A Usage Profile and Evaluation
of a Wide-Area Distributed File System *

Mirjana Spasojevic M. Satyanarayanan
Transare Corporation Carnegie Mellon University
Abstract

The evolution of the Andrew File System (AFS) into a wide-area distributed file system has encouraged
collaboration and information dissemination on a much broader scale than ever before. In this paper, we
examine AFS as a provider of wide-area file services to over 80 organizations around the world. We discuss
usage characteristics of AFS derived from empirical measurements of the system, and from user responses
to a questionnaire. Our observations indicate that AFS provides robust and efficient data access in its
current configuration, thus confirming its viability as a design point for wide-area distributed file systems.

1. Introduction

Over the last decade, distributed file systems such as AFS and NFS in the Unix world, and Netware and
LanManager in the MS-DOS world have risen to prominence. Today, virtually every organization with
a large collection of personal machines uses such a system. The stunning success of the distributed file
system paradigm is attributable to three factors.

First, a distributed file system simplifies the separation of administrative concerns from usage concerns.
Users work on tasks directly relevant to them on their personal machines. Incidental but essential tasks
such as backup, disaster recovery, and expansion of disk capacity are handled by a professional staff who
focus primarily on the servers.

Second, the use of a distributed file system simplifies the sharing of data within a user community. Such
sharing can arise in two forms: by a user accessing his files from different machines, and by one user
accessing the files of another user. The ability to easily access one’s files from any machine enhances a
user’s mobility within his organization. Although the accessing of someone else’s files is not a frequent
event (a fact confirmed by many previous studies [1, 6]), ease of access once the need arises is perceived
as a major benefit by users. In other words, while sharing may be rare, the payoff of being able to share
easily is very high!.

Third, transparency is preserved from the users’ and applications’ points of view. Applications do not have
to be modified to use a distributed file system. Because a distributed file system looks just like a local file
system, a user does not have to learn a completely new set of commands or new methods of file usage.

The designs of modern distributed file systems reflect these observations. They use a client-server model,
offer location transparency, rely on caching to exploit locality, provide fairly weak consistency semantics

*This research was funded by the Advanced Research Project Agency, under contract number MDA972-90-C-0036, ARPA
order number 7312. The views and conclusions expressed in this paper are those of the authors and do not represent the official
position of ARPA, Transarc Corporation or Carnegie Mellon University.

Please direct correspondence to Mirjana Spasojevic, Transarc Corporation, The Gulf Tower, 707 Grant Street, Pittsburgh,
PA 15219.

1In this respect a distributed file system is like a telephone system: although a given individual only tends to call a tiny
fraction of all telephone numbers, the latent ability to effortlessly reach any other telephone in the world is viewed as a major
asset of the system.



relative to databases, and support programming and user interfaces that are close to those of a local file
system. The success and widespread usage of these systems confirms the appropriateness of these design
choices.

But this success engenders a new question: “Is the distributed file system paradigm sustainable at very
large scale?” In other words, how well can a very large distributed file system meet the goals of simplifying
system administration, supporting effective sharing of data, and preserving transparency? Growth brings
many problems with it [12]: the level of trust between users is lowered; failures tend to be more frequent;
administrative coordination is more difficult; performance is degraded. Overall, mechanisms that work well
at small scale tend to function less effectively as a system grows. Given these concerns, how large can a
distributed file system get before it proves too unwieldy to be effective?

In this paper, we seek to answer this question by studying the usage characteristics of AFS, the largest
currently deployed instance of a distributed file system. At the time of writing, AFS unites about 1,000
servers and 20,000 clients in 7 countries into a single file name space. We estimate that more than 100,000
users use this system worldwide. In geographic span as well as in number of users and machines, AFS is
the largest distributed file system that has ever been built and put to serious use.

Our study confirms that the distributed file system paradigm is indeed being effectively supported at the
current scale of AFS. Further, our data does not expose any obvious impediments to further growth of the
system. While asymptotic limits to growth are inevitable, they do not appear to be just around the corner.

2. AFS Background

The rationale, detailed design, and evolution of AFS have been well documented in previous papers [2, 5,
9, 10, 11, 15]. In this section, we only provide enough details of the current version of AFS (AFS-3) to
make the rest of the paper understandable.

Using a set of trusted servers, AFS presents a location-transparent Unix file name space to clients. Files
and directories are cached on the local disks of clients using a consistency mechanism based on callbacks [3].
Directories are cached in their entirety, while files are cached in 64 KB chunks. All updates to a file are
propagated to its server upon close. Directory modifications are propagated immediately.

Backup, disk quota enforcement, and most other administrative operations in AFS operate on volumes [13].
A volume is a set of files and directories located on one server and forming a partial subtree of the shared
name space. A typical installation has one volume per user, one or more volumes per project, and a
number of volumes containing system software. The distribution of these volumes across servers is an
administrative decision. Volumes that are frequently read but rarely modified (such as system binaries)
may have read-only replicas at multiple servers to enhance availability and to evenly distribute server load.

AFS uses an access list mechanism for protection. The granularity of protection is an entire directory
rather than individual files. Users may be members of groups, and access lists may specify rights for users
and groups. Authentication relies on Kerberos [16].

AFS supports multiple administrative cells, each with its own servers, clients, system administrators and
users. FEach cell is a completely autonomous environment. But a federation of cells can cooperate in
presenting users with a uniform, seamless file name space. The ability to decompose a distributed system
into cells simplifies delegation of administrative responsibility [15].

As originally designed, AFS was intended for a LAN. However, the RPC protocol currently used in AFS
has been designed to perform well both on LANs as well as on wide-area networks. In conjunction with
the cell mechanism, this has made possible shared access to a common, world-wide file system distributed
over nodes in many countries.

In 1990 the Advanced Research Projects Agency (ARPA) awarded Transarc a contract to deploy and



evaluate a file system to be shared by 40 to 50 Internet sites in the US. By mid-1991 there were 14
organizations included in the study. At the time of writing this paper, more than 80 organizations were
part of this wide-area distributed file system (wadfs).

The wide-area nature of AFS is clearly visible from Figure 1, which shows the cells visible at the topmost
level of AFS. All these directories, as well as the trees beneath them, are accessible via normal Unix file
operations to any workstation anywhere in the system.

3. Evaluation Methodology

A comprehensive characterization of this system would include an assessment of basic architectural features,
an analysis of quantitative data from the deployed system, and an examination of qualitative information
reflecting on issues such as user perceptions of quality.

Since earlier papers have explored the architecture of AFS in detail, we omit it from this paper. Here
we report on AFS from two angles: first, by instrumenting clients and servers and collecting data over a
period of time; second, by circulating a questionnaire on various aspects of AFS to a sample of users and
summarizing their responses. We believe that this combination of quantitative and qualitative information
fairly characterizes the current state of the system.

One’s confidence in the answers of an evaluation can be classified into four levels based on the origin
of the information: intrinsic (direct examination of the system design), empirical (raw measurements),
evidentiary (inferences based on raw data), and anecdotal (information requiring user judgment). In this
taxonomy, our quantitative information is empirical and evidentiary while our qualitative information is
anecdotal.

3.1. Quantitative Data

Empirical measurements of AFS were performed through the zstat data collection facility [17]. The AFS
code was instrumented to allow collection of extended statistics concerning the operation of servers and
clients. These statistics could be obtained remotely via an RPC call. A central data collection machine,
located at Transarc, polled and obtained data from each participating machine four times a day. The
collected data was formatted and inserted into a relational database for postprocessing. Figure 2 shows
the structure of our data collection mechanism.

The scale of the system complicated the logistics of data collection considerably. It would have been
practically infeasible to require the active cooperation of users or system administrators at many different
cells to assist in the data collection. Hence our instrumentation required no regular administrative effort
by the sites being monitored. However, the system administrator of a cell could turn off data gathering if
that cell did not wish to participate in the study.

Not requiring the active cooperation of remote cells complicated the process of discovering which clients
and servers should be contacted for data collection. Qur solution to this problem was to run a discovery
process once every few weeks. This process queried the Domain Name Service at each cell to obtain a list
of registered TP addresses. This list was then probed to discover new AFS clients and servers in that cell.

The measurements were conducted during a 12-week data collection period from mid-May to mid-August
1993. Our data spans 50 file servers and 300 clients from 12 cells in 7 states. The only factors limiting
broader coverage were the deadlines for this paper, and the need for participating sites to pick up the
versions of AFS software incorporating our instrumentation.



cs.arizona.edu theory.cornell.edu soup.mit.edu spc.uchicago.edu
cs.brown.edu kiewit.dartmouth.edu watch.mit.edu ucop.edu
bu.edu northstar.dartmouth.edu ncat.edu ni.umd.edu
cmu. edu iastate.edu eos.ncsu.edu wam.umd.edu
andrew.cmu.edu ucs.indiana.edu nd.edu umich.edu
club.cc.cmu.edu isi.edu nsf-centers.edu citi.umich.edu
ce.cmu.edu alefnull.mit.edu pitt.edu math.lsa.umich.edu
cs.cmu.edu athena.mit.edu psc.edu lsa.umich.edu
ece.cmu.edu rel-eng.athena.mit.edu rose-hulman.edu cs.unc.edu
sei.cmu.edu media-lab.mit.edu rpi.edu css.cs.utah.edu
cs.cornell.edu net.mit.edu dsg.stanford.edu cs.washington.edu
graphics.cornell.edu sipb.mit.edu ir.stanford.edu
(a) educational cells
ads.com ctp.se.ibm.com prc.unisys.com gr.osf.org
bstars.com mtxinu.com stars.reston.unisys.com ri.osf.org
cards.com locus.com grand.central.org syseng.osf.org
pub.nsa.hp.com stars.com ciesin.org
palo_alto.hpl.hp.com transarc.com dce.osf.org
(b) commercial cells
inel.gov alw.nih.gov S8C.gov
nersc.gov ctd.ornl.gov cmf.nrl.navy.mil
(c) goverment cells
jrc.flinders.oz.au uni-freiburg.de etl.go.jp pegasus.cranfield.ac.uk
glade.yorku.ca rus.uni-stuttgart.de others.chalmers.se athena.ox.ac.uk
writer.yorku.ca sfc.keio.ac.jp nada.kth.se
lrz-muenchen.de titech.ac.jp bcc.ac.uk

(d) cells outside US

This figure shows the cells visible from a typical client in the system. The listing above was obtained
by doing an “ls /afs” and then sorting the output according to the domain. As the figure shows,
there are 47 educational cells, 18 commercial, 6 governmental, and 14 cells outside the United States.

Figure 1: Cells visible from a typical AFS client.



Figure 2: Instrumentation for Data Collection

3.2. Qualitative Data

To complement the quantitative data obtained by instrumentation, we constructed a questionnaire that
touched upon a diverse set of issues. The purpose of the questionnaire was to elicit user perceptions as
well as to obtain a profile of AFS usage. The topics of interest to us included characterization of the user
community, extent of usage of native and foreign cells, and degree of collaboration within and across cells.
We were also interested in obtaining user perceptions of performance and reliability of AFS for native and
foreign cell access. Finally, we were interested in the value and adequacy of various AFS mechanisms such
as access control lists, read-only replication, and data mobility.

The questionnaire was distributed in two ways: first, by posting on several Netnews bboards; second, by
direct mailing to AFS contacts in different cells. We received about 100 responses from 50 cells. The data
we present in this paper is averaged over all these responses.

4. Observations and Analysis

In this section we present both quantitative and qualitative data collected during our 12-week study. We
begin by examining storage capacity and user profile. We then discuss the nature of client-server interaction,
including RPC traffic and bulk data transfers. Next, we explore cache performance and availability, two key
parameters of any distributed system. Finally, we examine the extent to which AFS is used for collaboration
and information dissemination. In discussing these issues, we interleave the results of both empirical and
anecdotal evidence, pointing out corroborations and contradictions wherever appropriate.

4.1. AFS Usage
4.1.1. Data Profile

Table 1 shows a recent snapshot of the data stored at 17 cells?. These cells comprised 95 file servers,
housing almost 50,000 volumes and constituting over 300 GB of data. The data shows that although over

2These 17 cells were a superset of the 12 from which all other statistics in this paper are reported. We were able to obtain
a larger sample in this case because the necessary instrumentation was present in an earlier release of AFS.



Volume type | Total | Size (GB) | Avg (MB/vol)
User 25,630 73 2.9
Backup 14,557 105 7.2
Readonly 2,121 24 11.4
Other 7,595 111 14.6
ALL 49,903 313 6.3

Table 1: Storage Capacities of 17 Cells

50% of the volumes belong to individual users, they contain only 23% (73 GB) of the data. A third of the
data (over 100 GB) belongs to backup volumes. Only 4.2% of the volumes are readonly replicas, and they
contain only 7.7% of the data. The remaining 15% of the volumes correspond to system binaries and data,
bulletin boards, and other miscellaneous data. Together, these volumes contain one third of the total data.

Extrapolating from this evidence, and from additional information from the questionnaire, we estimate
that the whole wadfs contains more than 200,000 volumes with 1.5-2 TB of data. It is interesting to note
that although the average volume size is only 6.3MB, the raw data indicates that some volumes contain
more than 1.5GB of data. In other words, volumes span a wide range of sizes but tend to be skewed toward
the low end.

A related but distinct question pertains to how many of these volumes are in active use every day. To
answer this question, we recorded the number of volumes whose activity level exceeded a specified threshold
each day for the the duration of our data collection. The activity level was arbitrarily chosen to be 10 read
references to a volume. Our data showed that, on average, a server has 65 active volumes, each containing
about 16MB of data.

4.1.2. User Profile

The AFS user community consists of a number of academic, government and commercial sites and AFS
users tend to have a very diverse background. However, responses to our questionnaire came mostly from
AFS contacts, who are usually system administrators (Figure 3)3. The majority of respondents use AFS
daily and for most of them the typical AFS session lasts a full working day. Most of them are serious
programmers and two-thirds of them rate their knowledge of AFS to be at an advanced or expert level.
Most of them had experience with other distributed file systems, usually NFS. Our sample thus represents
a technically sophisticated group of respondents. This renders their assessments of AFS quality more
credible, but also leaves unanswered the question of how naive users view AFS.

4.2. Client-Server Interaction Profile

How do AFS clients and servers interact? The answer to this question is important because knowledge
of the relative distribution of file system RPC calls helps characterize a normal system and identifies the
most common calls. This, in turn, allows performance tuning to be focused. Figure 4 lists the client-server
RPC calls with short descriptions.

Both servers and clients have been instrumented to record the information regarding these calls. They keep
statistics about the total number of calls, the number of successful calls and the average time of execution
of successful calls (with the standard deviation). During our study, statistics were collected from 46 file
servers and 264 clients on a typical day.

3The percentages for some questions do not add up to 100% because some respondents did not answer particular questions
or they marked more than one choice.



1. What s your occupation? 5. How would you rate your knowledge of AFS?

9% Student 2% Novice
16% Researcher/Scientist 28% Intermediate
32% Software Developer 50% Advanced intermediate

8% Manager
11% Support Staff

17% Expert

49% System Administrator 6. What other distributed file systems have you worked
2% Other with?
0,
2. How often do you typically use AFS? 89% NFS _
0% N 17% Apollo Domain
» Never
1% Rarel 7% RFS
. =Y 9% Other(s)
11% Periodically
85% Daily

8. How long does your typical AFS session last?

6% Under 30 min
5% 30minto1l hr
12% 1to 3 hr

74% Full working day

7. What’s the best description of how you use AFS
with the other file service resources at your site?
0% Don't use AFS at all
5% Use existing files in AFS, but none of my files are there
13% Store some of my files in AFS, most on other systems
14% Store many of my files in AFS
66% Most of my files are in AFS, including my home direc-

4. Which best describes the depth of your general com- tory

puting experience?

1% Novice

15% Casual programmer
81% Serious programmer
2% Non-technical user

Figure 3: A Profile of Survey Participants

Fetch Data
Fetch_ACL
Fetch Status
Store Data
Store_ACL
Store Status
Remove_File
Create_File
Rename
Symlink
Link

Make Dir
Remove Dir
Set_Lock
Extend_Lock
Release Lock
GiveUp-Call
Get_Vol_Info
Get_Vol_ Status
Set_ Vol Status
Get_Time
Bulk Status

Returns data of the specified file or directory and places a callback on it.
Returns the content of the specified file’s or directory’s access control list.
Returns the status of the specified file or directory and places a callback on it.
Stores data of the specified file or directory and updates the callback.
Stores the content of the specified file’s or directory’s access control list.
Stores the status of the specified file or directory and updates the callback.
Deletes the specified file.

Creates a new file and places a callback on it.

Changes the name of a file or directory.

Creates a symbolic link to a file or directory.

Creates a hard link to a file.

Creates a new directory.

Deletes the specified directory which must be empty.

Locks the specified file or directory.

Extends a lock on the specified file or directory.

Unlocks the specified file or directory.

Specifies a file that a cache manages has flushed from its cache.

Returns the name(s) of servers that store the specified volume.

Returns the status information about the specified volume.

Modifies status information on the specified volume

Synchronizes the workstation clock and checks if servers are alive.

Same as Fetch_Status but for a list of files or directories.

Figure 4: Client-Server RPC Calls



100%

Type of call % #of calls (% err.) | Avgms (s.d.)

1. FetchData 7.6 | 33,427,405 (0.2) 116 (486)

2. Fetch.Status | 67.0 | 295,247,833  (18.0) 12 (378

3. StoreData 1.0 | 17,336,400 (1.0 157 (744) —
4. Store_Status 8.7 38,399,197  (0.3) 3 (119)

5. Remove File 1.9 | 8172,106 (0.0) 40 (335) 50% 1

6. CreateFile 2.0 | 8,945,032 (15.7) 22 (545)

7. Extend.Lock 18 | 7,815,294 (73.0) 9 (291)

8. GiveUpCall 16 | 6,839,076  (0.0) 1T (39)

9. Get Time 3.2 | 14,210,834 (0.0) 1 (800)

ALL 100.0 | 440,778,197 (13.8) n/a |T| 5 TT?????

Type of call
Table 2: Average Distribution of RPC Calls Observed by Servers

4.2.1. RPC Calls Observed by Servers

Over 440 million calls were observed during the data collection period. About 86% of these were successful.
Table 2 summarizes the detailed statistics of calls accounting for at least 1% of the total.

The most frequent is Fetch_Status call. We conjecture that many of these calls are generated by users
listing directories in parts of the file name space that they do not have cached. The relatively high number
of unsuccessful calls (18%) suggests that these directories belong to some protected areas of the file name
space. It 1s interesting to note that despite caching, the number of Fetch Data calls is considerably higher
than the number of Store Data calls. Both Fetch Data and Store Data calls take considerably longer
than other operations. This is to be expected, since they involve disk 1/O.

GiveUP_Call turned out to be the call that takes the least amount of time on average. It was even faster
than the Get_Time call, which is the simplest call. Considering the very high standard deviation of the
Get_Time call, this might be just an anomaly in the collected data, but it can also be the result of a slow
system call to get the time.

Although Fetch_ACL is not shown in Table 2, our raw data showed that it takes considerably more time
on average than Fetch_Status. This surprised us, since Fetch_Status returns access list information.
This apparent anomaly was explained when inspection of the AFS code showed that the implementation
of Fetch_ACL contains a call to a protection server, while the implementation of Fetch_Status does not.

Analysis of RPC calls on a weekly basis confirms that their distribution is stable over time. Table 3 presents
this data. This data shows only two significant deviations from the general profile shown in Table 2. One
anomaly is the very high number of Store_Status calls during weeks 10 and 11. We discovered that more
than 90% of these calls were concentrated on three file servers at Transarc. Further investigation revealed
that these servers are frequently used for testing new AFS releases, thus explaining the unusual distribution
of calls.

The second anomaly is the unusually high number of Extend Lock calls during week 4. This is usually a
rarely-occurring call, typically accounting for less than 1% of the calls in other weeks. Detailed analysis
of week 4’s data showed that the majority of these Extend Lock calls were concentrated on just one file
server. Our hypothesis is that there was a orphaned process on one of the clients repeatedly trying to
make an Extend Lock call, but failing because of expired authentication tickets. This also explains the
high percentage of failed Extend Lock calls in Table 2.

Based on this data, one can loosely characterize a normally running system as one with a very high



week | Fetch_D | Fetch_S | Store_D | Store_.S | Remove_F | Create_F | Extend_L | GiveUp_C | Get_ T
1 8.4 73.2 3.2 2.0 1.2 1.4 3.1 1.8 4.0
2 8.1 71.5 3.4 4.9 1.5 1.6 1.0 1.8 3.9
3 8.2 71.6 3.6 3.7 1.3 1.7 2.2 1.5 4.4
4 7.5 62.3 3.5 4.7 1.4 1.7 12.0 1.3 3.5
5 7.1 76.9 3.3 2.4 1.2 1.6 0.5 1.4 3.7
6 7.3 70.9 4.0 6.3 2.2 2.4 0.3 1.4 2.6
7 7.4 71.0 4.0 5.8 1.7 2.2 0.5 1.8 3.6
8 8.7 66.7 4.2 7.3 2.0 2.5 0.4 1.6 2.8
9 7.1 72.9 3.3 6.4 1.5 1.6 0.4 1.6 3.1
10 7.3 53.6 4.8 21.1 2.8 2.4 0.3 1.3 3.2
11 7.2 52.9 5.4 22.1 2.8 2.6 0.4 1.3 2.5
12 7.0 74.5 3.2 6.1 1.2 1.6 0.6 1.9 2.5

| all| 76 67.0 4.0 8.7 18 2.0 18 | 15 | 32 |

This table is based on the same raw data as Table 2. It indicates weekly averages (in percentages),
rather than averaging across all weeks.

Table 3: Weekly RPC Call Distributions Observed by Servers

100%
Type of call % #of calls (% err.) | Avgms (s.d.)
1. FetchData 76 | 9,141,014 (0.5) 158 (614)
2. Fetch.Status | 54.4 | 65,450,704 (14.5) 56 (540)
3. StoreData 17.3 | 20,816,713 (0.0) 65 (332)
1. StoreStatus | 9.8 | 11,806,214 (0.3) 30 (209) | 509
5. RemoveFile 1.0 | 1,260,655 (0.2) 61 (342)
6. CreateFile 15 | 1,866,759 (12.6) 55 (642)
7. GiveUpCall 2.2 | 2,680,433 (0.0) 65 (43)
8. Get Time 35 | 4,188,167 (3.0) 33 (661)
ALL 100.0 | 120,192,852 (8.5) n/a u Hﬂﬁﬁﬁ,_‘

123 45 6 7 8
Type of call
Table 4: Average Distribution of RPC Calls Generated by Clients

number (above 60%) of Fetch Status calls, and smaller, but still significant, number of Fetch Data and
Store_Status calls (about 8%). Other frequent calls in such a system include Store Data and Get_Time.

4.2.2. RPC Calls Generated by Clients

The set of machines from which we were collecting data did not represent a “closed system”, i.e. there was
no guarantee that participating servers and clients were contacting only each other. Thus, the number of
calls observed by file servers does not match the number of calls generated by clients. Nevertheless, it is
interesting to compare these two profiles. Table 4 summarizes the data collected from clients.

There were over 120 million calls, out of which 91.5% were successful. Again, Fetch_Status calls dominate.
But the relative percentage of these calls was significantly lower than that reported in Table 2 for servers.
At the same time, the relative percentage of Store Data calls was significantly higher. Examination of
the raw data showed that most of Store Data calls came from a set of eight machines belonging to one
cell. We conjecture that the applications on these machines differed substantially from the norm in their



Servers Clients
Fetched Stored | Fetched | Stored
0B-128B 32 % 44 % 33 % 6 %
128 B- 1 KB 4% 7% 5% 15 %
1KB-8 KB 43 % 14 % 37T % 26 %
8 KB-16 KB 4% 6 % 4% 8 %
16 KB - 32 KB 2% 4 % 3% 7%
32 KB - 128 KB 14 % 25 % 17 % 7%
over 128 KB 1% 0% 0% 0%
Daily per machine | 156 MB | 116 MB | 5.3 MB | 4.7 MB

Table 5: File Transfer Size Distribution

file access patterns. When these machines are excluded from the data set, the frequency of Fetch Status
calls increases to 62% and the frequency of Store Data calls drops to 5%. The frequencies of other calls
are similar to those reported in Table 2.

Surprisingly, Table 4 shows the average Store Data call to be much faster than the average Fetch Data
call. Tt is even faster than the average Fetch Data call on servers (Table 2), indicating negative network
delay! This anomaly is also caused by the above-mentioned group of eight clients. When they are excluded
from the analysis, the average time of Store Data calls increases to a more credible 149ms.

4.2.3. Causes of RPC Failures

As noted in the previous section, nearly 8.5% of the calls generated by clients failed. We were curious
about the nature of these failures since they may have been symptomatic of underlying performance or
reliability problems. To study this, AFS clients were instrumented to keep track of failed RPC calls. Errors
were divided into several categories: server problems, network problems, protection problems (insufficient
authorization or expired authorization tickets), volume problems, occurrences of a busy volume (e.g. when
a volume is moved to another server) and errors of unknown cause.

Our data showed that the majority of failed calls, 92%, were Fetch_Status calls. Most of them, 76%, failed
because of protection errors. This is consistent with our earlier hypothesis of the existence of periodic jobs
on some machines that attempt to traverse the AFS tree and fail when they encounter a protected part of
the tree. Another plausible explanation is continuous execution of some background daemons (e.g. xbiff)
which always produce a failed call after the authorization ticket’s expiration. A significant number of
unsuccessful calls, 22%, failed for unknown reasons.

4.2.4. Bulk Transfer Profile

Statistics concerning file transfers were recorded by both file servers and clients. AFS performs partial file
caching, so the numbers reported here show transfers on a per chunk basis, rather than on a per file basis.
The exceptions are directories which are cached in their entirety. Chunk size is 64KB by default, but may
be changed on a per-client basis.

The collected statistics are summarized in Table 5. Qur data indicates that the most frequently fetched
chunks are in the range 1-8KB. These correspond to entire files or directories. This result is consistent
with many earlier studies of file size distributions which have reported small average file size [6, 8]. The
second most frequently fetched chunk size is even smaller, in the range 0-128B.

The distribution of fetched data on file servers and clients is very similar. However, the distribution of
stored data differs considerably. We can conclude that even when mixes of RPC calls and fetched data

10



data file status information

100 100
99 I . 99 I .
98 . 98 .
% %
97 . 97 .
96 I . 96 I .
95 95
10 30 50 70 10 30 50 70
day day

(a) Combined cache hit ratio for native and foreign file references

data file status information
5) 5)
4+ — 4+ —
3 - - 3 - -
% %
2+ — 2+
i ) I
0 |H“.|HH|‘ ‘I H| HHI ‘ H ‘IM ‘I ‘l‘ 0 HHH‘HM ‘I H| HHI‘ I|‘ ‘I |
10 30 50 70 10 30 50 70
day day

(b) Fraction of references to files in foreign cells

This figure shows the observed cache hit ratios and relative proportion of native and foreign cell
references over the data collection period. As explained in Section 4.3.1., data from six machines was
excluded. Analysis of the raw data showed that the excluded machines exhibited comparable cache
performance to the overall set of machines. The gaps in histograms on several days correspond to
missing data due to problems with the data collection machine.

Figure 5: Cache Performance and Reference Mixes

11



8. How would you rate AFS performance when access- 10. How would you rate AFS performance when ac-

ing files in your own cell (organization)? cessing files in a remote cell?
22% Excellent 8% Excellent
49% Good 42% Good
20% Fair 38% Fair
4% Poor 6% Poor
3% Unsatisfactory 2% Unsatisfactory

4% No experience
9. Compared to other distributed file systems you’'ve

used, is AFS in your own cell: 11. Have any of the following aspects of AFS ever
11% Much faster sertously impeded your work?
30% Faster 65% Performance/reliability
32% Comparable 21% Authentication/ACLs
15% Slower 6% Replication
2% Much slower 19% Backup/restore
5% Haven't used other distributed file systems 25% Semantics (Unix emulation)

32% Auvailability for other hardware/OS bases
10% Deployment (i.e., it doesn’t run at the places with
which | interact)

5% Other(s)

Figure 6: Users’ Perception of AFS Performance

distributions are similar, there might be a significant variation in stored data distribution on servers and
clients. The results from Section 4.1.1 indicate that the amount of data housed by active volumes is about
1GB per file server. Table 5 shows that only about 15% of this data (156 MB) is actually fetched by clients.

4.3. AFS Performance

4.3.1. Cache Performance

Cache hit ratio is a critical factor in determining the overall performance of a system like AFS. Caching
is especially valuable in masking the long latencies typical of wide-area networks. To study this aspect of
AFS, clients were instrumented to keep statistics on cache hit rates and on the percentages of references
made to native and foreign cells. Since the AFS file cache is split into a cache for data and a cache for
status information, our statistics were kept separately for these two categories.

The overall percentage of references to remote files was 4.5% for data and 2.3% for status information.
However, these numbers showed high variation from day to day: between 0.5% and 26% for data, and 0.5
and 34% for status. Closer inspection of the raw data revealed a group of six machines contributing to the
majority of these references. We conjecture that these machines run periodic jobs that attempt to traverse
the entire AFS tree *. Since these constitute pathological cases, we excluded these machines from our data
set, and obtained the substantially more uniform results shown in Figure 5.

Our data indicates that the average cache hit ratio is over 98% for data and over 96% for status information.
Over 95% of data and status references are to native cells. We statistically analyzed the possibility of
foreign cell references causing much lower cache hit ratios. Our analysis indicated that there was no such
correlation.

The responses to our questionnaire on AFS performance are presented in Figure 6. Most of the respondents
rate the performance of AFS when accessing local data as good or excellent. Only 7% of users are not
satisfied. AFS performance when accessing files in a remote cell is somewhat worse - 50% of respondents
rate it as good or excellent, while 38% feel it is fair. Compared to other distributed systems they have used,
32% of respondents feel that AFS provides comparable performance, while 41% say that it is faster or much
faster. Overall, the majority of users seem to be satisfied with AFS performance. But nearly two-thirds of

4This hypothesis has been verified for at least some of the machines.

12



Type of outage % of time | Time (min/week)
Servers in the same cell 0.08 - 0.59% 1.2-8.5
Servers in the foreign cell | 0.04 - 0.54% 0.5-7.7

This table shows observed average inconvenience times for clients over 12-week data collection
period. The lower side of the range represents the case when for each client all daily failures occur
simultaneously. The higher side of the range represents the case when daily failures do not overlap.

Table 6: Average Inconvenience Time for Clients

Servers in Servers in
Downtime durations | the same cell | foreign cells
0 min - 10 min 1584 861
10 min - 30 min 759 128
30 min - 1 hr 484 67
1 hr-2hr 275 48
2 hr - 4 hr 140 21
4 hr - 8 hr 63 6
> 8 hr 44 28
TOTAL 3349 1159

Table 7: Distribution of File Servers Outage Durations
them also rate performance and reliability as aspects of AFS that have sometimes been unsatisfactory.

4.3.2. Frequency of File Server Failures

Interruption of file service in a wadfs is a potential obstacle to providing transparency. One way of
measuring file server downtimes 1s to have file servers record downtimes themselves and report them to the
data collection agents. However, in our view, a much more important picture is the one that client machines
have about the file servers’ availability. Thus, we instrumented clients to record outages. A particular file
server’s downtime was observed only by the clients that could not access particular data from that file
server (because of the server’s failure and/or network problems). Such an approach weights failures by
clients’ interest in the files affected; in other words, the inaccessibility of a heavily-used file contributes
more to the metric than the inaccessibility of a lightly-used file. Table 6 reports average inconvenience
time, which is the time during which a client cannot communicate with at least one file server that it needs
to access.

Downtime incident statistics were collected from 235 clients on an average day. During the twelve week
data collection period, the number of observed server downtime incidents was 3349 for servers in the same
cell and 1159 for servers in foreign cells. (Table 7). Tt should be noted that a particular server’s outage can
be reported multiple times if observed by multiple clients. Also, on an average day only about 15% of the
contacted clients accessed data in foreign cells and thus were able to observe server downtimes in foreign
cells. According to the numbers collected, on average, a client observes a server outage every 5-6 days
for the local cell and every 3-4 days for the foreign cell, under the assumption that all clients are equally
observant (active). The duration of almost half the outages is less than 10min. Since this is shorter than
the recovery time for a typical server, we conjecture that many of these short outages are really due to
transient network failures.

Users tend to notice file server failures less frequently than what the empirical evidence indicates (Figure 7).
Failures of servers in local cells are experienced at most once a month by 77% of respondents. Only 3%

13



12. In your experience, how often are the AFS File 14. In your experience, how often are the AFS File

Servers in your own cell (organization) down or un- Servers in other cells (organizations) you access down
available? or unavatlable?

2% Never 6% Never

36% Once every few months 20% Once every few months

39% Once a month 29% Once a month

17% Once a week 17% Once a week

3% Dalily 7% Daily

20% N/A

13. In your experience, for how long are AFS File
Servers typically down when they crash or in the pres-
ence of network problems?

13% Less than 10 minutes
36% 10 minutes to 30 minutes
35% 30 minutes to 1 hour
12% More than 1 hour

3% N/A

Figure 7: Users’ Perception of File Server Failures

Cells contacted | % of clients
> 1 100
> 2 67
>3 42
> 6 22
> 10 15
> 20 9
> 50 4
> 70 3

Table 8: Client Contacts with Cells

witness file server failures on a daily basis. However, users perceive failures as lasting longer than the
empirical data indicates: less than 10min for 13%, 10 - 30 min for 36%, 30min - lhr for 35%, and more
than 1 hr for 12% of respondents. Failures of servers in foreign cells are experienced at most once a month
by 54% of respondent. However, the actual percentage is higher, because this question did not apply to
20% of respondents (question 14).

4.4. Sharing in AFS

The existence of cross-cell file access in AFS is borne out by the data presented in Figure 5(b). That figure
showed that the percentage of references to the files in foreign cells was up to 5% for data and up to 4.5%
for status information during the 12-week data collection period. Although 5% may not seem like much, it
is significant because cells represent organizational boundaries and most users tend to access data within
their own organizations.

Table 8 represents a histogram of the number of different cells contacted by each client during the 12-week
period. The table shows that two thirds of the clients referenced data in at least one foreign cell while 3%
of the clients referenced data in all available cells. Further, examination of the raw data shows that, on
average, 15% of the clients referenced foreign data each day.

We also repeated the study originally reported by Kistler and Satyanarayanan [4] on the extent of sequential
write sharing on directories and files. Every time a user modified an AFS directory or file, the user’s identity
was compared to that of the user who made the previous modification. Our data, showing that 99.1% of

14



15. What is the nature of AFS interaction between 19. Rate the importance of the following communica-
yourself and others in the same AFS cell? (Check any tion/collaboration media and methods in your organi-
that apply.) zation, using the following scale: 5: Very important, 4:
Important, 8: Somewhat important, 2: Not important,

3% No int ti
%o No interaction 1: Not used at all.

39% “Looking around” your cell’s file space to see what's

new 3.92 Direct phone calls
69% Reading files 2.43 Conference calls
15% Accessing AFS-based bboards 2.55 Internal (paper) memoranda
45% Copying interesting files into your own storage area(s) 2.14 U.S. mail
33% Copying files in one direction (e.g., drop-offs) 2.69 Express/overnight delivery services
39% Copying files back and forth, modifying them at each 3.26 FAX

step 2.66 Physical media (floppies, hard disks, mag tapes, etc.)
66% In-place use, modifying files without copying them 4.56 Email

6% Other 3.49 BBoards/Email lists
. 3.55 FTP

16. Have you ever explored/used the resources avail- 3.06 Local (non-distributed) file system
able through the grand.central.org cell? 3.38 Non-AFS distributed file system (e.g., NFS)
34% Yes, I've used the materials there 4.05 AFS
26% Yes, I've looked through it to see what's there 0.17 Other(s)
21% No, | haven’t had the need/desire
19% No, the /afs/grand.central.org directory has not been 20. Are you currently working with people in another

set up at my site AFS cell on joint projects of any kind?

. 7% Yes, frequently
17. Have you ever explored/used the resources avail- 8% Yes, moderately

ble at oth ls?
avte at other cetts 23% Yes, but not very frequently

71% Yes, I've used the materials at other cells 15% No, the people | collaborate with outside my own cell
20% Yes, I've looked through other cells to see what'’s there do not (all) run AFS
8% No, | haven’t had the need/desire 43% No (for any other reason)

1% No, the /afs/<other cell> directories have not been
set up at my site

18. How many accounts/authentication tdentities do
you have in other cells (i.e., how many cells other than
your home cell can you klog to)?

20% O
36% 1
19% 2
18% 3
7% More than 3

Figure 8: Users’ Perception of Sharing in AFS

all directory modifications were by the previous writer, is consistent with Kistler and Satyanarayanan’s
observations. Unfortunately, we are not able to report on write sharing on files due to a bug in the statistics
collection tools.

These observations confirm that the wide-area aspects of AFS are indeed valuable. Our anecdotal data,
presented in Figure 8, corroborates this conclusion. Most users rate AFS very highly as a communication
and collaboration tool. In their local cell, over 60% of the users tend to read or modify files that do not
belong to them (question 15). Most users have used or looked at materials that reside in other cells. About
80% possess accounts/authentication identities in foreign cells. About 38% of the users participate in joint
projects with people from different cells, although 23% do not do so frequently.

Further anecdotal information of the value of wide-area file access is provided by highly visible instances of
information dissemination and collaboration in AFS. For example, AFS has facilitated the development of
OSF’s DCE. It has also been used in the STARS project initiated in 1990 by ARPA, which established a
nationwide government-commercial collaboration. In both these cases, wide-area file access has been used
by participant organizations to support sharing and dissemination. Project software and documentation
are located in AFS and collaboration via AFS has occurred on a regular basis. AFS has also been used as a
tool for information dissemination. The release of MIT’s X11Rb5 software is a good example. In September

15



1991, the X11Rb release was installed into the cell grand.central.org and all AFS sites were able to
immediately browse and access the release without manual file transfers.

5. Conclusion

Our goals in conducting this study were to observe a wadfs in actual use and to characterize its usage
profile. We were also interested in determining how well AFS worked at the current scale of the system,
and to see if any imminent limits to its further growth were apparent.

The qualitative and quantitative data that we have presented confirms that AFS provides robust and
efficient distributed file access in its present world-wide configuration. The caching mechanism is able to
satisfy most of the file references from the clients’ local cache. Even though file server and network outages
can be disruptive for particular users, our observations show that prolonged server inaccessibility is rare.
Our data shows no obvious bottlenecks that might preclude further growth of the system.

AFS’s divide and conquer technique of using semi-autonomous cells for spanning widely disparate organiza-
tions has proven to be invaluable. By providing considerable flexibility in security and storage management
policies, the cell mechanism reduces the psychological barrier to entry of new organizations. As a conse-
quence, growth in AFS over time has not just been in the number of nodes in each cell, but also in the
total number of cells.

In summary, this paper provides conclusive evidence that AFS is a viable design point in the space of
wide-area distributed file system designs. We are convinced that any alternative design must preserve the
aggressive caching policies and support for autonomous administration that are the hallmarks of AFS’
approach. The absence of either of these features will be fatal in any attempt to build a file system that
uses a wide-area network and spans many organizations.

Acknowledgments

The zstat data collection facility was designed and implemented by Ed Zayas. Contributions to the evalu-
ation methodology for wide-area distributed file systems were made by Ed Zayas, Alfred Spector and Bob
Sidebotham. Anne Jane Gray provided assistance in organizing this project. Comments by Mike Kazar,
Maria Ebling, Qi Lu, and Jay Kistler were helpful in improving the presentation.

References

[1] Baker, M.G., Hartman, J.H., Kupfer, M.D., Shirriff, K.W., Ousterhout, J.K., Measurements of a Dis-
tributed File System. Proceedings of the Thirteenth ACM Symposium on Operating System Principles,
Pacific Grove, CA, October 1991.

[2] Howard, J.H., Kazar, M.L., Menees, S.G., Nichols, D.A., Satyanarayanan, M., Sidebotham, R.N.
West, M.J., Scale and Performance in a Distributed File System. ACM Trans. on Computer Systems,
Vol. 6, No. 1, February 1988.

[3] Kazar, M.L., Synchronization and Caching Issues in the Andrew File System. Usenix Conference
Proceedings, Winter 1988.

[4] Kistler, J., Satyanarayanan, M., Disconnecled Operalion in the Coda File System. ACM Trans. on
Computer Systems, Vol. 10, No. 1, February 1992.

[5] Morris, J. H., Satyanarayanan, M., Conner, M.H., Howard, J.H., Rosenthal, D.S. and Smith, F.D.
Andrew: A Distributed Personal Computing Environment. Communications of the ACM, Vol. 29, No.
3, March 1986.

[6] Ousterhout, J., Da Costa, H., Harrison, D., Kunze, J., Kupfer, M., Thompson, J. A Trace-Driven
Analysis of the 4.2BSD File System. Proceedings of the 10th ACM Symposium on Operating System
Principles, December, 1985.

16



[7] Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., Lyon, B., Design and Implemeniation of the Sun
Network Filesystem. Summer Usenix Conference Proceedings, 1985.

[8] Satyanarayanan, M., A Study of File Sizes and Functional Lifeltimes. Proceedings of the 8th ACM
Symposium on Operating System Principles, Asilomar, December 1981.

[9] Satyanarayanan, M., Howard, J.H., Nichols, D.N., Sidebotham, R.N., Spector, A.Z. and West, M.J.
The ITC Distributed File System: Principles and Design. Proc. 10th ACM Symposium on Operating
System Principles, December 1985.

[10] Satyanarayanan, M., Integrating Securily in a Large Distributed System. ACM Transactions on Com-
puter Systems, Vol. 7, No. 3, August 1989.

[11] Satyanarayanan, M., Scalable, Secure, and Highly Available Distributed File Access. IEEE Computer,
Vol. 23, N. 5, May 1990.

[12] Satyanarayanan, M., The Influence of Scale on Distributed File System Design. IEEE Transactions on
Software Engineering, Vol. 18, No. 1, January 1992.

[13] Sidebotham, R.N., Volumes: The Andrew File System Data Structuring Primitive. European Unix
User Group Conference Proceedings, August 1986.

[14] Spector, A.Z., Thoughts on Large Distribuled File Systems. Proc. of the German National Computer
Conference, October 1986.

[15] Spector, A.Z., Kazar, M.L., Wide Area File Service and the AFS Experimenial System. Unix Review,
Vol. 7, No. 3, March 1989.

[16] Steiner, J.G., Neuman, C., Schiller, J.I., Kerberos: An Authentication Service for Open Nelwork
Systems. Usenix Conference Proceedings, Winter 1988.

[17] Transarc Corporation, AFS 3.1 Programmer’s Reference Manual FS-00-D180, Pittsburgh, PA, Octo-
ber 1991.

Mirjana Spasojevic received the B.S. degree in mathematics from the University of Belgrade in 1986,
and the M.S. and Ph.D. degrees in computer science from The Pennsylvania State University, in 1989
and 1991, respectively. She 1s currently working as a System Designer at Transarc Corporation. Prior to
joining Transarc, she was an Assistant Professor at the School of Electrical Engineering and Computer
Science, Washington State University. Her research interests include distributed operating systems and
data management.

Mahadev Satyanarayanan is an Associate Professor of Computer Science at Carnegie Mellon University.
He is currently investigating the connectivity and resource constraints of mobile computing in the context
of the Coda File System. Prior to his work on Coda, he was a principal architect and implementor of
the Andrew File System. Satyanarayanan received the PhD in Computer Science from Carnegie Mellon
University in 1983, after a Bachelor’s degree in Electrical Engineering and a Master’s degree in Computer
Science from the Indian Institute of Technology, Madras. He is a member of the ACM, IEEE, Sigma Xi,
and Usenix, and has been a consultant to industry and government.

17



