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Abstract

This paper focuses on extending the power of caching and prefetching to reduce file read latencies by
exploiting application level hints about future I/O accesses. We argue that systems that disclose high-level
knowledge can transfer optimization information across module boundaries in a manner consistent with
sound software engineering principles. Such Transparent Informed Prefetching (TIP) systems provide a
technique for converting the high throughput of new technologies such as disk arrays and log-structured
file systems into low latency for applications. Our preliminary experiments show that even without a high-
throughput I/O subsystem TIP yields reduced execution time of up to 30% for applications obtaining data
from a remote file server and up to 13% for applications obtaining data from a single local disk. These
experiments indicate that greater performance benefits will be available when TIP is integrated with low
level resource management policies and highly parallel I/O subsystems such as disk arrays.
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1 Introduction

Today, file read latency is the most significant bottleneck for high performance input and output.
Other aspects of I/O performance benefit from recent advances in disk bandwidth and throughput resulting
from disk arrays [Kim86, Salem86, Livny87, Patterson88, Reddy89], and in write performance derived
from buffered write-behind and the Log-structured File System [Rosenblum91]. The development of dis-
tributed file systems operating over networks with diverse bandwidth [Spector89, Satya85, Nelson88] only
exacerbates the problem. In this paper, we argue that prefetching based on application level information is
a feasible and effective strategy for reducing file access read latency in both local and network file sys-
tems.

This paper presents Transparent Informed Prefetching (TIP) as a powerful and flexible mecha-
nism promising to reduce application execution time in two ways.

1. By exposing concurrency in the I/O workload, TIP can
a) service multiple I/O requests concurrently and convert the high throughput of

disk arrays and other new peripheral technologies into low read latency,
b) overlap I/O with computation or user think time, and
c) optimize I/O accesses over the larger number of outstanding requests.

2. With knowledge of future I/O requests, TIP can make informed cache management deci-
sions that lower cache miss rates.

TIP derives its power from hints given by application levels of the system that disclose future
access patterns rather than advise lower-level policies or actions. Such disclosures should be made early, as
soon as knowledge becomes available. Lower levels of the system use the hints to transparently prefetch
data and improve resource management, but are free to ignore or defer acting upon any hint.

In addition to a discussion of TIP, this paper reports the results of preliminary experiments
intended to demonstrate potential benefits and obstacles of TIP. These experiments show a 13% reduction
in the execution time of the make of an X windows application with ideal hints accessing a single disk, and
a 20% reduction in the same program’s execution time when accessing data remotely in the Coda distrib-
uted file system [Satya90]. A second example, the grep text search for a simple pattern in 58 files stored
remotely in Coda, achieves a 30% reduction in its execution time when the shell issues the command argu-
ments as a hint in parallel with initiating the search. These results were obtained on systems with only a
single disk. Greater benefits are expected on systems with the higher throughput of a disk array.

Our argument in favor of TIP begins with a review of the increasingly important I/O bottleneck
and existing mechanisms for combatting it. Then we introduce the TIP approach, describe its benefits and
discuss its dependence on hints that disclose instead of advise. After describing our experiments and
results, we give an overview of our research plans and opportunities for further study of transparent
informed prefetching and finish with a discussion of related work.

2 Technology Trends

2.1 The I/O Bottleneck

In recent years, systems researchers have begun to highlight the need for improved I/O perfor-
mance. The speed of computations using only primary memory is increasing five to ten times faster than
the speed with which blocks on magnetic disk can be accessed [Patterson88, Ousterhout89]. In addition,
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some new technologies further increase the gap between processor and I/O performance. Distributed and
wide area [Cate92] file systems slow I/O with substantial network transmission and server delays. Portable
computers, which frequently spin down their disks and are only weakly connected to networks, suffer addi-
tional latencies [Kistler92]. Applications that depend on the massive storage of optical disk jukeboxes or
robotic tape libraries must wait while the desired media is fetched and mounted. Amdahl’s Law
[Amdahl67] tells us that unless I/O subsystem performance keeps pace with improvements in the rest of
the system, I/O will increasingly constrain the performance of the system as a whole.

2.2 Range of Solutions

On the bright side, a number of innovations have relieved certain aspects of the I/O bottleneck.
Table 1 summarizes the most commonly used techniques to address the throughput and latency compo-
nents of both read and write I/O performance.

Redundant Arrays of Inexpensive Disks (RAID) take advantage of steadily decreasing disk diame-
ter and cost per byte to address I/O throughput [Gibson91]. They provide parallel transfer to speed servic-
ing of large requests. They can also service many small requests simultaneously to provide high service
rates for workloads consisting of many concurrent, randomly distributed, small accesses. RAIDs do not
perform quite as well for small writes as they do for reads, but the Log-Structured File System (LFS)
[Rosenblum91] can help by combining small writes into large ones that RAIDs handle effectively. Thus
enhanced, RAIDs increase I/O subsystem throughput dramatically for both large accesses and concurrent
small accesses. And, they do so in a manner that can scale with increasing processor performance.

Unfortunately, RAIDs cannot reduce seek and rotational latencies. Thus, a disk array cannot ser-
vice a series of modest sized requests to a moderately utilized I/O subsystem much, if any, faster than a
single disk. Such requests do not greatly benefit from a disk array’s high data transfer rate nor do they have
the concurrency needed to take advantage of concurrent servicing of requests on an array. Yet, these are
the characteristics of many important workloads. Even for those workloads that do benefit from the
increased throughput and data bandwidth of a disk array, the mechanical latencies of a disk put a lower
bound on the service time of any request. Thus, disk arrays, by themselves, do not address the latency
aspect of the I/O problem.

In the broader context of I/O that includes network transmission and tertiary storage, the situation

Latency Throughput

Read

Write

demand caching
prefetching

buffered writes

disk arrays

disk arrays
buffered writes
LFS

Table 1. Range of Solutions. This table shows the mechanisms most effective in combating the growing I/O
bottleneck. Write-behind buffering and log-structured file systems (LFS) eliminate write latency for many
applications and help throughput. The parallelism of disk arrays increases both read and write throughput.
Unfortunately, the long read latencies of slow peripherals are only partially masked by caching and prefetching.
This paper focuses on extending the power of caching and prefetching by exploiting hints from high-levels of the
system to more effectively reduce read latency.

LFS
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is similar. New technologies can generally increase throughput, but often fail to reduce latency especially
for small requests whose service time is dominated by factors other than simple data transmission.

Fortunately, there are techniques that address at least the write side of the latency problem. Write
performance is in some sense an easier problem than read performance because in most cases, an applica-
tion does not have to wait for a write to finish. Buffering writes while allowing the application to continue
successfully masks write latency. Thus, write buffering effectively converts the write latency problem into
the write throughput problem of emptying write buffers.

The counterpart on the read side to write buffering is file caching. But, file caches only mask read
latency when the desired data is immediately available from the cache. Thus, their effectiveness in reduc-
ing read latency depends on having low miss ratios. For caches to compensate for the growing gap between
processor and I/O performance, their miss ratios will have to drop proportionately. Is such improvement
likely?

Table 2 compares the performance predicted for a variety of operating system file cache sizes in
1985 [Ousterhout85] with that observed in 1991 [Baker91] by a group at Berkeley. The first observation,
based on the 1985 data, is that increasing the size of an already large cache does not reduce the miss ratio
much. Some data sets just don’t cache well, either because they are too large or because they are accessed
too infrequently. In fact, the situation is even worse as the 1991 data shows. Since data sets are growing, it
is necessary to increase the size of the cache just to maintain miss ratios. Thus, it will not be possible to
compensate for the growing performance gap simply by increasing the cache size.

An alternate approach to reducing cache miss ratios is to anticipate cache misses and initiate I/O
accesses before the data are needed. This technique, known as prefetching, typically masks read latency
with computation. Prefetching can take several forms including asynchronous I/O and readahead.

Asynchronous I/O requires the user to explicitly request data before it is needed. Thus, using asyn-
chronous I/O can require substantial programmer effort both for the initial implementation and for subse-
quent tuning to each new system configuration. From a systems perspective, a drawback of asynchronous
I/O is that it does not facilitate global optimization of resources. There is no provision for balancing com-
peting demands for buffers and I/O bandwidth from concurrently running applications.

More commonly, file systems provide prefetching based on the assumption of sequential file
access. Organizing and fetching data in large file blocks [McKusick84] effectively prefetches unrequested

Cache Size

Miss Ratio

1985 BSD Study

390KB 1MB 2MB 4MB 8MB 16MB

1991 Study

7MB (avg)

49.2% 36.6% 31.2% 28.0% 26.2% 25.0% 41.4%

Table 2. Comparison of caching performance in 1985 and 1991. The numbers in this table are drawn from
[Ousterhout85] and [Baker91]. The 1985 tracing study of the UNIX 4.2 BSD file system predicted cache performance
for a range of cache sizes assuming a 30 second flush back policy for writes. The 1991 study measured cache
performance on a number of workstations running Sprite. The cache size varied dynamically, but averaged 7MBytes.
The diminishing returns from increasing cache size are evident in the 1985 results. Also striking is the difference
between the predicted and measured performance of a large cache. The large cache was not nearly as effective as
expected. The authors of the study conclude that growing file sizes were to blame for the disappointing cache
performance. This result is strong evidence that we cannot rely on increased cache sizes to give us arbitrarily low
cache miss ratios.
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data in the latter portions of the block. More explicitly, the file system can “readahead” sequential blocks
of a file [Smith85, Feiertag71]. Recently, other researchers have explored prefetching for more complex
access patterns by inferring future requests from a user’s I/O request stream [Kotz91, Tait91, Palmer91,
Korner90]. For well behaved applications, these techniques can effectively prefetch data and reduce cache
misses. However, for the many applications whose access patterns appear random or that touch data only
once, such techniques are ineffective.

The greater issue, though, is how well these techniques scale with improving processor perfor-
mance. As I/O latencies grow in terms of processor cycles, prefetches must begin ever farther in advance if
they are to complete in time. Unfortunately, current prefetching techniques are unable to confidently infer
accesses far into the future.

Caching and prefetching are important and valuable techniques for reducing read latency. But,
they are insufficient today, and they will not scale with processor performance. Thus, read latency remains
an important problem, and it is the focus of this work.

3 Transparent Informed Prefetching (TIP)

To be most successful, prefetching should be based on knowledge of future I/O accesses, not infer-
ences. We claim that such knowledge is often available at high levels of the system. For example, the file
access patterns of many programs are determined by simple, single-flow control structures well understood
by their programmers. These programmers could give hints about their programs’ accesses to the file sys-
tem. Thus informed, the file system could transparently prefetch needed data and optimize resource utiliza-
tion. We call this Transparent Informed Prefetching (TIP).

3.1 Application Examples

Here are a few examples of applications that could give hints to a TIP system.
An example from the Unix domain is the shell expansion of ‘*’ to a list of files. For example, the

command ‘grep foobar *’ says to search (grep) for all occurrences of the string ‘foobar’ in the files in the
current directory. Either grep or the shell could give a hint about all of the files that grep will access.

The make program orchestrates the compilation of program modules and their linking with stan-
dard libraries. Make determines its actions according to a ‘makefile’ of instructions. After parsing a ‘make-
file’ and checking the status of all modules to be built, make constructs a sequence of commands that it
passes to a shell for execution. Make could give hints about the whole process to a TIP system.

Hints for more complex, non-sequential access patterns are also possible. An example from the
supercomputer domain is stride access to large matrices [Miller91]. Data base applications often can pre-
dict their accesses to satisfy a query [Chou85, Stonebraker81, Selinger79].

Interactive applications, too, could provide hints. For example, when a bank customer inserts their
card in an automatic teller machine, a hint about the customer’s identity could be given, and the customer’s
account records retrieved while the customer enters their Personal Identification Number.

An important part of our research will be to expose hints in important, I/O-dependent applications.
Initially, programmers will explicitly give hints. Eventually, we expect that compilers will be able to gen-
erate hints automatically for a wide range of applications.

3.2 The Benefits of TIP

User hints provide a TIP system with two new levers to apply to the I/O bottleneck: exposure of
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I/O concurrency and knowledge of future resource demands. TIP can exploit the I/O concurrency to con-
vert the high throughput of new I/O technologies to the lower access latencies these new technologies can-
not provide. TIP systems can exploit knowledge of future resource demands to better manage resources
such as file cache buffers.

In the simplest exploitation of I/O concurrency, a system can start slow I/O accesses early and
overlap their latency with ongoing computation to achieve a concurrency of two. Where data is accessed
over a network, it is possible to overlap disk accesses, network transmission and computation to achieve a
concurrency of three. Such concurrencies are both the goal and the limit of current prefetching techniques.
As processors get faster, the computation time available to overlap with I/O shrinks, making it harder to
achieve even these modest concurrencies. TIP can ease the problem by providing more reliable informa-
tion about what to prefetch farther in advance, giving the system more time to prefetch. Interactive applica-
tions may even be able to give hints based on user actions that allow TIP to overlap I/O with a large
amount (by computer standards) of user think time.

The greatest benefit of TIP comes when there is not much time to prefetch. Where applications
dribble requests one at a time into the I/O subsystem, hints can inform the system of access patterns for
whole files or even multiple files. Thus, hints can expose the concurrency of many I/O requests. On sys-
tems with disk arrays, TIP can service these requests with a concurrency bounded only by the number of
disks in the array, potentially tens or hundreds instead of two or three. All of the files for the grep example
could be retrieved concurrently. The application may not be spared the latency of the first access, but the
latency of all subsequent requests will be masked behind that first access. The challenge becomes one of
delivering data to the file cache as fast as the application consumes it. Thus, TIP uses the I/O concurrency
that hints expose to convert the read latency problem into a read throughput problem in a manner analo-
gous to the way write buffers work. TIP systems can use RAID throughput to provide low read latency.
Conversely, for workloads characterized by small, serial I/O accesses that are otherwise unable to take
advantage of disk arrays, TIP can use the lever of I/O concurrency to fully exploit the high throughput of
RAIDs.

As a side effect of concurrent prefetching, TIP fills normally short I/O queues with prefetch
requests. This creates new opportunities for storage subsystem optimizations. Deep queues of prefetch
requests will not encumber demand requests with queuing delays if demand requests have higher priority.
For disks, deeper queues allow better arm and rotation scheduling [Seltzer90]. For network I/O, multiple
prefetch requests can be batched together, reducing network and protocol processing overhead. In both
cases, deeper queues increase throughput that TIP uses to reduce read latency and application execution
time.

Finally, TIP uses its knowledge of future I/O requests to improve cache management and reduce
cache miss ratios. It is often possible to outperform an LRU page replacement algorithm, even without
prefetching [Chou85, Korner90]. Unneeded blocks can be released early and needed blocks can be held
longer. For example, knowing that a large file will be read sequentially twice, a TIP cache manager could
hold onto the first few blocks of the file for use at the start of the second access while immediately flushing
others and reusing the buffers for further prefetching. This strategy would minimize the amount of other
data that is flushed from the cache.

3.3 Hints for TIP

As the previous section shows, TIP is much more than simple prefetching; it is a strategy for opti-
mizing I/O. Powerful optimizations such as these require TIP to be applied where detailed knowledge of
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the system’s static and dynamic state is available. The special advantage of TIP, however, comes from the
additional power provided by high-level knowledge of future I/O activity. Therefore, application hints to
TIP should disclose knowledge of high-level behavior rather than give advice about low-level resource
policy decisions.

Table 3 presents examples of hints that disclose knowledge of application behavior in contrast to
hints that advise lower levels how to make policy decisions. Hints that advise do not give much usable
knowledge to the file system. For example, if the file system is asked to cache a file, what should the sys-
tem do if it cannot cache the whole file? Should it cache a part of the file? Which part? If, instead, the
application discloses how it will access the file, the file system can determine how best to accommodate
that access pattern given its current resource constraints. Without such disclosure, the file system may be
needlessly forced to guess what to do.

Even if advice were always useful, a modular, portable application (that is, by many standards,
well written) is not in a good position to give advice to a file system. It is unlikely to know anything of
other demands being made on the file system, of its data’s layout on disk, of its data’s location on the net-
work, or of the network’s physical characteristics and current level of congestion. Such an application does
not have the system state knowledge necessary to make good optimization decisions, so advice about such
decisions is of limited value.

A simple rule of thumb distinguishes between good and bad hints. Good hints are specified using
the same abstractions and semantics that an application later uses to demand access to its files, whereas bad
hints are stated in terms meaningful only to the system’s implementation. Thus, hints to the Unix file sys-
tem should be in terms of file names and byte ranges not inodes, file blocks, network packets, or cache
buffers. They should refer to reads and writes, not prefetching or caching. It is not a coincidence that good
hints are compatible with modular software design. They are a means for transferring optimization infor-
mation across module boundaries without violating those boundaries.

Giving hints is optional, but doing so encourages better system performance. Acting on hints is
also optional; the system may ignore hints it cannot use or trust. Hints may be vague or imprecise, e.g. ‘file
foo will be touched.’ But, inaccurate hints that incorrectly predict accesses should be avoided. Applications
should give hints, even if imprecise, as soon as knowledge becomes available. Such imprecise hints may
be supplemented later with more precise information, e.g. ‘file foo will be read with stride n.’ One TIP sys-
tem may choose to ignore imprecise hints, but another, running on a more powerful machine, may be able
to exploit them.

Table 3. Disclosure vs. Advice. This figure contrasts hints that disclose knowledge of future I/O activity with hints
that give advice about low-level resource management policies. Hints that disclose use the same abstractions and
semantics that the application later uses for I/O requests, whereas hints that advise use terms meaningful only to the
system’s implementation. It is important to use hints that disclose for portability, the flexibility needed to support
global resource optimizations, and for adherence to sound software engineering principles of modularity.

I will read file F sequentially with stride S

I will read these 50 files serially & sequen-
tially

Hints that disclose Hints that advise

cache file F

reserve B buffers & do not read-ahead
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4 Demonstration of Principle

As we have argued, Transparent Informed Prefetching has the potential to reduce read latency, the
most difficult I/O bottleneck. Our research into a TIP approach began with simple, controlled experiments
demonstrating the potential benefits and obstacles of informed prefetching. Our goals with these experi-
ments were to validate TIP as a tool for reducing read latency, to determine if more than a simple, user-
level mechanism is needed, to uncover implementation problems, and to develop experience incorporating
hints into applications.

Our experiments evaluated TIP for accesses both to a local disk and over a network to the Coda
distributed file system [Satya90]. In both cases, there was only a single request server, either a local disk or
a remote file server. This fact limited the potential benefits we could expect to achieve because there was
little or no opportunity for concurrency in the I/O subsystem. In addition, since the prefetching was carried
out at the user level, there was no opportunity for cache management gains and little opportunity for I/O
subsystem optimizations. Our results are thus conservative with respect to what could be realized by a full-
fledged TIP system. In the experiments we describe below, virtually all benefits came from overlapping
computation and I/O. The maximum benefit from such prefetching is a 50% reduction in execution time,
and this is only possible when, without prefetching, an application spends exactly 50% of its time comput-
ing without overlapping any I/O, and with prefetching, it completely overlaps I/O and computation. Thus,
while we expect to see significant reductions in execution time, the rarity of ideally balanced applications
limits these reductions to well under 50%.

4.1 Test Description

We used two hardware platforms for our tests. The local disk tests were conducted on a Sun Sparc-
station 2 running Mach/BSD Unix 4.3. The remote tests were run on two Decstation 5000/200 also running
Mach, one of them the client, and the other the server for the Coda File System. Coda is a descendent of the
Andrew File System [Satya85], but with enhancements for availability and mobility. In this system, whole
files are transferred to requesting client machines which then cache them on local disks. Reads and writes
are applied through the client’s buffer cache to its local disks’ copy. Writes are transferred back to the
server when the file is closed.

Our experiments concentrate on two applications, a make program doing a program build, and the
Unix shell expanding ‘*’ to a list of files. Figure 1 shows the control flow in these experiments. In both
experiments, a separate user-level process prefetched files while the program under test ran unmodified in
its own process.

Figure 1a, on the left, illustrates the shell experiments. A wrapper program, called hcsh for hint-
csh, handles the prefetching. The experimenter invokes hsch sending it a command to execute. The shell
does any file name expansion before hsch executes. Hcsh spawns a prefetching process, passing it the
arguments to the command. This process assumes that all arguments without a leading ‘-’ are names of
files that the command will read and starts to prefetch them serially and sequentially into the buffer cache.
Meanwhile, the parent hcsh process invokes the command whose reads hopefully hit the prefetched data in
the buffer cache. The command and the prefetch process then run concurrently.

 Figure 1b shows the flow of events for make experiments. The make program was modified
slightly so that the first thing it does is fork off a prefetching process. The parent process then simply con-
tinues on, executing the standard make code. The files to prefetch were determined in advance using a file
system tracing facility [Mummert92] and hard-wired into the prefetcher. Thus, the prefetching was based
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on accurate knowledge of the accesses to be performed.
The prefetch mechanism differs in the local and remote cases. In the local case, the prefetch pro-

cess sequentially reads files in 64K chunks using standard system calls. This had the effect of loading them
into the buffer cache where they were available to the application. For files on the Coda server, the prefetch
process took advantage of an asynchronous prefetch ioctl built into Coda to fetch the files over the network
to the client workstation. Since the transfer went through the client’s buffer cache on its way to the local
disk, the file data was available to the application in the buffer cache.

4.2 Test Results

Table 4 compares the elapsed times to run applications with and without prefetching on both the
local disk and the Coda File System. The first application, make xcalc, compiles and builds the X window
calculator tool. The second, grep foobar *, searches 58 files containing a total of 1 MB all stored in (the
cache of) a remote Coda file server.

In this table, numbers in parentheses are the standard deviations for the measurements. Since the
local disk and Coda tests were performed on different hardware platforms, the numbers are not directly
comparable. In the ‘hot cache’ runs, all data read throughout the job was preloaded into the local buffer
cache, so the job never blocked for the disk. These numbers represent a lower bound on the elapsed time.

expands ∗

‘make xcalc’

exec make

fork

prefetch
file

more
files?exit

standard
make code

yes

no

‘hcsh grep foo ∗ ’

exit

csh

fork

exec grep
read

arguments

prefetch
file

more
files?

yes

no

exit

exit

(a) Prefetching for shell expansion (b) Prefetching for make

Figure 1. Flow chart for the two test programs. Diagram (a) shows the configuration for exploiting the ‘*’
expansion of file names for shell commands. The command runs down the left side of the fork while the prefetch
process runs down the right. The prefetch process determines what to prefetch from the command line arguments.
Diagram (b) shows the configuration for the make example. It is similar to the previous example except that the files
to prefetch are determined in advance and wired into the prefetcher.
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At the start of the ‘cold cache’ runs, there was no data in the buffer cache or client disk cache, though, in
the distributed case, the server’s buffer cache was not flushed between runs. Also, executables were not
flushed from virtual memory. The ‘cold cache w/prefetching’ runs were started just like the ‘cold cache’
runs, but they used prefetching to speed access to the files. The ‘% reduction’ represents the benefits of
prefetching.

4.3 Lessons from Tests

Although our experiments were preliminary, they nevertheless served their purpose of demonstrat-
ing the benefits of informed prefetching and educating us about implementation pitfalls. Among the per-
formance pits we fell into were high overhead, terrible disk scheduling, and runaway prefetching that
overran the cache and starved the user. To avoid these pitfalls, TIP must be able to track consumption to
throttle prefetching and reuse buffers, and to prefetch efficiently without delaying the user. In this section,
we expand on these requirements and what happens when TIP doesn’t meet them.

Our experiments’ prefetching technique, especially from the local disk, was inefficient. It paid a
high price in CPU overhead, and sometimes in disastrously poor disk scheduling. We incurred unnecessary
overhead in a number of ways. For both the local and remote tests, we had to support the overhead of an
independent prefetch process and its concomitant context switching, scheduling, and system calling costs.
The obvious solution to this problem is to put the prefetching mechanism into the file system.

 In local disk tests the prefetch process could not move data directly into the cache. Instead, it did
so indirectly by making standard read system calls and paying the cost of copying the data from the cache
up to the prefetch process. A more serious drawback was that, because the read calls were blocking, there
could only be one outstanding prefetch request at a time. Thus, we did not have the deep queues needed for
efficient disk scheduling. In some cases, the queue depth was zero between read calls, leaving the disk idle.

For some applications, such as compress, which are constantly writing out data, writes would be
interleaved with prefetch requests in the disk queue. Because the BSD Unix file system located the output
files far from the input files, these interleaved prefetches and writes resulted in a series of very long seeks.

Distributed File System (Coda)

cold
cache

cold cache
w/prefetch

%
reduction

hot
cache

Local Disk

cold
cache

cold cache
w/prefetch

%
reduction

hot
cache

Application

make xcalc

grep foobar *

9.17
(0.03)

14.19
(0.13)

12.40
(0.07)

12.6

1.22
(<0.01)

3.29
(0.13)

3.30
(0.04)

0

18.29
(2.00)

40.41
(3.63)

32.20
(2.74)

20.3

1.85
(0.01)

7.86
(0.77)

5.55
(0.68)

29.4

Table 4. Results of Tests. This table summarizes the results of the experiments. Times for all runs are the average
total elapsed execution time in seconds. Numbers in parentheses are the standard deviation of the measurements. For
the ‘hot cache’ runs, all data read during the run is preloaded into the buffer cache. These numbers represent an
absolute lower bound on execution time. For the ‘cold cache’ runs, all data was flushed from the buffer cache and, for
the Coda runs, from the local disk cache. Executables were not flushed from virtual memory, and data was not flushed
from the Coda server’s buffer cache. The ‘cold cache w/prefetch’ runs had the same initial conditions as the ‘cold
cache’ runs, but used prefetching to speed data retrieval. The ‘% reduction’ is the reduction in execution time due to
prefetching in the ‘cold cache w/prefetch’ runs compared to the ‘cold cache’ runs. No gain was observed for the grep
example running on the local disk because, with little computation time, the disk was running flat out with or without
prefetching.
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It is hard to imagine worse disk scheduling. From this experience, it is clear that latency tolerant accesses
such as prefetches and write-behinds should be either deeply queued so that scheduling can be employed or
queued in batches to encourage locality.

Tests employing the Coda distributed file system had the benefit of an asynchronous ioctl which
allowed the prefetch process to flood the I/O subsystem with prefetch requests. This led to its own unique
problem, thread starvation. Because Coda used a fixed number of worker threads to handle user requests,
the prefetch process monopolized these threads and starved the user’s demand reads. Clearly, prefetches
must operate at lower priority than demand fetches. We fixed the problem in Coda by limiting the number
of threads that could be devoted to prefetching before making the measurements in Table 4.

We anticipate a similar problem at the local disk once we fill disk queues with prefetch requests. A
large, efficient, prefetch request could stall a demand request behind it. New functionality in disk control-
lers that could suspend a low priority request to service a demand request immediately could help resolve
this problem. A less attractive alternative is to keep prefetch requests small so that they never take long to
complete.

The voracious Coda prefetcher created another problem. Sometimes it got so far ahead of the user
process that it flushed unused prefetched data out of the cache. This can have dramatic consequences. One
job initially experienced a 17% slowdown with prefetching because it had to go to disk to retrieve data that
the prefetcher had flushed out of the cache. The local disk prefetcher occasionally had the same problem.
For these preliminary tests, we avoided this problem by using a buffer cache big enough to hold all of the
data. The long-term solution is to track user reads of prefetched data and throttle prefetching accordingly.

Actually, this cache overrun problem had an additional, ironic twist. The cache held on to already
used and no longer needed data even as it was ejecting prefetched data that had yet to be used. The used
data had been more recently accessed and so was higher in the LRU list. This phenomena highlights the
importance of combining prefetching with buffer management.

5 Work in Progress and Future Work

The experimental results support our contention that TIP offers a powerful mechanism for over-
coming the looming I/O crisis. They also demonstrate the need to integrate TIP with low-level resource
management. To this end we are implementing TIP in our Mach/Unix research environment and instru-
menting important applications, including the ones already tested, to provide hints. Since we feel that the
greatest gains of TIP occur with high levels of concurrency in the I/O subsystem, we are also building a
disk array on which our implementation of TIP can flex its muscles. In the rest of this section, we describe
a few possibilities for future work on even more powerful TIP mechanisms.

Although we feel that often programers can easily give good hints, automatic hint generation
would be even easier and would provide a much broader base of applications providing hints. Given a hint
interface, why not extend optimizing compiler techniques to use it? While file names and access patterns
could be concealed in complex data structures, we believe that many programs access files simply; file
names come as arguments, access calls are made from outer loops, and offsets are computed simply from
previous offsets or loop indices. With such straightforward programming styles, we expect that precise
hints can be extracted automatically.

In some cases, even programmers may not fully understand the file accesses their programs make.
An access pattern profiler could be built on top of an efficient file system tracing facility [Mummert92].
The profiler could help programmers improve the quality of their hints, or it could be used directly to gen-



11

erate hints for future runs.
A variation on giving hints for other programs is giving hints for library routines such as a fast-

fourier transform (FFT) procedure in a math library. Since the programmer may not be familiar with the
implementation of FFT, they may be unable to give good hints. The math library could export the routine
fft.hint to facilitate hints. A user program could call fft.hint and let it give the appropriate hint to the file
system. Effectively, the application gives a hint to the library which repackages it and sends it to the file
system. This is an example of how hints can be used to pass information through multiple layers of soft-
ware.

6 Related Work

The idea of giving hints is not new. For example, Trivedi suggested using programmer or compiler
generated hints for prepaging [Trivedi79]. Hints are now widely enough understood that they appear in
various existing implementations. For example, Sun Microsystems’ operating system provides two
“advise” system calls that instruct the virtual memory system’s policy decisions [SunOS-vadvise].

Database systems researchers have long recognized the opportunity to accurately prefetch based
on application level knowledge [Stonebraker81]. They have also extensively examined the opportunity to
apply this knowledge through advice to buffer management algorithms [Sacco82, Chou85, Cornell89,
Ng91] and for I/O optimizations [Selinger79]. We hope to extend these techniques to prefetching. Also,
our work emphasizes a more solid partitioning of function between application and operating system.

Many researchers have looked into prefetching based on access patterns inferred from the stream
of user I/O requests [Kotz91, Tait91, Palmer91, Korner90]. Our view of the problem is perhaps most simi-
lar to Korner’s who recognized the value of high-level hints as a means of bridging levels of abstraction
from files to disk blocks. Her characterizations of access patterns, like ours, are at a high level of abstrac-
tion. But, we carry this approach further and ask for hints from applications themselves to bridge the gap
between applications and the operating system.

Recently, researchers have proposed an object-oriented file system layered on top of the Unix file
system called ELFS [Grimshaw91]. ELFS has knowledge of file structure and high-level file operations
that allow it to help prefetch and caching operations. However, ELFS emphasizes user control over file
activity. It would be possible instead for users to give hints to ELFS which would translate them into hints
for the low-level file system. Thus, hints could be used to bridge layers of the system at the application
level. In such a context, ELFS and TIP would complement each other well.

Our work differs from all previous prefetching work in one important respect. We do not view the
overlapping of I/O with computation as the major benefit of prefetching. The success of such overlapping
is extremely sensitive to the ratio of time spent on I/O relative to computation and that ratio changes con-
stantly as processor performance increases. Instead, we believe that the greatest benefit of prefetching will
come from the exposure of I/O concurrency that can take advantage of new high-throughput technologies.
Thus, we believe that the high I/O concurrency provided by early, accurate user-supplied hints is critical to
the ultimate success of prefetching.

7 Conclusion

Transparent Informed Prefetching, TIP, extends the power of caching and prefetching to reduce
file read latency by exploiting application-level knowledge of future access patterns. These access patterns
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are expressed to TIP in the form of hints that disclose rather than advise and serve to expose concurrency
in the I/O workload. TIP systems can then cooperate with resource management policies to increase the
utilization and efficiency of high-throughput network and storage systems. This effectively converts the
high throughput of new peripheral technologies into low read latency for application programs.

In this paper, we have introduced informed prefetching as the key to reducing read latencies for
application programs whose files do not cache well because of their large size, non-sequential access pat-
terns, or inherently read-once nature. The key to informed prefetching is knowledge of future application
file references conveyed by hints expressed in terms of operations on files, not resource management pol-
icy options. However, TIP should not operate independent of resource management because it can squan-
der resources if not properly checked.

To demonstrate our ideas and develop experience instrumenting programs with hints and incorpo-
rating prefetching into caching access patterns, we have conducted a few preliminary experiments. The
results of these experiments are quite promising. Applications obtaining data from a remote file server may
be able to reduce their execution time by up to 30% and applications obtaining data from a single local disk
may see 13% reductions in their execution time.
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