
A Usage Pro�le and Evaluation

of a Wide-Area Distributed File System �

Mirjana Spasojevic

Transarc Corporation

M. Satyanarayanan

Carnegie Mellon University

Abstract

The evolution of the Andrew File System (AFS) into a wide-area distributed �le system has encouraged

collaboration and information dissemination on a much broader scale than ever before. In this paper, we

examine AFS as a provider of wide-area �le services to over 80 organizations around the world. We discuss

usage characteristics of AFS derived from empirical measurements of the system, and from user responses

to a questionnaire. Our observations indicate that AFS provides robust and e�cient data access in its

current con�guration, thus con�rming its viability as a design point for wide-area distributed �le systems.

1. Introduction

Over the last decade, distributed �le systems such as AFS and NFS in the Unix world, and Netware and

LanManager in the MS-DOS world have risen to prominence. Today, virtually every organization with

a large collection of personal machines uses such a system. The stunning success of the distributed �le

system paradigm is attributable to three factors.

First, a distributed �le system simpli�es the separation of administrative concerns from usage concerns.

Users work on tasks directly relevant to them on their personal machines. Incidental but essential tasks

such as backup, disaster recovery, and expansion of disk capacity are handled by a professional sta� who

focus primarily on the servers.

Second, the use of a distributed �le system simpli�es the sharing of data within a user community. Such

sharing can arise in two forms: by a user accessing his �les from di�erent machines, and by one user

accessing the �les of another user. The ability to easily access one's �les from any machine enhances a

user's mobility within his organization. Although the accessing of someone else's �les is not a frequent

event (a fact con�rmed by many previous studies [1, 6]), ease of access once the need arises is perceived

as a major bene�t by users. In other words, while sharing may be rare, the payo� of being able to share

easily is very high1.

Third, transparency is preserved from the users' and applications' points of view. Applications do not have

to be modi�ed to use a distributed �le system. Because a distributed �le system looks just like a local �le

system, a user does not have to learn a completely new set of commands or new methods of �le usage.

The designs of modern distributed �le systems re
ect these observations. They use a client-server model,

o�er location transparency, rely on caching to exploit locality, provide fairly weak consistency semantics

�This research was funded by the Advanced Research Project Agency, under contract number MDA972-90-C-0036, ARPA

order number 7312. The views and conclusions expressed in this paper are those of the authors and do not represent the o�cial

position of ARPA, Transarc Corporation or Carnegie Mellon University.

Please direct correspondence to Mirjana Spasojevic, Transarc Corporation, The Gulf Tower, 707 Grant Street, Pittsburgh,

PA 15219.
1In this respect a distributed �le system is like a telephone system: although a given individual only tends to call a tiny

fraction of all telephone numbers, the latent ability to e�ortlessly reach any other telephone in the world is viewed as a major

asset of the system.

1



relative to databases, and support programming and user interfaces that are close to those of a local �le

system. The success and widespread usage of these systems con�rms the appropriateness of these design

choices.

But this success engenders a new question: \Is the distributed �le system paradigm sustainable at very

large scale?" In other words, how well can a very large distributed �le system meet the goals of simplifying

system administration, supporting e�ective sharing of data, and preserving transparency? Growth brings

many problems with it [12]: the level of trust between users is lowered; failures tend to be more frequent;

administrative coordination is more di�cult; performance is degraded. Overall, mechanisms that work well

at small scale tend to function less e�ectively as a system grows. Given these concerns, how large can a

distributed �le system get before it proves too unwieldy to be e�ective?

In this paper, we seek to answer this question by studying the usage characteristics of AFS, the largest

currently deployed instance of a distributed �le system. At the time of writing, AFS unites about 1,000

servers and 20,000 clients in 7 countries into a single �le name space. We estimate that more than 100,000

users use this system worldwide. In geographic span as well as in number of users and machines, AFS is

the largest distributed �le system that has ever been built and put to serious use.

Our study con�rms that the distributed �le system paradigm is indeed being e�ectively supported at the

current scale of AFS. Further, our data does not expose any obvious impediments to further growth of the

system. While asymptotic limits to growth are inevitable, they do not appear to be just around the corner.

2. AFS Background

The rationale, detailed design, and evolution of AFS have been well documented in previous papers [2, 5,

9, 10, 11, 15]. In this section, we only provide enough details of the current version of AFS (AFS-3) to

make the rest of the paper understandable.

Using a set of trusted servers, AFS presents a location-transparent Unix �le name space to clients. Files

and directories are cached on the local disks of clients using a consistency mechanism based on callbacks [3].

Directories are cached in their entirety, while �les are cached in 64 KB chunks. All updates to a �le are

propagated to its server upon close. Directory modi�cations are propagated immediately.

Backup, disk quota enforcement, and most other administrative operations in AFS operate on volumes [13].

A volume is a set of �les and directories located on one server and forming a partial subtree of the shared

name space. A typical installation has one volume per user, one or more volumes per project, and a

number of volumes containing system software. The distribution of these volumes across servers is an

administrative decision. Volumes that are frequently read but rarely modi�ed (such as system binaries)

may have read-only replicas at multiple servers to enhance availability and to evenly distribute server load.

AFS uses an access list mechanism for protection. The granularity of protection is an entire directory

rather than individual �les. Users may be members of groups, and access lists may specify rights for users

and groups. Authentication relies on Kerberos [16].

AFS supports multiple administrative cells, each with its own servers, clients, system administrators and

users. Each cell is a completely autonomous environment. But a federation of cells can cooperate in

presenting users with a uniform, seamless �le name space. The ability to decompose a distributed system

into cells simpli�es delegation of administrative responsibility [15].

As originally designed, AFS was intended for a LAN. However, the RPC protocol currently used in AFS

has been designed to perform well both on LANs as well as on wide-area networks. In conjunction with

the cell mechanism, this has made possible shared access to a common, world-wide �le system distributed

over nodes in many countries.

In 1990 the Advanced Research Projects Agency (ARPA) awarded Transarc a contract to deploy and

2



evaluate a �le system to be shared by 40 to 50 Internet sites in the US. By mid-1991 there were 14

organizations included in the study. At the time of writing this paper, more than 80 organizations were

part of this wide-area distributed �le system (wadfs).

The wide-area nature of AFS is clearly visible from Figure 1, which shows the cells visible at the topmost

level of AFS. All these directories, as well as the trees beneath them, are accessible via normal Unix �le

operations to any workstation anywhere in the system.

3. Evaluation Methodology

A comprehensive characterization of this system would include an assessment of basic architectural features,

an analysis of quantitative data from the deployed system, and an examination of qualitative information

re
ecting on issues such as user perceptions of quality.

Since earlier papers have explored the architecture of AFS in detail, we omit it from this paper. Here

we report on AFS from two angles: �rst, by instrumenting clients and servers and collecting data over a

period of time; second, by circulating a questionnaire on various aspects of AFS to a sample of users and

summarizing their responses. We believe that this combination of quantitative and qualitative information

fairly characterizes the current state of the system.

One's con�dence in the answers of an evaluation can be classi�ed into four levels based on the origin

of the information: intrinsic (direct examination of the system design), empirical (raw measurements),

evidentiary (inferences based on raw data), and anecdotal (information requiring user judgment). In this

taxonomy, our quantitative information is empirical and evidentiary while our qualitative information is

anecdotal.

3.1. Quantitative Data

Empirical measurements of AFS were performed through the xstat data collection facility [17]. The AFS

code was instrumented to allow collection of extended statistics concerning the operation of servers and

clients. These statistics could be obtained remotely via an RPC call. A central data collection machine,

located at Transarc, polled and obtained data from each participating machine four times a day. The

collected data was formatted and inserted into a relational database for postprocessing. Figure 2 shows

the structure of our data collection mechanism.

The scale of the system complicated the logistics of data collection considerably. It would have been

practically infeasible to require the active cooperation of users or system administrators at many di�erent

cells to assist in the data collection. Hence our instrumentation required no regular administrative e�ort

by the sites being monitored. However, the system administrator of a cell could turn o� data gathering if

that cell did not wish to participate in the study.

Not requiring the active cooperation of remote cells complicated the process of discovering which clients

and servers should be contacted for data collection. Our solution to this problem was to run a discovery

process once every few weeks. This process queried the Domain Name Service at each cell to obtain a list

of registered IP addresses. This list was then probed to discover new AFS clients and servers in that cell.

The measurements were conducted during a 12-week data collection period from mid-May to mid-August

1993. Our data spans 50 �le servers and 300 clients from 12 cells in 7 states. The only factors limiting

broader coverage were the deadlines for this paper, and the need for participating sites to pick up the

versions of AFS software incorporating our instrumentation.

3



cs.arizona.edu theory.cornell.edu soup.mit.edu spc.uchicago.edu

cs.brown.edu kiewit.dartmouth.edu watch.mit.edu ucop.edu

bu.edu northstar.dartmouth.edu ncat.edu ni.umd.edu

cmu.edu iastate.edu eos.ncsu.edu wam.umd.edu

andrew.cmu.edu ucs.indiana.edu nd.edu umich.edu

club.cc.cmu.edu isi.edu nsf-centers.edu citi.umich.edu

ce.cmu.edu alefnull.mit.edu pitt.edu math.lsa.umich.edu

cs.cmu.edu athena.mit.edu psc.edu lsa.umich.edu

ece.cmu.edu rel-eng.athena.mit.edu rose-hulman.edu cs.unc.edu

sei.cmu.edu media-lab.mit.edu rpi.edu css.cs.utah.edu

cs.cornell.edu net.mit.edu dsg.stanford.edu cs.washington.edu

graphics.cornell.edu sipb.mit.edu ir.stanford.edu

(a) educational cells

ads.com ctp.se.ibm.com prc.unisys.com gr.osf.org

bstars.com mtxinu.com stars.reston.unisys.com ri.osf.org

cards.com locus.com grand.central.org syseng.osf.org

pub.nsa.hp.com stars.com ciesin.org

palo alto.hpl.hp.com transarc.com dce.osf.org

(b) commercial cells

inel.gov alw.nih.gov ssc.gov

nersc.gov ctd.ornl.gov cmf.nrl.navy.mil

(c) goverment cells

jrc.flinders.oz.au uni-freiburg.de etl.go.jp pegasus.cranfield.ac.uk

glade.yorku.ca rus.uni-stuttgart.de others.chalmers.se athena.ox.ac.uk

writer.yorku.ca sfc.keio.ac.jp nada.kth.se

lrz-muenchen.de titech.ac.jp bcc.ac.uk

(d) cells outside US

This �gure shows the cells visible from a typical client in the system. The listing above was obtained
by doing an \ls /afs" and then sorting the output according to the domain. As the �gure shows,

there are 47 educational cells, 18 commercial, 6 governmental, and 14 cells outside the United States.

Figure 1: Cells visible from a typical AFS client.

4



Figure 2: Instrumentation for Data Collection

3.2. Qualitative Data

To complement the quantitative data obtained by instrumentation, we constructed a questionnaire that

touched upon a diverse set of issues. The purpose of the questionnaire was to elicit user perceptions as

well as to obtain a pro�le of AFS usage. The topics of interest to us included characterization of the user

community, extent of usage of native and foreign cells, and degree of collaboration within and across cells.

We were also interested in obtaining user perceptions of performance and reliability of AFS for native and

foreign cell access. Finally, we were interested in the value and adequacy of various AFS mechanisms such

as access control lists, read-only replication, and data mobility.

The questionnaire was distributed in two ways: �rst, by posting on several Netnews bboards; second, by

direct mailing to AFS contacts in di�erent cells. We received about 100 responses from 50 cells. The data

we present in this paper is averaged over all these responses.

4. Observations and Analysis

In this section we present both quantitative and qualitative data collected during our 12-week study. We

begin by examining storage capacity and user pro�le. We then discuss the nature of client-server interaction,

including RPC tra�c and bulk data transfers. Next, we explore cache performance and availability, two key

parameters of any distributed system. Finally, we examine the extent to which AFS is used for collaboration

and information dissemination. In discussing these issues, we interleave the results of both empirical and

anecdotal evidence, pointing out corroborations and contradictions wherever appropriate.

4.1. AFS Usage

4.1.1. Data Pro�le

Table 1 shows a recent snapshot of the data stored at 17 cells2. These cells comprised 95 �le servers,

housing almost 50,000 volumes and constituting over 300 GB of data. The data shows that although over

2These 17 cells were a superset of the 12 from which all other statistics in this paper are reported. We were able to obtain

a larger sample in this case because the necessary instrumentation was present in an earlier release of AFS.

5



Volume type Total Size (GB) Avg (MB/vol)

User 25,630 73 2.9

Backup 14,557 105 7.2

Readonly 2,121 24 11.4

Other 7,595 111 14.6

ALL 49,903 313 6.3

Table 1: Storage Capacities of 17 Cells

50% of the volumes belong to individual users, they contain only 23% (73 GB) of the data. A third of the

data (over 100 GB) belongs to backup volumes. Only 4.2% of the volumes are readonly replicas, and they

contain only 7.7% of the data. The remaining 15% of the volumes correspond to system binaries and data,

bulletin boards, and other miscellaneous data. Together, these volumes contain one third of the total data.

Extrapolating from this evidence, and from additional information from the questionnaire, we estimate

that the whole wadfs contains more than 200,000 volumes with 1.5-2 TB of data. It is interesting to note

that although the average volume size is only 6.3MB, the raw data indicates that some volumes contain

more than 1.5GB of data. In other words, volumes span a wide range of sizes but tend to be skewed toward

the low end.

A related but distinct question pertains to how many of these volumes are in active use every day. To

answer this question, we recorded the number of volumes whose activity level exceeded a speci�ed threshold

each day for the the duration of our data collection. The activity level was arbitrarily chosen to be 10 read

references to a volume. Our data showed that, on average, a server has 65 active volumes, each containing

about 16MB of data.

4.1.2. User Pro�le

The AFS user community consists of a number of academic, government and commercial sites and AFS

users tend to have a very diverse background. However, responses to our questionnaire came mostly from

AFS contacts, who are usually system administrators (Figure 3)3. The majority of respondents use AFS

daily and for most of them the typical AFS session lasts a full working day. Most of them are serious

programmers and two-thirds of them rate their knowledge of AFS to be at an advanced or expert level.

Most of them had experience with other distributed �le systems, usually NFS. Our sample thus represents

a technically sophisticated group of respondents. This renders their assessments of AFS quality more

credible, but also leaves unanswered the question of how naive users view AFS.

4.2. Client-Server Interaction Pro�le

How do AFS clients and servers interact? The answer to this question is important because knowledge

of the relative distribution of �le system RPC calls helps characterize a normal system and identi�es the

most common calls. This, in turn, allows performance tuning to be focused. Figure 4 lists the client-server

RPC calls with short descriptions.

Both servers and clients have been instrumented to record the information regarding these calls. They keep

statistics about the total number of calls, the number of successful calls and the average time of execution

of successful calls (with the standard deviation). During our study, statistics were collected from 46 �le

servers and 264 clients on a typical day.

3The percentages for some questions do not add up to 100% because some respondents did not answer particular questions

or they marked more than one choice.

6



1. What is your occupation?

9% Student

16% Researcher/Scientist

32% Software Developer

8% Manager

11% Support Sta�

49% System Administrator

2% Other

2. How often do you typically use AFS?

0% Never

1% Rarely

11% Periodically

85% Daily

3. How long does your typical AFS session last?

6% Under 30 min

5% 30 min to 1 hr

12% 1 to 3 hr

74% Full working day

4. Which best describes the depth of your general com-
puting experience?

1% Novice

15% Casual programmer

81% Serious programmer

2% Non-technical user

5. How would you rate your knowledge of AFS?

2% Novice

28% Intermediate

50% Advanced intermediate

17% Expert

6. What other distributed �le systems have you worked
with?

89% NFS

17% Apollo Domain

7% RFS

9% Other(s)

7. What's the best description of how you use AFS
with the other �le service resources at your site?

0% Don't use AFS at all

5% Use existing �les in AFS, but none of my �les are there

13% Store some of my �les in AFS, most on other systems

14% Store many of my �les in AFS

66% Most of my �les are in AFS, including my home direc-

tory

Figure 3: A Pro�le of Survey Participants

Fetch Data Returns data of the speci�ed �le or directory and places a callback on it.

Fetch ACL Returns the content of the speci�ed �le's or directory's access control list.
Fetch Status Returns the status of the speci�ed �le or directory and places a callback on it.

Store Data Stores data of the speci�ed �le or directory and updates the callback.

Store ACL Stores the content of the speci�ed �le's or directory's access control list.

Store Status Stores the status of the speci�ed �le or directory and updates the callback.

Remove File Deletes the speci�ed �le.

Create File Creates a new �le and places a callback on it.
Rename Changes the name of a �le or directory.

Symlink Creates a symbolic link to a �le or directory.

Link Creates a hard link to a �le.
Make Dir Creates a new directory.

Remove Dir Deletes the speci�ed directory which must be empty.

Set Lock Locks the speci�ed �le or directory.
Extend Lock Extends a lock on the speci�ed �le or directory.

Release Lock Unlocks the speci�ed �le or directory.

GiveUp Call Speci�es a �le that a cache manages has 
ushed from its cache.
Get Vol Info Returns the name(s) of servers that store the speci�ed volume.

Get Vol Status Returns the status information about the speci�ed volume.

Set Vol Status Modi�es status information on the speci�ed volume
Get Time Synchronizes the workstation clock and checks if servers are alive.

Bulk Status Same as Fetch Status but for a list of �les or directories.

Figure 4: Client-Server RPC Calls

7



Type of call % # of calls (% err.) Avg ms (s.d.)

1. Fetch Data 7.6 33,427,405 (0.2) 116 (486)

2. Fetch Status 67.0 295,247,833 (18.0) 12 (378)

3. Store Data 4.0 17,336,400 (1.0) 157 (744)

4. Store Status 8.7 38,399,197 (0.3) 3 (119)

5. Remove File 1.9 8,172,106 (0.0) 40 (335)

6. Create File 2.0 8,945,032 (15.7) 22 (545)

7. Extend Lock 1.8 7,815,294 (73.1) 9 (291)

8. GiveUp Call 1.6 6,839,076 (0.0) 1 (39)

9. Get Time 3.2 14,210,834 (0.0) 4 (800)

ALL 100.0 440,778,197 (13.8) n/a

Type of call

50%

100%

-

1 2 3 4 5 6 7 8 9

Table 2: Average Distribution of RPC Calls Observed by Servers

4.2.1. RPC Calls Observed by Servers

Over 440 million calls were observed during the data collection period. About 86% of these were successful.

Table 2 summarizes the detailed statistics of calls accounting for at least 1% of the total.

The most frequent is Fetch Status call. We conjecture that many of these calls are generated by users

listing directories in parts of the �le name space that they do not have cached. The relatively high number

of unsuccessful calls (18%) suggests that these directories belong to some protected areas of the �le name

space. It is interesting to note that despite caching, the number of Fetch Data calls is considerably higher

than the number of Store Data calls. Both Fetch Data and Store Data calls take considerably longer

than other operations. This is to be expected, since they involve disk I/O.

GiveUP Call turned out to be the call that takes the least amount of time on average. It was even faster

than the Get Time call, which is the simplest call. Considering the very high standard deviation of the

Get Time call, this might be just an anomaly in the collected data, but it can also be the result of a slow

system call to get the time.

Although Fetch ACL is not shown in Table 2, our raw data showed that it takes considerably more time

on average than Fetch Status. This surprised us, since Fetch Status returns access list information.

This apparent anomaly was explained when inspection of the AFS code showed that the implementation

of Fetch ACL contains a call to a protection server, while the implementation of Fetch Status does not.

Analysis of RPC calls on a weekly basis con�rms that their distribution is stable over time. Table 3 presents

this data. This data shows only two signi�cant deviations from the general pro�le shown in Table 2. One

anomaly is the very high number of Store Status calls during weeks 10 and 11. We discovered that more

than 90% of these calls were concentrated on three �le servers at Transarc. Further investigation revealed

that these servers are frequently used for testing new AFS releases, thus explaining the unusual distribution

of calls.

The second anomaly is the unusually high number of Extend Lock calls during week 4. This is usually a

rarely-occurring call, typically accounting for less than 1% of the calls in other weeks. Detailed analysis

of week 4's data showed that the majority of these Extend Lock calls were concentrated on just one �le

server. Our hypothesis is that there was a orphaned process on one of the clients repeatedly trying to

make an Extend Lock call, but failing because of expired authentication tickets. This also explains the

high percentage of failed Extend Lock calls in Table 2.

Based on this data, one can loosely characterize a normally running system as one with a very high

8



week Fetch D Fetch S Store D Store S Remove F Create F Extend L GiveUp C Get T

1 8.4 73.2 3.2 2.0 1.2 1.4 3.1 1.8 4.0

2 8.1 71.5 3.4 4.9 1.5 1.6 1.0 1.8 3.9

3 8.2 71.6 3.6 3.7 1.3 1.7 2.2 1.5 4.4

4 7.5 62.3 3.5 4.7 1.4 1.7 12.0 1.3 3.5

5 7.1 76.9 3.3 2.4 1.2 1.6 0.5 1.4 3.7

6 7.3 70.9 4.0 6.3 2.2 2.4 0.3 1.4 2.6

7 7.4 71.0 4.0 5.8 1.7 2.2 0.5 1.8 3.6

8 8.7 66.7 4.2 7.3 2.0 2.5 0.4 1.6 2.8

9 7.1 72.9 3.3 6.4 1.5 1.6 0.4 1.6 3.1

10 7.3 53.6 4.8 21.1 2.8 2.4 0.3 1.3 3.2

11 7.2 52.9 5.4 22.1 2.8 2.6 0.4 1.3 2.5

12 7.0 74.5 3.2 6.1 1.2 1.6 0.6 1.9 2.5

all 7.6 67.0 4.0 8.7 1.8 2.0 1.8 1.5 3.2

This table is based on the same raw data as Table 2. It indicates weekly averages (in percentages),

rather than averaging across all weeks.

Table 3: Weekly RPC Call Distributions Observed by Servers

Type of call % # of calls (% err.) Avg ms (s.d.)

1. Fetch Data 7.6 9,141,014 (0.5) 158 (614)

2. Fetch Status 54.4 65,450,704 (14.5) 56 (540)

3. Store Data 17.3 20,816,713 (0.0) 65 (332)

4. Store Status 9.8 11,806,214 (0.3) 30 (209)

5. Remove File 1.0 1,260,655 (0.2) 61 (342)

6. Create File 1.5 1,866,759 (12.6) 55 (642)

7. GiveUp Call 2.2 2,680,433 (0.0) 65 (434)

8. Get Time 3.5 4,188,167 (8.0) 33 (661)

ALL 100.0 120,192,852 (8.5) n/a

50%

100%

-

1 2 3 4 5 6 7 8

Type of call

Table 4: Average Distribution of RPC Calls Generated by Clients

number (above 60%) of Fetch Status calls, and smaller, but still signi�cant, number of Fetch Data and

Store Status calls (about 8%). Other frequent calls in such a system include Store Data and Get Time.

4.2.2. RPC Calls Generated by Clients

The set of machines from which we were collecting data did not represent a \closed system", i.e. there was

no guarantee that participating servers and clients were contacting only each other. Thus, the number of

calls observed by �le servers does not match the number of calls generated by clients. Nevertheless, it is

interesting to compare these two pro�les. Table 4 summarizes the data collected from clients.

There were over 120 million calls, out of which 91.5% were successful. Again, Fetch Status calls dominate.

But the relative percentage of these calls was signi�cantly lower than that reported in Table 2 for servers.

At the same time, the relative percentage of Store Data calls was signi�cantly higher. Examination of

the raw data showed that most of Store Data calls came from a set of eight machines belonging to one

cell. We conjecture that the applications on these machines di�ered substantially from the norm in their

9



Servers Clients

Fetched Stored Fetched Stored

0 B - 128 B 32 % 44 % 33 % 6 %

128 B - 1 KB 4 % 7 % 5 % 15 %

1 KB - 8 KB 43 % 14 % 37 % 26 %

8 KB - 16 KB 4 % 6 % 4 % 8 %

16 KB - 32 KB 2 % 4 % 3 % 7 %

32 KB - 128 KB 14 % 25 % 17 % 7 %

over 128 KB 1 % 0 % 0 % 0 %

Daily per machine 156 MB 116 MB 5.3 MB 4.7 MB

Table 5: File Transfer Size Distribution

�le access patterns. When these machines are excluded from the data set, the frequency of Fetch Status

calls increases to 62% and the frequency of Store Data calls drops to 5%. The frequencies of other calls

are similar to those reported in Table 2.

Surprisingly, Table 4 shows the average Store Data call to be much faster than the average Fetch Data

call. It is even faster than the average Fetch Data call on servers (Table 2), indicating negative network

delay! This anomaly is also caused by the above-mentioned group of eight clients. When they are excluded

from the analysis, the average time of Store Data calls increases to a more credible 149ms.

4.2.3. Causes of RPC Failures

As noted in the previous section, nearly 8.5% of the calls generated by clients failed. We were curious

about the nature of these failures since they may have been symptomatic of underlying performance or

reliability problems. To study this, AFS clients were instrumented to keep track of failed RPC calls. Errors

were divided into several categories: server problems, network problems, protection problems (insu�cient

authorization or expired authorization tickets), volume problems, occurrences of a busy volume (e.g. when

a volume is moved to another server) and errors of unknown cause.

Our data showed that the majority of failed calls, 92%, were Fetch Status calls. Most of them, 76%, failed

because of protection errors. This is consistent with our earlier hypothesis of the existence of periodic jobs

on some machines that attempt to traverse the AFS tree and fail when they encounter a protected part of

the tree. Another plausible explanation is continuous execution of some background daemons (e.g. xbiff)

which always produce a failed call after the authorization ticket's expiration. A signi�cant number of

unsuccessful calls, 22%, failed for unknown reasons.

4.2.4. Bulk Transfer Pro�le

Statistics concerning �le transfers were recorded by both �le servers and clients. AFS performs partial �le

caching, so the numbers reported here show transfers on a per chunk basis, rather than on a per �le basis.

The exceptions are directories which are cached in their entirety. Chunk size is 64KB by default, but may

be changed on a per-client basis.

The collected statistics are summarized in Table 5. Our data indicates that the most frequently fetched

chunks are in the range 1-8KB. These correspond to entire �les or directories. This result is consistent

with many earlier studies of �le size distributions which have reported small average �le size [6, 8]. The

second most frequently fetched chunk size is even smaller, in the range 0-128B.

The distribution of fetched data on �le servers and clients is very similar. However, the distribution of

stored data di�ers considerably. We can conclude that even when mixes of RPC calls and fetched data

10



95

96

97

98

99

100

10 30 50 70

%

day

data

95

96

97

98

99

100

10 30 50 70

%

day

�le status information

(a) Combined cache hit ratio for native and foreign �le references

0

1

2

3

4

5

10 30 50 70

%

day

data

0

1

2

3

4

5

10 30 50 70

%

day

�le status information

(b) Fraction of references to �les in foreign cells

This �gure shows the observed cache hit ratios and relative proportion of native and foreign cell
references over the data collection period. As explained in Section 4.3.1., data from six machines was

excluded. Analysis of the raw data showed that the excluded machines exhibited comparable cache

performance to the overall set of machines. The gaps in histograms on several days correspond to
missing data due to problems with the data collection machine.

Figure 5: Cache Performance and Reference Mixes

11



8. How would you rate AFS performance when access-
ing �les in your own cell (organization)?

22% Excellent

49% Good

20% Fair

4% Poor

3% Unsatisfactory

9. Compared to other distributed �le systems you've
used, is AFS in your own cell:

11% Much faster

30% Faster

32% Comparable

15% Slower

2% Much slower

5% Haven't used other distributed �le systems

10. How would you rate AFS performance when ac-
cessing �les in a remote cell?

8% Excellent

42% Good

38% Fair

6% Poor

2% Unsatisfactory

4% No experience

11. Have any of the following aspects of AFS ever
seriously impeded your work?

65% Performance/reliability

21% Authentication/ACLs

6% Replication

19% Backup/restore

25% Semantics (Unix emulation)

32% Availability for other hardware/OS bases

10% Deployment (i.e., it doesn't run at the places with

which I interact)

5% Other(s)

Figure 6: Users' Perception of AFS Performance

distributions are similar, there might be a signi�cant variation in stored data distribution on servers and

clients. The results from Section 4.1.1 indicate that the amount of data housed by active volumes is about

1GB per �le server. Table 5 shows that only about 15% of this data (156MB) is actually fetched by clients.

4.3. AFS Performance

4.3.1. Cache Performance

Cache hit ratio is a critical factor in determining the overall performance of a system like AFS. Caching

is especially valuable in masking the long latencies typical of wide-area networks. To study this aspect of

AFS, clients were instrumented to keep statistics on cache hit rates and on the percentages of references

made to native and foreign cells. Since the AFS �le cache is split into a cache for data and a cache for

status information, our statistics were kept separately for these two categories.

The overall percentage of references to remote �les was 4.5% for data and 2.3% for status information.

However, these numbers showed high variation from day to day: between 0.5% and 26% for data, and 0.5

and 34% for status. Closer inspection of the raw data revealed a group of six machines contributing to the

majority of these references. We conjecture that these machines run periodic jobs that attempt to traverse

the entire AFS tree 4. Since these constitute pathological cases, we excluded these machines from our data

set, and obtained the substantially more uniform results shown in Figure 5.

Our data indicates that the average cache hit ratio is over 98% for data and over 96% for status information.

Over 95% of data and status references are to native cells. We statistically analyzed the possibility of

foreign cell references causing much lower cache hit ratios. Our analysis indicated that there was no such

correlation.

The responses to our questionnaire on AFS performance are presented in Figure 6. Most of the respondents

rate the performance of AFS when accessing local data as good or excellent. Only 7% of users are not

satis�ed. AFS performance when accessing �les in a remote cell is somewhat worse - 50% of respondents

rate it as good or excellent, while 38% feel it is fair. Compared to other distributed systems they have used,

32% of respondents feel that AFS provides comparable performance, while 41% say that it is faster or much

faster. Overall, the majority of users seem to be satis�ed with AFS performance. But nearly two-thirds of

4This hypothesis has been veri�ed for at least some of the machines.

12



Type of outage % of time Time (min/week)

Servers in the same cell 0.08 - 0.59% 1.2-8.5

Servers in the foreign cell 0.04 - 0.54% 0.5-7.7

This table shows observed average inconvenience times for clients over 12-week data collection

period. The lower side of the range represents the case when for each client all daily failures occur
simultaneously. The higher side of the range represents the case when daily failures do not overlap.

Table 6: Average Inconvenience Time for Clients

Servers in Servers in

Downtime durations the same cell foreign cells

0 min - 10 min 1584 861

10 min - 30 min 759 128

30 min - 1 hr 484 67

1 hr - 2 hr 275 48

2 hr - 4 hr 140 21

4 hr - 8 hr 63 6

> 8 hr 44 28

TOTAL 3349 1159

Table 7: Distribution of File Servers Outage Durations

them also rate performance and reliability as aspects of AFS that have sometimes been unsatisfactory.

4.3.2. Frequency of File Server Failures

Interruption of �le service in a wadfs is a potential obstacle to providing transparency. One way of

measuring �le server downtimes is to have �le servers record downtimes themselves and report them to the

data collection agents. However, in our view, a much more important picture is the one that client machines

have about the �le servers' availability. Thus, we instrumented clients to record outages. A particular �le

server's downtime was observed only by the clients that could not access particular data from that �le

server (because of the server's failure and/or network problems). Such an approach weights failures by

clients' interest in the �les a�ected; in other words, the inaccessibility of a heavily-used �le contributes

more to the metric than the inaccessibility of a lightly-used �le. Table 6 reports average inconvenience

time, which is the time during which a client cannot communicate with at least one �le server that it needs

to access.

Downtime incident statistics were collected from 235 clients on an average day. During the twelve week

data collection period, the number of observed server downtime incidents was 3349 for servers in the same

cell and 1159 for servers in foreign cells. (Table 7). It should be noted that a particular server's outage can

be reported multiple times if observed by multiple clients. Also, on an average day only about 15% of the

contacted clients accessed data in foreign cells and thus were able to observe server downtimes in foreign

cells. According to the numbers collected, on average, a client observes a server outage every 5-6 days

for the local cell and every 3-4 days for the foreign cell, under the assumption that all clients are equally

observant (active). The duration of almost half the outages is less than 10min. Since this is shorter than

the recovery time for a typical server, we conjecture that many of these short outages are really due to

transient network failures.

Users tend to notice �le server failures less frequently than what the empirical evidence indicates (Figure 7).

Failures of servers in local cells are experienced at most once a month by 77% of respondents. Only 3%

13



12. In your experience, how often are the AFS File
Servers in your own cell (organization) down or un-
available?

2% Never

36% Once every few months

39% Once a month

17% Once a week

3% Daily

13. In your experience, for how long are AFS File
Servers typically down when they crash or in the pres-
ence of network problems?

13% Less than 10 minutes

36% 10 minutes to 30 minutes

35% 30 minutes to 1 hour

12% More than 1 hour

3% N/A

14. In your experience, how often are the AFS File
Servers in other cells (organizations) you access down
or unavailable?

6% Never

20% Once every few months

29% Once a month

17% Once a week

7% Daily

20% N/A

Figure 7: Users' Perception of File Server Failures

Cells contacted % of clients

� 1 100

� 2 67

� 3 42

� 6 22

� 10 15

� 20 9

� 50 4

� 70 3

Table 8: Client Contacts with Cells

witness �le server failures on a daily basis. However, users perceive failures as lasting longer than the

empirical data indicates: less than 10min for 13%, 10 - 30 min for 36%, 30min - 1hr for 35%, and more

than 1 hr for 12% of respondents. Failures of servers in foreign cells are experienced at most once a month

by 54% of respondent. However, the actual percentage is higher, because this question did not apply to

20% of respondents (question 14).

4.4. Sharing in AFS

The existence of cross-cell �le access in AFS is borne out by the data presented in Figure 5(b). That �gure

showed that the percentage of references to the �les in foreign cells was up to 5% for data and up to 4.5%

for status information during the 12-week data collection period. Although 5% may not seem like much, it

is signi�cant because cells represent organizational boundaries and most users tend to access data within

their own organizations.

Table 8 represents a histogram of the number of di�erent cells contacted by each client during the 12-week

period. The table shows that two thirds of the clients referenced data in at least one foreign cell while 3%

of the clients referenced data in all available cells. Further, examination of the raw data shows that, on

average, 15% of the clients referenced foreign data each day.

We also repeated the study originally reported by Kistler and Satyanarayanan [4] on the extent of sequential

write sharing on directories and �les. Every time a user modi�ed an AFS directory or �le, the user's identity

was compared to that of the user who made the previous modi�cation. Our data, showing that 99.1% of

14



15. What is the nature of AFS interaction between
yourself and others in the same AFS cell? (Check any
that apply.)

3% No interaction

39% \Looking around" your cell's �le space to see what's

new

69% Reading �les

15% Accessing AFS-based bboards

45% Copying interesting �les into your own storage area(s)

33% Copying �les in one direction (e.g., drop-o�s)

39% Copying �les back and forth, modifying them at each

step

66% In-place use, modifying �les without copying them

6% Other

16. Have you ever explored/used the resources avail-
able through the grand.central.org cell?

34% Yes, I've used the materials there

26% Yes, I've looked through it to see what's there

21% No, I haven't had the need/desire

19% No, the /afs/grand.central.org directory has not been

set up at my site

17. Have you ever explored/used the resources avail-
able at other cells?

71% Yes, I've used the materials at other cells

20% Yes, I've looked through other cells to see what's there

8% No, I haven't had the need/desire

1% No, the /afs/<other cell> directories have not been

set up at my site

18. How many accounts/authentication identities do
you have in other cells (i.e., how many cells other than
your home cell can you klog to)?

20% 0

36% 1

19% 2

18% 3

7% More than 3

19. Rate the importance of the following communica-
tion/collaboration media and methods in your organi-
zation, using the following scale: 5: Very important, 4:
Important, 3: Somewhat important, 2: Not important,
1: Not used at all.

3.92 Direct phone calls

2.43 Conference calls

2.55 Internal (paper) memoranda

2.14 U.S. mail

2.69 Express/overnight delivery services

3.26 FAX

2.66 Physical media (
oppies, hard disks, mag tapes, etc.)

4.56 Email

3.49 BBoards/Email lists

3.55 FTP

3.06 Local (non-distributed) �le system

3.38 Non-AFS distributed �le system (e.g., NFS)

4.05 AFS

0.17 Other(s)

20. Are you currently working with people in another
AFS cell on joint projects of any kind?

7% Yes, frequently

8% Yes, moderately

23% Yes, but not very frequently

15% No, the people I collaborate with outside my own cell

do not (all) run AFS

43% No (for any other reason)

Figure 8: Users' Perception of Sharing in AFS

all directory modi�cations were by the previous writer, is consistent with Kistler and Satyanarayanan's

observations. Unfortunately, we are not able to report on write sharing on �les due to a bug in the statistics

collection tools.

These observations con�rm that the wide-area aspects of AFS are indeed valuable. Our anecdotal data,

presented in Figure 8, corroborates this conclusion. Most users rate AFS very highly as a communication

and collaboration tool. In their local cell, over 60% of the users tend to read or modify �les that do not

belong to them (question 15). Most users have used or looked at materials that reside in other cells. About

80% possess accounts/authentication identities in foreign cells. About 38% of the users participate in joint

projects with people from di�erent cells, although 23% do not do so frequently.

Further anecdotal information of the value of wide-area �le access is provided by highly visible instances of

information dissemination and collaboration in AFS. For example, AFS has facilitated the development of

OSF's DCE. It has also been used in the STARS project initiated in 1990 by ARPA, which established a

nationwide government-commercial collaboration. In both these cases, wide-area �le access has been used

by participant organizations to support sharing and dissemination. Project software and documentation

are located in AFS and collaboration via AFS has occurred on a regular basis. AFS has also been used as a

tool for information dissemination. The release of MIT's X11R5 software is a good example. In September

15



1991, the X11R5 release was installed into the cell grand.central.org and all AFS sites were able to

immediately browse and access the release without manual �le transfers.

5. Conclusion

Our goals in conducting this study were to observe a wadfs in actual use and to characterize its usage

pro�le. We were also interested in determining how well AFS worked at the current scale of the system,

and to see if any imminent limits to its further growth were apparent.

The qualitative and quantitative data that we have presented con�rms that AFS provides robust and

e�cient distributed �le access in its present world-wide con�guration. The caching mechanism is able to

satisfy most of the �le references from the clients' local cache. Even though �le server and network outages

can be disruptive for particular users, our observations show that prolonged server inaccessibility is rare.

Our data shows no obvious bottlenecks that might preclude further growth of the system.

AFS's divide and conquer technique of using semi-autonomous cells for spanning widely disparate organiza-

tions has proven to be invaluable. By providing considerable 
exibility in security and storage management

policies, the cell mechanism reduces the psychological barrier to entry of new organizations. As a conse-

quence, growth in AFS over time has not just been in the number of nodes in each cell, but also in the

total number of cells.

In summary, this paper provides conclusive evidence that AFS is a viable design point in the space of

wide-area distributed �le system designs. We are convinced that any alternative design must preserve the

aggressive caching policies and support for autonomous administration that are the hallmarks of AFS'

approach. The absence of either of these features will be fatal in any attempt to build a �le system that

uses a wide-area network and spans many organizations.

Acknowledgments

The xstat data collection facility was designed and implemented by Ed Zayas. Contributions to the evalu-

ation methodology for wide-area distributed �le systems were made by Ed Zayas, Alfred Spector and Bob

Sidebotham. Anne Jane Gray provided assistance in organizing this project. Comments by Mike Kazar,

Maria Ebling, Qi Lu, and Jay Kistler were helpful in improving the presentation.

References

[1] Baker, M.G., Hartman, J.H., Kupfer, M.D., Shirri�, K.W., Ousterhout, J.K., Measurements of a Dis-

tributed File System. Proceedings of the Thirteenth ACM Symposium on Operating System Principles,

Paci�c Grove, CA, October 1991.

[2] Howard, J.H., Kazar, M.L., Menees, S.G., Nichols, D.A., Satyanarayanan, M., Sidebotham, R.N.,

West, M.J., Scale and Performance in a Distributed File System. ACM Trans. on Computer Systems,

Vol. 6, No. 1, February 1988.

[3] Kazar, M.L., Synchronization and Caching Issues in the Andrew File System. Usenix Conference

Proceedings, Winter 1988.

[4] Kistler, J., Satyanarayanan, M., Disconnected Operation in the Coda File System. ACM Trans. on

Computer Systems, Vol. 10, No. 1, February 1992.

[5] Morris, J. H., Satyanarayanan, M., Conner, M.H., Howard, J.H., Rosenthal, D.S. and Smith, F.D.

Andrew: A Distributed Personal Computing Environment. Communications of the ACM, Vol. 29, No.

3, March 1986.

[6] Ousterhout, J., Da Costa, H., Harrison, D., Kunze, J., Kupfer, M., Thompson, J. A Trace-Driven

Analysis of the 4.2BSD File System. Proceedings of the 10th ACM Symposium on Operating System

Principles, December, 1985.

16



[7] Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., Lyon, B., Design and Implementation of the Sun

Network Filesystem. Summer Usenix Conference Proceedings, 1985.

[8] Satyanarayanan, M., A Study of File Sizes and Functional Lifetimes. Proceedings of the 8th ACM

Symposium on Operating System Principles, Asilomar, December 1981.

[9] Satyanarayanan, M., Howard, J.H., Nichols, D.N., Sidebotham, R.N., Spector, A.Z. and West, M.J.,

The ITC Distributed File System: Principles and Design. Proc. 10th ACM Symposium on Operating

System Principles, December 1985.

[10] Satyanarayanan, M., Integrating Security in a Large Distributed System. ACM Transactions on Com-

puter Systems, Vol. 7, No. 3, August 1989.

[11] Satyanarayanan, M., Scalable, Secure, and Highly Available Distributed File Access. IEEE Computer,

Vol. 23, N. 5, May 1990.

[12] Satyanarayanan, M., The In
uence of Scale on Distributed File System Design. IEEE Transactions on

Software Engineering, Vol. 18, No. 1, January 1992.

[13] Sidebotham, R.N., Volumes: The Andrew File System Data Structuring Primitive. European Unix

User Group Conference Proceedings, August 1986.

[14] Spector, A.Z., Thoughts on Large Distributed File Systems. Proc. of the German National Computer

Conference, October 1986.

[15] Spector, A.Z., Kazar, M.L., Wide Area File Service and the AFS Experimental System. Unix Review,

Vol. 7, No. 3, March 1989.

[16] Steiner, J.G., Neuman, C., Schiller, J.I., Kerberos: An Authentication Service for Open Network

Systems. Usenix Conference Proceedings, Winter 1988.

[17] Transarc Corporation, AFS 3.1 Programmer's Reference Manual. FS-00-D180, Pittsburgh, PA, Octo-

ber 1991.

Mirjana Spasojevic received the B.S. degree in mathematics from the University of Belgrade in 1986,

and the M.S. and Ph.D. degrees in computer science from The Pennsylvania State University, in 1989

and 1991, respectively. She is currently working as a System Designer at Transarc Corporation. Prior to

joining Transarc, she was an Assistant Professor at the School of Electrical Engineering and Computer

Science, Washington State University. Her research interests include distributed operating systems and

data management.

Mahadev Satyanarayanan is an Associate Professor of Computer Science at Carnegie Mellon University.

He is currently investigating the connectivity and resource constraints of mobile computing in the context

of the Coda File System. Prior to his work on Coda, he was a principal architect and implementor of

the Andrew File System. Satyanarayanan received the PhD in Computer Science from Carnegie Mellon

University in 1983, after a Bachelor's degree in Electrical Engineering and a Master's degree in Computer

Science from the Indian Institute of Technology, Madras. He is a member of the ACM, IEEE, Sigma Xi,

and Usenix, and has been a consultant to industry and government.

17


