J�T

�
r
��j

� �
r
��i
�T
J�1 +

�
r
��i
�T
J�1 J�T

�
r
��j

�
I

i @J
@�

d
�

+

Z

�

�

�
@J�T

@�

�
r
��j

� �
r
��i
�T
J�1 + J�T

�
r
��j

� �
r
��i
�T @J�1

@�

�
Jd
�

+

Z

�

�

��
r
��i
�T @J�1

@�
J�T

�
r
��j

�
+
�
r
��i
�T
J�1

@J�T

@�

�
r
��j

��
IJd
�

+

Z

�

��i
�
r
��j

�T �@J�1
@�

vhJ + J�1vh
@J

@�

�
I d
� ;(4.6)

@Bkj

@�
= �

Z

�

 k
�
r
��j

�T �
@J�1

@�
J + J�1

@J

@�

�
d
� ;(4.7)

@fi

@�
= �

Z

�

f
@J

@�
d
�
�

Z
�
�

n

�i tu n
T J�Tn�

@J

@�
d�� �

Z
�
�

p

�i t n
T J�Tn�

@J

@�
d��

�

Z
�
�

n

�i

�
@tn

@�
nT J�T + tn

@nT

@�
J�T + tn n

T @J�T

@�

�
n� J d��

�

Z
�
�

p

�i

�
@t

@�
nT J�T + t

@nT

@�
J�T + t nT

@J�T

@�

�
n� J d�� :(4.8)

Since the domain 
�, the boundary ��, and the �nite element basis functions �j and
 k have been de�ned with respect to curvilinear coordinates, they are independent
of the design variables �. Hence, we may treat them as constants in the above
di�erentiation operations. This is one of the advantages of working with isoparametric
�nite elements: the sensitivity of the shape change can be limited to terms involving
the Jacobian of the mapping, J (e.g. [7]). The derivative of J with respect to the
design variables is given by

@J

@�
=

NvX
j=1

@xj

@�

�
r
��j

�T
;

and of its determinant, J , by

@J

@�
= J

NvX
i=1

@xi

@�
�
�
r
��i
�
:
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The critical quantity, then, is @x=@�, often called the grid sensitivity or design velocity

�eld. It re
ects how the locations of the nodes change as the design variables change,
and can be symbolically represented as

@x

@�
=
@x

@s

@s

@�
;

where s are the coordinates of the surface nodes. The use of the chain rule above
exposes the dependence of the grid sensitivities on the derivative of the \solid mod-
eler" (i.e. how the surface nodes move as the design variables change), as well as the
derivative of the \mesh generator" (i.e. how the interior nodes move as the surface
nodes move). So in general, grid sensitivities depend on the particular form of mesh
generation and solid modeling used (which in some cases may not even be di�eren-
tiable!). We return to this subject in the next sections, in which two examples are
solved utilizing di�erent approaches to computing these expressions. The remaining
terms in (4.5){(4.8) are the derivatives of the traction vector, @tn=@�, which are
known from the boundary condition on �n, and the expression for @n=@� on �n and
�p, which can be found straightforwardly from the particular relationship between
surface representation and design variables.

In any case, once the grid sensitivities are known, expressions (4.5){(4.8) can be
computed, and the residual derivatives (4.3){(4.4) are readily evaluated. Thus, all
quantities needed for solution of the sensitivity equations (4.2) are known, and this
system can be solved for the state variable sensitivities @u=@� at time tm+1. Now
we turn our attention to computing design gradients of the local and global derived
quantities (2.8){(2.13).

Let 	m+1 = 	(um+1(�);�) denote any of the local (in space and time) 
ow func-
tions in (2.8){(2.10) at time step tm+1; m = 0; : : : ; L; : : : ;M � 1. Then D	t+1=D�,
i.e. the gradient of the generic local 
ow function 	 with respect to the design variables
at time tm+1, can be found from

D	m+1

D�
=
@	m+1

@�
+
@um+1

@�

@	m+1

@um+1
; m = 0; : : : ; L; : : : ;M � 1:(4.9)

The state variable sensitivities @u=@� enter into the expression for D	t+1=D�, as
do the partial derivatives of 	, with respect to both the state variables as well as the
design variables. The former expressions are straightforward; the latter expressions
are given by, for the rate of energy dissipation due to viscosity,

@�

@�
= �

NvX
i=1

NvX
j=1

�
@J�T

@�
(r��i)v

T
i + vi(r

��i)
T @J

�1

@�

�

:
�
J�T (r��j)v

T
j + vj(r

��j)
TJ�1

�
;(4.10)

for the maximum shear stress, e.g. in two dimensions,

@�

@�
=
�2

�

2
4NvX
i=1

NvX
j=1

�
vix

@

@�

@�i

@x
� viy

@

@�

@�i

@y

��
vjx

@�j

@x
� vjy

@�j

@y

�

+

NvX
i=1

NvX
j=1

�
vix

@

@�

@�i

@y
+ viy

@

@�

@�i

@x

��
vjx

@�i

@y
+ vjy

@�i

@x

��
;(4.11)
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where

@

@�
r�i =

@J�T

@�
r
��i ;

and for the magnitude of vorticity,

@$

@�
=

1

$

"
NvX
i=1

@J�T

@�
(r��i)� vi

#T "
NvX
i=1

J�T (r��i)� vi

#
:(4.12)

Finally, we show how to compute sensitivities of the global 
ow functions, once
local function sensitivities have been found. Let b	u and b	s represent any of the
unscaled and scaled global 
ow functions in (2.11){(2.13), respectively. Thus,

b	u =
1

2
�t

M�1X
m=L

Z

�

�
	(um;�) + 	

�
um+1;�

��
Jd
� ; b	s =

b	uR

�
Jd
�

;(4.13)

where the time integration is carried out according to the trapezoidal rule. (Although
the unscaled global 
ow functions involving shear stress and vorticity are, in fact,
de�ned as

b	u =

Z

�

	2 (u;�) Jd
� ;

the following discussion still applies with slight modi�cation.) Again, since the domain

� is de�ned in the curvilinear coordinate space and is independent of design variables,
the di�erentiation operator with respect to � acts directly on the integrand in (4.13).
Thus, we have

Db	u

D�
=

1

2
�t

M�1X
m=L

Z

�

�
D	m

D�
J +	m @J

@�
+
D	m+1

D�
J +	m+1 @J

@�

�
d
� ;(4.14)

Db	s

D�
=
Db	u

D�

1

S
�

b	u

S2

Z

�

@J

@�
d
� :(4.15)

Thus, the gradients of global 
ow functions entering into the objective function, as
well as gradients of local (in time and space) 
ow functions involved in inequality
constraints, can be computed in much the same way as the 
ow function themselves
are, i.e. time step by time step.

In summary, at each time step,
� the discrete Navier-Stokes equations (3.16){(3.17) are advanced a step in time;
� the velocities and pressures at the current time step are computed by the
(nonlinear) Newton iteration (3.18){(3.19);
� the local 
ow functions are computed at various points in space and at the
current time step, given current velocities and pressures, e.g. for viscous dis-
sipation from (3.20);
� the values of the global 
ow functions, accumulated up to the current time
step, are incremented using current local function quantities, e.g. for viscous
dissipation by (3.21);
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� the (linear) sensitivity equations (4.2) are solved for the velocity and pres-
sure sensitivities corresponding to each design variable at the current time
step, given the current and previous velocities and pressures and the previous
velocity and pressure sensitivities;
� the sensitivities of the local 
ow functions are computed at various points in
space and at the current time step from (4.9), given current velocities and
pressures and their sensitivities; and
� the values of the sensitivities of global 
ow functions, accumulated up to the
current time step, are incremented using current local function sensitivities
by (4.14) or (4.15).

Thus, sensitivity computations add little additional work and storage beyond that
required for the 
ow solution, since they are linear and share the same coe�cient
matrix with the converged linearized discrete Navier-Stokes equations at each tie step.
This is especially true when direct LU factorization is used to solve the sensitivity
system, since sensitivity requires just one extra factorization beyond that required
by the 
ow solver, and the storage associated with @h=@� is small if the number of
design variables � is small.

We have developed a code that implements the algorithms and methods described
in Sections 3 and 4. Spatial discretization is by triangular Taylor-Hood �nite elements,
which use piecewise quadratic velocity and piecewise linear pressure basis functions.
The Taylor-Hood element is known to be stable in the sense of Ladyzhenskaya{
Babuska{Brezzi, and produces errors of order h3 for velocity and h2 for pressure
[16]. Time-integration is by the Crank-Nicolson method. The multifrontal sparse
LU factorization code UMFPACK [10] is used to solve the linear systems that arise
at each step of Newton's method. The optimizer used is IMSL's implementation of
the dense BFGS-SQP code NLPQL [42]. Analytical gradients of the objective and
inequality constraints are found as described in this section. In the next two sections,
we present two time-dependent shape optimization model problems solved using our
code. The �rst involves �nding the best shape of a 90� tube subject to an internal

ow, and uses a logically-rectangular structured mesh. The second problem concerns
�nding the best shape of a obstacle subjected to a uniform external 
ow, and is dis-
cretized by an unstructured mesh. Approaches to computing the grid sensitivities
@x=@� depend on whether the mesh is structured or unstructured, and are described
below for each case. All computations are performed on one processor of a 4-CPU
Digital AlphaServer 8400 5/300 equipped with 4 Gbytes of memory.

5. Shape optimization of 
ow in a two-dimensional tube. Our �rst exam-
ple is a two-dimensional tube, shown in Figure 5.1a, in which 
uid enters horizontally
from the left, undergoes a 90� bend, and exits vertically downward. This is a sim-
pli�ed model for a blood 
ow cannula of an arti�cial heart device. It is assumed
that the tube has a uniform section with a width or diameter d. The problem we
consider is to design the shape of the middle axis of the tube, such that the viscous
dissipation (2.11) is minimized subject to certain geometric constraints. The shape
of the middle axis is taken as a function r(�) in the polar coordinate system, and it
can be represented by a cosine series

r(�) =

P�1X
i=0

ri cos(2i�); � 2 [0�; 90�]:

The coe�cients ri, i = 0; : : : ; P � 1 are thus the design variables. We generate
a structured mesh similar to the one shown in Figure 5.1b, and compute the grid
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Fig. 5.1. 2D tube: (a) geometry, (b) computational mesh, (c) invalid shape.

sensitivities analytically. This is straightforwardly done, since the mesh is structured,
and hence closed-form, smooth expressions are available for the grid sensitivities,
@x=@�.

The middle axis r(�) is subject to one of the following end constraints:

� both positions of entrance and exit are �xed, speci�cally, r(90�) = 
1 and
r(0�) = 
2;
� the entrance is �xed while the exit position is allowed to vary within a given
range, i.e., r(90�) = 
1 and 


l
2 � r(0

�) � 
u2 ;
� the entrance position is allowed to vary within a given range while the exit is
�xed, i.e., 
l1 � r(90

�) � 
u1 and r(0�) = 
2;
� both positions of entrance and exit are allowed to vary within given ranges,
namely, 
l1 � r(90

�) � 
u1 and 
l2 � r(0
�) � 
u2 ;

where 
1, 
2, 

l
1, 


u
1 , 


l
2, and 


u
2 are all prescribed positive constants. These conditions

impose linear constraints on the design variables, since

r(0�) =

P�1X
i=0

ri ; r(90�) =

P�1X
i=0

(�1)i ri :

In addition, design variables have to satisfy certain conditions to ensure a valid
shape; otherwise, invalid shapes such as the one shown in Figure 5.1c may arise (as
actually happened). Since we deal only with a discretized geometric model of the tube,
shape validity constraints need only be imposed at K distinct points (r(�i); �i); i =
1; : : : ;K, uniformly spaced along the middle axis of the tube. First, r(�) must be
non-negative,

r(�i) � 0; i = 1; : : : ;K:

Second, the shape cannot penetrate itself,

(�x� x0;i)
2 + (�y � y0;i)

2
�

1

4
d2;
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(�x� x0;i+1)
2 + (�y � y0;i+1)

2
�

1

4
d2;

i = 1; : : : ;K:

Here, (x0;i; y0;i) is the Cartesian coordinate of the i-th node along the middle axis of
the tube; (�x; �y) is the coordinate of the intersection point of the two lines perpendicular
to each other and passing through (x0;i; y0;i) and (x0;i+1; y0;i+1). The values of (�x; �y)
and (x0;i; y0;i) are computed with the following formulae:

�x = �x=� ; �y = �y=� ;

�x = ly;ily;i+1(y0;i � y0;i+1) + x0;ilx;ily;i+1 � x0;i+1ly;ilx;i+1 ;

�y = lx;ilx;i+1(x0;i+1 � x0;i) + y0;i+1lx;ily;i+1 � y0;ily;ilx;i+1 ;

� = lx;ily;i+1 � ly;ilx;i+1 ;

x0;i = r(�i) cos �i ; y0;i = r(�i) sin �i ;

lx;i =
r0(�i) cos �i � r(�i) sin �i

[r0(�i)2 + r(�i)2]
1=2

; ly;i =
r0(�i) sin �i + r(�i) cos �i

[r0(�i)2 + r(�i)2]
1=2

;

r0(�i) =
@r(�i)

@�
:

Boundary conditions for solution of the Navier-Stokes equations include Neumann
conditions at the outlet and Dirichlet conditions on the rest of the boundary. Specif-
ically, no-slip boundary conditions are proposed at the walls of the tube, the out
ow
is assumed to be traction free, and the in
ow is taken to have a parabolic velocity
pro�le,

vx =
6q

d3

�
y � y0 +

d

2

��
y0 � y +

d

2

�
; vy = 0 ;

where q is the 
ow rate, and d and y0 are, respectively, the diameter and y-coordinate
of the tube centroid at the inlet.

For sensitivity analysis, velocity design gradients vanish on the side walls; the
out
ow is kept traction free, which implies sensitivities of the traction at the outlet
are zero; and the in
ow velocity preserves its parabolic pro�le with the same 
ow
rate, which leads to the following inlet conditions,

@vx

@�
= 0 ;

@vy

@�
= 0 :

The 
ow rate is assumed to be

q =

8<
:

0:1 t t 2 [0; 5)
0:5 t 2 [5; 8)

0:5 + 0:1 sin[2�(t� 8)] t 2 [8; 1)
:

Thus, after t > 8, the in
ow oscillates with a period of 1 and an amplitude of 0.1. The
diameter of the tube d is kept at 1. Thus, the Reynolds number based on the average
in
ow velocity and tube diameter is Re = 500. Let us �x the tube at both the exit
and entrance with r = 5:1, and let its shape r(�) be approximated with the �rst 14
Fourier cosine coe�cients. We optimize the tube shape such that the unscaled global
dissipation function b�u in (2.11) is a minimum. The mesh has 31 nodes through the
cross section and 175 nodes along the middle axis, resulting in 2610 elements, 5425
nodes, and 11,471 velocity and pressure unknowns.
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The initial shape of the tube is described in Table 5.1 under the heading \initial".
Time histories of the dissipation function

R


�d
 are computed with time steps �t =

0:125 and 0:03125. They are plotted in the left graph of Figure 5.2. A Fourier
transform is performed on these data, and the results are summarized in the right

dt = .03125

dt = .125  
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Fig. 5.2. Time history of the global dissipation function �u (left) and its Fourier transforms

(right) corresponding to two di�erent time steps.

graph of Figure 5.2. Several observations can be made based on these plots:
� a time step of �t = 0:125 yields a su�ciently accurate 
ow solution;
� the initial part of the time-dependent solution exhibits transient behavior and
should be ignored for optimization purposes; and
� the rest of the solution oscillates primarily with the same frequency as the
in
ow, which is 1.

Therefore, the characteristic time interval for objective function computation is taken
as a multiple of the in
ow time period. For this problem, the objective function b�u

equals
R


�d
 integrated over

[tL; tM ] =

�
[30; 33] Case I
[30; 36] Case II

;

which correspond to 3 and 6 in
ow periods, respectively. For the remainder of the
computation, we use �t = 0:125. Figure 5.3 gives several snapshots in time of velocity
streamlines corresponding to the initial shape. The development and oscillation of a
separated and recirculating 
ow region is evidenced in the �gure, and is induced by
the abrupt change in geometry.

Optimal shape coe�cients are tabulated in Table 5.1 under \Case I" and \Case
II". The optimal shape for a steady in
ow (of Re = 500) coupled with a steady Navier-
Stokes 
ow model is also included under the heading \Steady" for comparison. The
middle axes de�ned in Table 5.1 are plotted in Figure 5.4. There is no substantial
di�erence among the three optimal shapes, although it takes about 42 and 51 hours
of CPU time to reach the optimum for Cases I and II, respectively, while only about
an hour is needed in the steady case. Thus, we see a factor of 40 to 50 increase in
CPU time when the 
ow model is time-dependent. The large increases in CPU time
over the steady solution are a result of (i) the need for time-accurate integration, (ii)
the necessity of integrating through initial transients to reach periodic solutions, and
(iii) the need for solving sensitivity equations at each time step. For this particular



SHAPE OPTIMIZATION OF TIME-DEPENDENT NAVIER-STOKES FLOWS 19

Fig. 5.3. Streamlines taken at t = 12:875 (upper left), 19:125 (upper right), 25:375 (bottom

left), and 31:625 (bottom right) for the initial shape; Re = 500. Colors represent velocity magnitude,

with blue and red corresponding to low and high values, respectively.

problem, it seems to be a waste of time to perform optimization with the time-
dependent Navier-Stokes equations. More generally, however, there is no guarantee
that optimizing with a steady 
ow model will yield the same optimum shape as with
a time-dependent 
ow model. This is almost certainly the case when the optimum is
not characterized by steady 
ow.

The number of complete 
ow solutions for Cases I and II is, respectively, 31
and 29; the number of optimization iterations is respectively, 24 and 25. (In most
optimization iterations, the initial step length (of 1) is accepted by the optimizer.)
Optimization histories are plotted in Figure 5.5. The left graph shows the value of the
objective function b�u as a function of the number of optimization iterations. The right
graph plots the Euclidean norm of the Kuhn-Tucker optimality condition (the sum
of the Euclidean norms of the reduced gradient and active constraints) against the
optimization iteration number. The reduction in viscous energy dissipation in both
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Table 5.1

Design variables for 2D tube problem for steady and time-dependent 
ow.

Variable Initial Steady Case I Case II

r0 5.6109985 5.1174910 5.0673756 5.0758872

r1 0.0000000 0.0502573 0.0432338 0.0431676

r2 -0.7800000 0.0216108 0.0644936 0.0566008

r3 0.0000000 -0.0233347 -0.0234054 -0.0229796

r4 0.2400000 -0.0131780 -0.0114753 -0.0113118

r5 0.0000000 -0.0093722 -0.0090339 -0.0087382

r6 -0.1100000 -0.0084052 -0.0068513 -0.0071648

r7 0.0000000 -0.0056902 -0.0039357 -0.0041412

r8 0.0600000 -0.0064563 -0.0049552 -0.0051214

r9 0.0000000 -0.0043257 -0.0025236 -0.0026561

r10 -0.0300000 -0.0056489 -0.0042339 -0.0043963

r11 0.0000000 -0.0037718 -0.0019915 -0.0021727

r12 0.0200000 -0.0054134 -0.0043535 -0.0044938

r13 0.0000000 -0.0037627 -0.0023436 -0.0024798
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Fig. 5.4. Initial and optimal tube centerlines.

cases is 50%. The convergence behavior of the two cases is similar, which indicates no
advantage is gained by using an unnecessarily long characteristic period. The optimal
shape, at several instants in time, is shown in Figure 5.6 for the Case I objective (Case
II is indistinguishable). Gone are the abrupt geometry change and the separated 
ow
region. Furthermore, the optimum 
ow �eld is for the most part time-independent.
Of course, one does not need a sophisticated optimization algorithm to know that
a smoothly curved tube will produce a 
ow �eld that dissipates less viscous energy
than one with a sharp corner; however, a problem with such an intuitively-expected
optimal solution is valuable for helping to validate the method and code used.

6. Shape optimization of 
ow around a two-dimensional obstacle. Plac-
ing a body into a free stream 
ow generates a disturbance to the 
uid motion. If the
body is blu�, separation may result, leading to wake formation and extension down-
stream. Depending on the shape of the body, the 
ow may be unsteady for Reynolds
number as low as 40, despite the fact that the free stream is steady. As Reynolds
number increases, a vortex street forms and discrete vortices are shed at regular in-
tervals. Therefore, shape optimization of such a system should be performed using a
time-dependent 
ow model. In this section, we optimize the shape of an obstacle by
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Fig. 5.5. Objective function (left) and Euclidean norm of Kuhn-Tucker optimality condition

(right) as a function of number of optimization iterations for 2D tube problem.

minimizing the scaled global viscous dissipation function b�s in (2.11). The character-
istic time interval for the objective function evaluation is taken as a multiple of the
vortex shedding period. This can be found from the relationship

fs =
S U

D
;

where fs is the predominant vortex shedding frequency, U is the speed of the free
stream 
ow, D is the cylinder diameter, and S is a dimensionless Strouhal number.
The dependence of S on Reynolds number Re has been established experimentally
for Re = 40 to 107 [6].

In the �nite element method, it is well known that poor element quality can have
a deleterious e�ect on the solution. Angles near 0 can lead to ill-conditioning of the
discrete operator [13], while angles near � can lead to large approximation errors in
the H1 norm [4]. When the geometry undergoes large changes during optimization,
it becomes very di�cult, if not impossible, to construct a structured mesh scheme
that maintains element quality for a wide range of shapes. An unstructured mesh
is capable of resolving complicated, deforming geometries with guaranteed aspect
ratio elements (certainly in 2D, less assuredly in 3D), and thus is more appropriate
for general shape optimization problems. Therefore, in anticipation of large shape
changes for the obstacle problem solved in this section, we discretize the computational
domain with unstructured triangular meshes. The central di�culty with the use of
unstructured meshes in shape optimization is the lack of di�erentiability of typical
mesh generators. That is, the resulting triangulations they produce do not vary
smoothly with the input boundary shapes. For example, we use a state-of-the-art
2D triangular mesh generator, Triangle, which is a constrained Delaunay code that
incorporates adaptive arithmetic for stability and robustness [44]. Triangle makes a
number of binary decisions that render its output a discontinuous function of its input,
including whether edges should be 
ipped, boundary edges split, triangles re�ned, etc.
As a consequence, two meshes of related shape may not share the same topology nor
the same number of nodes or elements. Note, however, that di�erences in functions
such as (2.11){(2.13) de�ned as integrals over the two meshes will tend to be small
between such a pair of meshes.

We are lead to adopt the following two-phase strategy for accommodating un-
structured meshes in shape optimization. In the early optimization iterations, shape
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Fig. 5.6. Flow streamlines at t = 12:875 (upper left), 19:125 (upper right), 25:375 (bottom left),

and 31:625 (bottom right) seconds for the optimal shape. The optimum represents a 50% reduction

in viscous energy dissipation over the initial shape.

change is expected to be very large, which necessitates topological changes to the
mesh to maintain element quality. Thus, in Stage I, the unstructured mesh generator
Triangle is used to completely remesh the 
ow domain at each iteration. In light of
the discontinuities associated with Delaunay-based meshing algorithms, the question
is: how should @x=@� be computed? The rows of this matrix corresponding to bound-
ary nodes are easy: they are simply derivatives of the expressions for representing the
shape in terms of the design variables (i.e., derivatives of the \solid modeler"). For
example, a speci�c parameterization for the obstacle problem is given later in this
section. For rows of @x=@� corresponding to interior nodes, we discard the idea of
attempting to di�erentiate Triangle; instead, in Stage I, we simply set these rows,
i.e., the interior grid sensitivities, to zero. The motivation for this is a result from
sensitivity analysis that states that the continuous shape sensitivity of a 
ow function
is independent of the grid sensitivity of interior points, at least for certain objec-
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tive functions expressed in terms of domain integrals [37]. Therefore, for the sake of
speed and simplicity, we might as well take grid sensitivities to be zero. Because the
problem will be solved on a �nite mesh, there generally will be a small discrepancy
between the computed gradients and the change in the objective function \seen" by
the optimizer. Far from the optimum, the optimizer takes large steps, so provided a
su�cient decrease in the merit function is observed, this discrepancy and the lack of
smoothness are not a problem. Discussions of the in
uence of inexact sensitivities on
design optimization can be found in [45].

Close to the optimum, however, we sometimes �nd that the inconsistency be-
tween the way the mesh is actually moved and the way it is assumed to move results
in premature termination of the optimization iterations. Typically, a vicinity of a sta-
tionary point is reached, but the line search breaks down due to insu�cient decrease
in the merit function|a sign that gradients are not consistent with actual changes in
the objective function. To make further progress in these cases, consistent derivatives
and di�erentiable mesh movement are needed. Both of these conditions can be readily
satis�ed by using what we refer to as elastic mesh movement. The algorithm starts
with a mesh of acceptable quality. The change in the location of (a portion of) the
boundary of the computational domain is treated as an imposed displacement|an
inhomogeneous Dirichlet boundary condition|and a linear elasticity boundary value
problem (discretized by �nite elements and posed on the same mesh) is solved. The
solution of the elasticity problem, i.e., the displacement �eld, is taken to be the change
in location of the interior nodes of the mesh. Because the discrete displacement �eld
depends smoothly on the value of inhomogeneous Dirichlet boundary conditions, this
mesh movement algorithm guarantees that coordinates of interior nodes are smooth
functions of the locations of boundary nodes. Furthermore, since the relationship
between displacement boundary conditions and the resulting solution of the elasticity
problem is explicit in form, interior grid sensitivities are easily found through direct
di�erentiation. Grid sensitivities are thus exact (modulo rounding errors). Finding
grid sensitivity essentially involves solving the discrete elasticity equations for a num-
ber of right hand sides equal to the number of design variables N�. Using a direct
linear solver, this implies a single factorization coupled with N� pairs of triangular
solves. The cost of mesh movement and of obtaining grid sensitivities are inconse-
quential compared to solution of the time-dependent Navier-Stokes equations at each
optimization iteration. Note that elastic mesh movement maintains mesh topology,
and therefore may lead to severely stretched or even invalid meshes for large shape
changes. Thus, it is best left for small shape changes contemplated in Stage II. Similar
physically-based mesh moving schemes are popular for moving boundary problems,
and have been in use as early as in [3]. Related mesh moving schemes using networks
of springs have been used in various 
ow optimization settings in [1] [12] [30] [31].

So in summary, mesh movement is by unstructured mesh generation in Stage I
and elastic mesh movement in Stage II; internal mesh sensitivities are simply taken as
zero in Stage I and computed by taking the derivative of the elastic mesh movement
algorithm in Stage II. Table 6.1 summarizes what each phase of optimization needs
and can tolerate, with respect to meshing and grid sensitivity. Thus, the strategies
of Stages I and II are well-suited to the requirements of Table 6.1. Finally, note that
we have not automated switching between these two strategies; we simply switch to
Stage II if no further progress is possible in Stage I and the current point is not a
stationary point.

We turn now to the shape parameterization. The shape of the obstacle is repre-
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Table 6.1

Meshing and grid sensitivity requirements of di�erent phases of optimization.

Phase Meshing Grid sensitivity

far from optimum need: accommodate large shape change need: speed

tolerate: discontinuity or nonsmoothness tolerate: inaccuracy

near optimum need: di�erentiability need: accuracy

tolerate: restriction to small shape change tolerate: cost

sented by two Bezier curves,

xt(s) =

KX
j=0

ptj BK;j(s) ; yt(s) =

KX
j=0

qtj BK;j(s)

for the upper boundary; and

xb(s) =

KX
j=0

pbj BK;j(s) ; yb(s) =

KX
j=0

qbj BK;j(s)

for the lower boundary. Here, (ptj ; q
t
j) and (pbj ; q

b
j) are coordinates of Bezier control

points,

BK;j(s) =
K!

j! (K � j)!
sj(1� s)K�j

is a Bernstein polynomial, K is the order of the Bernstein polynomial, and s 2 [0; 1]
is a parameter. As s sweeps over [0; 1], (xt(s); yt(s)) and (xb(s); yb(s)) depict the
upper and lower surfaces of the obstacle, respectively. Bezier parameterization de-
�nes a smooth curve that falls into a polygon determined by Bezier points and passes
the two Bezier end points, i.e., (p0; q0) and (pK ; qK). The shape of a Bezier curve is
anticipated by that of the containing polygon; thus, Bezier parameterization is con-
trollable. Shape design variables are the 2(K +1) Bezier points (pt0; q

t
0); : : : ; (p

t
K ; q

t
K)

and (pb0; q
b
0); : : : ; (p

b
K ; q

b
K).

Similarly to the previous section, we propose the following end conditions to limit
the size and position of the obstacle:

� the position of both leading and trailing edges of the obstacle are �xed, i.e.,
pt0, q

t
0, p

t
K , and q

t
K are prescribed;

� the leading edge is �xed while the trailing edge is free to move within a
range, i.e., pt0 and q

t
0 are speci�ed while p

t
K and qtK may change within certain

intervals;
� the position of the leading edge is allowed to change within a range while the
trailing edge is �xed, i.e., pt0 and q

t
0 may vary within speci�ed intervals while

ptK and qtK are equal to assigned values;
� both edges are free to move within speci�ed ranges, i.e., pt0, q

t
0, p

t
K , and q

t
K

may all vary within given intervals.
To prevent separation of the two Bezier curves at the leading and trailing edges, we
must enforce

pt0 = pb0 and qtK = qbK :

We require that the obstacle area S exceeds a certain minimum value, for example to
insure structural integrity of the obstacle. Thus,

S � Smin :
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The upper and lower surfaces of the obstacle may overlap during optimization itera-
tions. To inhibit such an invalid shape, we choose N nodes on the top surface and N
corresponding nodes on the bottom of the obstacle, which correspond to

s = sm =
m

N � 1
m = 0; : : : ; N � 1 :

Then, we triangulate the area contained within these nodes, as shown (coarsely) in
Figure 6.1. Shape constraints are that all triangles within the obstacle must have

ki

j

Fig. 6.1. Triangulation of the obstacle for exclusion of invalid shapes.

non-negative areas. For instance, the area of triangle ijk must be nonnegative. We
obtain 2(N�2) such conditions in total. Gradients of these geometric constraints can
be readily evaluated once grid sensitivity �elds become available.

Finally, we consider boundary conditions for solution of the Navier-Stokes equa-
tions:

� the in
ow velocity is uniform and the attack angle is � to the horizontal,
which leads to

vx = U cos� ; vy = U sin� ;

where U is the magnitude of the in
ow velocity;
� a no-slip condition is assumed on the obstacle boundary, i.e.,

vx = vy = 0 ;

� the out
ow is traction-free, namely,

tx = ty = 0 :

These conditions are invariant to modi�cation of the obstacle shape. Thus, as in the
previous example, discrete design sensitivities of these boundary conditions vanish.
The line integrals in (3.7) and the corresponding sensitivity equations vanish under
this set of boundary conditions. The 
uid is assumed to be still initially.

In the speci�c problem solved below, the obstacle surfaces are represented by
two fourth-order Bezier curves. The initial shape is a circle, for which the 20 Bezier
coe�cients are tabulated in Table 6.2 under the heading \initial." Figure 6.2 shows the
initial computational domain and mesh. The mesh has 7,373 nodes, 3,539 quadratic
triangular elements, and 15,581 velocity and pressure unknowns. The diameter of the
cylinder is D = 1.
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Fig. 6.2. Computational domain and mesh for 
ow around obstacle.

Table 6.2

Bezier coe�cients for initial and optimal shapes for 
ow around a 2D obstacle.

Variable Initial Stage I Stage II

pt
0

3.00 3.00000000 3.00000000

pt
1

3.03 3.02013099 3.12910217

pt
2

3.50 3.69794100 3.70840703

pt
3

3.97 4.34598915 4.36940633

pt
4

4.00 4.51956184 4.96051309

qt
0

3.50 3.50000000 3.50000000

qt
1

4.00 3.69582998 3.59317261

qt
2

4.20 3.53482103 3.61930290

qt
3

4.00 3.71255744 3.58691209

qt
4

3.50 3.46783775 3.48024608

pb
0

3.00 3.00000000 3.00000000

pb
1

3.03 2.96428727 2.97515449

pb
2

3.50 3.53084206 3.52474404

pb
3

3.97 3.98254581 3.96751124

pb
4

4.00 4.51956184 4.96051309

qb
0

3.50 3.50000000 3.50000000

qb
1

3.00 3.31686601 3.42029354

qb
2

2.80 3.37770498 3.34979508

qb
3

3.00 3.35356769 3.31674445

qb
4

3.50 3.46783775 3.48024608

We �rst compare vortex shedding frequencies computed with our code and those
obtained experimentally. This step serves two purposes: validation of our program
and identi�cation of an appropriate time step. Several 
ow problems with di�erent
Reynolds numbers and time steps are solved:

� Re = 1000 and �t = 0:125,
� Re = 500 and �t = 0:5, and
� Re = 200 and �t = 0:125.

All Reynolds numbers in this section are based on the freestream velocity and the
diameter of the cylinder, that is the initial shape. Scaled viscous dissipation functions
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 are plotted in Figure 6.3. Clearly, the functions begin to oscillate
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Fig. 6.3. Time histories of the scaled dissipation function �s for Re = 200 (top), 500 (middle),

and 1000 (bottom).

after some time. The oscillation frequencies are equal to those of vortex shedding.
Table 6.3 compares frequencies obtained numerically and experimentally, and we see
very good agreement between the two. Strouhal numbers in Table 6.3 are from [6].
In all calculations, we have used the upper bounds of the Strouhal number, which
correspond to a cylinder with a smooth surface.

At Reynolds number 500,
R


�d
=

R


d
 oscillates with a period of about 9.

Thus, it is reasonable, with a second-order method such as Crank-Nicolson, to use a
time step �t = 0:5 for the 
ow simulation. If the characteristic time for objective
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Table 6.3

Experimental and numerical vortex shedding frequencies for 
ow around a cylinder.

Reynolds number Strouhal number Experimental Numerical

200 0.20 0.039 0.041

500 0.22 0.110 0.114

1000 0.21 0.210 0.219

function evaluation is taken as one vortex shedding period, then we may integrateR


�d
=

R


d
 over [tL; tM ] to get b�s, where tL = 90 and tM = 99. Several snapshots

of 
ow streamlines are shown in Figure 6.4. Gradual formation of the von K�arm�an

Fig. 6.4. Streamlines for 2D obstacle problem at t = 10 (upper left), 20 (upper right), 30

(bottom left), and 100 (bottom right) for the initial shape. Re = 500.

vortex street is evident from the �gure.
Optimization constraints include the minimum area requirement S � 0:3, and

constraints on the position of leading and trailing edges:

pt0 = 3:0; qt0 = 3:5; 3:5 � pt4 � 5:0; and 1:0 � qt4 � 2:0 :
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The objective is to minimize b�s at Re = 500. The optimization process is divided into
two stages: in Stage I, the mesh is updated by a complete remeshing using Triangle,
and internal grid sensitivities are assigned zero values; in Stage II, we begin with
the optimal shape from Stage I, but mesh updating and sensitivity analysis are both
carried out by the elastic mesh movement algorithm. Table 6.2 gives the optimal
Bezier coe�cients after each stage of optimization under \Stage I" and \Stage II."
Figure 6.5 shows the evolution of shapes|from the initial to the optimum of Stage I,

initial   

Stage I 

Stage II

3 4

2.8

3

3.2

3.4

3.6

3.8

4

4.2

Fig. 6.5. Evolution of shapes for 2D obstacle problem, Re = 500.

and then to the optimum of Stage II. Shape modi�cation is very large in Stage I, and
thus remeshing is the better strategy for updating the mesh. But this results in (small)
discontinuities in the objective function and optimization �nally terminates due to an
unsuccessful line search. The shape obtained is a not quite symmetric airfoil. Better
shapes are possible; a smooth mesh movement scheme as well as consistent derivatives
are required if the optimizer is to �nd them. Shape change is relatively small in
Stage II, so it is appropriate to enlist the elastic mesh movement scheme for both
mesh updating and sensitivity analysis. Still, we have to remesh three times in this
stage of optimization due to invalid meshes produced by the elastic mesh movement
algorithm. The �nal optimal shape of Stage II encounters the area bound of 0:3, and
the horizontal coordinate of the trailing edge nearly reaches its upper bound of 5. The
resulting slender and almost symmetric pro�le is what we might expect for the shape
of a zero angle of attack body that minimizes dissipation while meeting constraints
on area and chord length.

The optimization takes about 100 CPU hours to complete. The objective function
value and Euclidean norm of the Kuhn-Tucker optimality conditions (KTO) for the
initial, Stage I optimal, and Stage II optimal shapes are given in Table 6.4. In addition,
the table lists the number of optimization iterations and number of complete 
ow
solutions taken to reach the optimal solution for each stage. The optimum represents
an 82% reduction in the viscous energy dissipation relative to the initial circular
shape. Several snapshots of 
ow streamlines corresponding to the Stage II optimal
shape are shown in Figure 6.6. The �gure shows that the 
ow�eld is largely time-
independent, vortex shedding is eliminated, and the wake region is greatly reduced
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Table 6.4

Solution parameters, shape optimization of 
ow around a 2D obstacle.

Stage Number of Number of Objective KTO

iterations 
ow solutions function

initial { { 0.42022025 0.3051

Stage I 16 23 0.14259630 1.375e-3

Stage II 19 27 0.07740351 9.250e-6

Fig. 6.6. Streamlines at t = 2:5 (upper left), 12:5 (upper right), 22:5 (bottom left), and 32:5

(bottom right) for the optimal shape of the 2D obstacle problem. Re = 500. The optimum represents

a 82% reduction in viscous energy dissipation over the initial shape.

in size. Note that the optimizer has found a symmetric optimum shape, despite the
fact that symmetry has not been imposed as a constraint in this problem, and the
unstructured mesh produced by Triangle is not symmetric.

7. Final remarks. We have considered the problem of shape optimization of
two-dimensional 
ows governed by the time-dependent Navier-Stokes equations. For
this problem we have proposed computational strategies with respect to optimization
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method, sensitivity method, and unstructured meshing scheme. We have argued that,
despite their superiority for steady Navier-Stokes 
ow optimization, reduced SQP
methods are too memory-intensive for the time-dependent problem. Instead, we have
advocated a combination of GRG (for the 
ow equation constraints) and SQP (for
the remaining inequality constraints). With respect to sensitivity method, we have
favored discrete sensitivities, which can be implemented with little additional storage
or work beyond that required for solution of the 
ow equations, and thus possess a
distinct advantage over discretized continuous sensitivities, which require knowledge
of the entire time history of the 
ow variables. Finally, we have taken a two-phase
approach to unstructured meshing and grid sensitivities. Far from the optimum, we
have remeshed completely using an unstructured mesh generator to accommodate the
large shape changes that are anticipated in this phase, while an inconsistent but easily
computed form of grid sensitivities has been employed. Close to the optimum, where
di�erentiability of the mesh movement scheme and consistency of grid sensitivities
are desirable, we have used elastic mesh movement to generate meshes corresponding
to new shapes. Elastic mesh movement is valid only for small shape changes but is
di�erentiable and permits computation of exact grid sensitivities in a straightforward
manner.

Two examples characterized by viscous dissipation objective functions illustrated
the approach. The latter example involved �nding the geometrically-constrained op-
timum shape of an initially circular cylinder placed in a uniform 
ow at Re = 500 and
described by 20 Bezier shape variables and over 15,000 spatial 
ow variables. The
optimum shape, a symmetric airfoil, was found in a total of 35 iterations, 50 
ow
solutions, and 100 CPU hours (on a DEC Alpha system). The CPU time taken rep-
resents over an order of magnitude increase over a similar, but steady, problem|this
is the price paid for optimizing with a time-dependent model of the 
ow.

What can be done to reduce computational work (without signi�cantly increasing
storage)? First, in order to reduce work per optimization iteration, one might try to
strike a compromise between GRG (no state variable time history stored) and SQP
(entire time history stored) by storing an approximation of the state variables at a
portion (depending on available storage) of the time steps; iterating on the nonlinear
equations that update the states can then be integrated with updates of the design
variables, �a la SQP. For example, one might use a multiple shooting method for solv-
ing the system of DAEs (as was done in [36] for a time-dependent heat equation),
or a very high order method in time. Second, with the goal of reducing the number
of optimization iterations, one might pursue incorporating second order derivatives
for use in a Newton method. Our experience (for a problem in optimal boundary
control of Navier-Stokes 
ows [14]) is that use of exact Hessians cuts the number of
iterations signi�cantly (in half or third); however, the reduction in CPU time is not
as substantial, due to the additional work involved in computing second derivatives.
Finally, CPU time can certainly be reduced through parallel computing. In earlier
work, we devised and implemented parallel RSQP algorithms for full potential 
ow
optimal design problems [33], [15]; recently, parallel implementations of GRG-based
optimal design methods for Euler 
ows have appeared [38]. We have recently imple-
mented a parallel SQP method for general 3D unstructured mesh shape optimization
problems on a Cray T3E [29], and are currently tailoring the code to incompressible
Navier-Stokes 
ows. Speedups induced by domain-based parallelism seem to o�er the
best hope for signi�cant reductions in computing time necessary for practical shape
optimization of time-dependent Navier-Stokes 
ows.
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