
A Research Status Report on
Adaptation for Mobile Data Access

Brian D. Noble and M. Satyanarayanan
School of Computer Science
Carnegie Mellon University
fbnoble,satyag@cs.cmu.edu

Abstract

Mobility demands that systems be adaptive. One
approach is to make adaptation transparent to appli-
cations, allowing them to remain unchanged. An
alternative approach views adaptation as a collabo-
rative partnership between applications and the sys-
tem. This paper is a status report on our research on
both fronts. We report on our considerable experi-
ence with application-transparent adaptation in the
Coda File System. We also describe our ongoing
work on application-aware adaptation in Odyssey.

1. Introduction

Our research group has been investigating issues perti-
nent to mobile data access since 1990. This paper sum-
marizes our experience so far and outlines our research
agenda. The primary vehicle for our research has been
the Coda File System, a descendant of AFS that provides
mobile clients with shared file access. More recently, we
have begun work on Odyssey, a platform for investigating
a broader class of issues in mobile data access.

We begin by discussing certain intrinsic constraints of
mobility. To successfully meet these constraints, mobile
systems must be adaptive. We discuss two alternative
approaches to incorporating adaptivity, and discuss the
status of our research on each approach.

The brevity of this status report and its focus on adapta-
tion preclude discussion of many other important aspects
of Coda and Odyssey. The guide to further reading at the
end of this paper provides pointers to important aspects

This research was supported by the Air Force Materiel Command (AFMC) and
ARPA under contract number F196828-93-C-0193. Additional support was pro-
vided by the IBM Corporation, Intel Corporation and AT&T Corporation. The
views and conclusions expressed in this paper are those of the authors, and should
not be interpreted as those of the funding organizations or Carnegie Mellon Uni-
versity.

of Coda such as server replication, optimistic replica con-
trol, conflict resolution, and isolation-only transactions,
as well as dynamic sets in Odyssey.

2. Constraints of Mobility

Mobile clients face many challenges in accessing data
from servers. Because the mobile client must be small
and light, it is typically resource-poor in relation toa desk-
top client. Network connectivity, especially via wireless
media over large areas, tends to vary widely in band-
width, latency, reliability, and cost. Limited power often
requires activities to be deferred, avoided, or slowed in
order to prolong battery life. The relative costs of access-
ing fixed distributed services change as the client moves.
Finally, the physical security of a mobile client is low
relative to desktop machines, increasing the likelihoodof
loss, theft, or destruction. It should be emphasized that
these constraints are intrinsic to mobility: they will not
be alleviated by hardware advances.

3. Adaptation: the Key to Mobility

The lack of local resources and physical security argues
for reliance on servers. However, the lack of reliable,
cheap communication as well as the variable costs to
access services argue for self-reliance on the part of mo-
bile clients. The challenge for mobile data access is to
strike an appropriate balance between these two com-
peting concerns. This balance is not a static one. As
the circumstances of a mobile client change, it must re-
act and repartition duties between client and server. In
other words, it must be adaptive. Such adaptation may
occur anywhere along a spectrum characterized by two
extremes.

At one extreme, adaptivity is entirely the responsibil-
ity of individual applications. This means that there is
no single point in the system to resolve the potentially



incompatible resource demands of different applications.
It also means that there is no way to enforce limits on
resource usage.

At the other extreme, the burden of adaptation is en-
tirelyborne by the system. We refer to this as application-
transparent adaptation. In this model, the system pro-
vides the focal point for resource arbitration and con-
trol. The central advantage to this approach is that it is
completely backward-compatible. Existing applications
continue to work even when mobile.

Whileapplication-transparentadaptation is adequate in
many cases, there are circumstances where application-
specific knowledge is required. Application-aware adap-
tation enables use of such specialized knowledge while
retaining the system as the focal point of resource con-
trol. Such an approach permits individual applications to
determine how best to adapt, but allows centralized mon-
itoring of resources, and effective enforcement of deci-
sions regarding their usage. This represents the range of
approaches between the two extremes.

4. Coda: Application-Transparent Adaptation

We have explored application-transparent adaptation ex-
tensively through our work in the Coda File System[3,
11]. Coda provides clients, particularly mobile ones,
with highly available access to files. Like AFS, Coda
presents a single, global namespace to clients organized
in volumes[15], which are subtrees of the namespace.
Applications running on Coda clients use the standard
UNIX file system interface. Desktop applications can
continue to run on mobile clients without modification.
The client cache manager, Venus, is solely responsible
for coping with the consequences of mobility.

Coda has been in active use for five years, and has
proved to be a valuable testbed for exploring application-
transparent adaptation. Coda clients are in regular use
over a wide range of networks such as 10 Mb/s ethernet,
2 Mb/s radio, and 9600 baud modems. In following
sections, we describe how Coda deals with the best and
worst possible network conditions, and then discuss how
it adapts to conditions between these end points.

4.1. Strongly Connected Operation

As a starting point in understanding how Venus adapts to
varyingnetwork conditions, we first explore the best case;
high-quality, fast LANs. In such a situation, Venus is
said to be strongly connected. When strongly connected,
a Coda client behaves much like an AFS client. When

an application opens a file in Coda, Venus checks to see
if the file is already cached. If it isn’t, Venus fetches the
file from a server to its local disk cache. It then services
reads and writes on behalf of applications.

When a client caches a file from the servers, it also
obtains a callback – a promise to be told if the file is
updated by another client. When a dirtied file is closed, a
copy of the new file contents is sent back to the servers.
The servers notify any clients who had callbacks for that
file that it has changed. This is known as a callback
break. Experience shows that this approach to maintain-
ing file-cache coherence offers excellent scalability and
performance.

4.2. Disconnected Operation

In the worst case, Venus cannot contact any server; we
say that such a client is disconnected. Venus continues to
service reads and writes to files that are in-cache; reads
and writes on files that are not cached cannot be ser-
viced, and Venus returns an error for them. To reduce
the likelihood of cache misses, Venus uses a mechanism
called hoarding[3] to augment LRU cache management.
Through hoarding, a user can provide advice on what files
are likely to be important in the future. Periodic hoard
walks ensure that files predicted to be useful through a
combination of LRU and hoard priority remain in the
cache in anticipation of unexpected disconnections.

During disconnected operation, updates are persis-
tently logged by Venus, using a variety of optimizations
to reduce resource consumption. For example, if a file is
created, renamed, and later deleted, none of those records
need be saved; it is as if none of the operations ever hap-
pened. When connectivity is reestablished, Venus replays
these updates at the servers through reintegration.

4.3. Weakly Connected Operation

There are a broad range of conditions between strongly
connected and disconnected operation. Coda users oper-
ate clients over 2 Mb/s radio links, and over modems as
slow as 9600 baud. As network bandwidth decreases, the
importance of reordering or delaying network traffic to
preserve the illusion of strong connectivity increases[1].

To preserve the strongly-connected illusion, Venus en-
deavors to satisfy most demand cache misses as soon as
possible, and delays other traffic as necessary. Faithful
to the end-to-end argument, these decisions are made at
as high a level in the system as possible. The question of
how to reschedule network traffic is revisited as available



network quality changes. Adaptive decisions are made
in three key areas; cache coherence, reintegration, and
demand cache fetches. Each of these is discussed briefly
in the following sections.

4.4. Cache Coherence

While a client is disconnected, it may miss callback
breaks for cached files. Thus, upon reconnection, each
file is suspect and must be revalidated. On a LAN, this
overhead is small; it can be expensive on a slower net-
work. The intermittent connectivity typical of wireless
networks exacerbates this problem.

To alleviate the costs of revalidation in low bandwidth
situations, Coda maintains two kinds of callbacks; indi-
vidual files, and full volumes. Volume callbacks are ac-
quired only when the cached state of a volume is known
to be coherent with that on the servers. Along with the
volume callback, a client acquires a version stamp for the
volume. The version stamp is incremented at the servers
with each change to any file or directory in that volume.
A client with a volume callback is promised that it will
be notified of any change to the volume.

On slow networks, the use of volume stamps dramat-
ically reduces the time for validation after reconnection.
Instead of validating each object individually, Venus first
compares volume stamps. In the common case, when
nothing has changed, this single RPC implicitly validates
all objects from a volume. If bandwidth is plentiful,
Venus can later obtain individualobject callbacks to min-
imize false invalidations,

4.5. Reintegration

When weakly connected, Venus uses a mechanism called
trickle reintegration to strike a balance between prompt
propagation and indefinite delay, thus preserving scarce
network bandwidth for demand traffic. In trickle reinte-
gration, updates are logged as if Venus were disconnected
and propagated asynchronously. Venus ensures that no
demand fetch is impacted for more than a fixed time
bound, t, by trickle reintegration. It does this by es-
timating the available bandwidth, and propagating only
an appropriate prefix of the log. Trickle reintegration
uses an age-based technique to strike a balance between
prompt propagation and preserving the effectiveness of
log optimizations.

4.6. Demand Cache Fetches

Some cache misses are more important than others. For
example, an author may be willing to use a different font
file rather than waiting many minutes for a missing one
to be fetched over a slow network. But for a critical
file, he may be willing to wait a long time. To capture
this notion, Venus incorporates a model of user patience,
with the hoard priority of a file indicating its importance.
Tools exist to help users calibrate hoard file priorities, as
well as to view recent cache misses.

When a cache miss occurs, Venus estimates the time
it would take to fetch the file. If the estimate exceeds
the patience threshold for that file, Venus returns an error
rather than servicing the miss. The user patience model
is the source of adaptivity in cache miss handling. It
maintains usabilityat all bandwidthsby balancing the two
factors that intrude upon transparent handling of misses:
long fetch delays and the need for user advice.

4.7. Deployment Status

Coda was first released for general use in 1990, relying
only on server replication. Support for disconnected op-
eration was added in 1991. Support for weakly connected
operation was added in stages between 1993 and 1995.
Coda currently serves a community of about 40 users, 25
of whom use Coda for their day-to-day file storage needs.
This user community stores about 4GB of data in Coda,
and actively uses disconnected and weakly-connected op-
eration.

5. Odyssey: Application-Aware Adaptation

Our work in Coda has shown application-transparent
adaptation to be an effective technique. It has several
advantages, especially that many applications written for
desktop environments need not be changed at all; they
will continue to work largely as intended in a mobile
environment. However, there are situations where the
system cannot be solely responsible for coping with mo-
bility. To address this shortcoming, we are implementing
a platform for mobile computing called Odyssey. In the
following sections we describe our early work with this
project.

5.1. Fidelity: the Basis for Adaptation

We define fidelity as the degree to which a copy of data
presented for use matches the reference or ‘true’ copy. In
general, fidelity has many dimensions. One well-known,



universal dimension is consistency. Other dimensionsde-
pend on the type of data in question. For example, video
data has at least two additional dimensions: frame rate
and image quality of individual frames. Spatial data, such
as topographical maps, have dimensions of minimum fea-
ture size or resolution. For telemetry data, appropriate
dimensions include sampling rate and currency.

The dimensions of fidelity are natural axes of adapta-
tion for mobility. But adaptation cannot be solely deter-
mined by the type of data; it also depends on the appli-
cation. As we show in the next section, different appli-
cations using the same data may make different tradeoffs
among dimensions of fidelity.

5.2. Why Involve Applications?

Consider a movie stored on a server, and two applications
accessing that video stream from a mobile client. The
first application is a video playback application, player,
and the second, editor, is a video scene editor. These
two applications must make different fidelity tradeoffs in
accessing the same video stream. No single policy can
satisfy them both.

The player’s primary goal is to preserve correspon-
dence between movie time and real time. A secondary
goal is to play the movie at the original frame rate, reso-
lution, and image quality. In times of plentiful resources,
the player can indeed meet both goals. However, when
network bandwidth becomes scarce, the player may have
to sacrifice its secondary goal in order to meet its primary
goal. Thus, it may choose to switch to a black-and-white
stream at full frame rate, to drop frames, or otherwise re-
duce the bandwidth requirements of the stream. To guard
against total disconnection, the player may even hoard a
very low quality version of the movie.

The editor’s main goal is very different from that of
the player; it must ensure that the user sees every frame
of the video stream to allow precise editing. To do this,
the editor is willing to relax the correspondence between
movie time and real time. Thus, when networkbandwidth
decreases, the editor will access the movie at a rate slower
than real time to avoid dropping frames.

It is hard to see how any single operating system policy
can adequately service both of these applications’ needs,
even though they are accessing exactly the same data.
Regardless of the system’s decisions, either the player or
the editor – and quite possibly both – will not be satis-
fied. No system can be clever enough to anticipate and
satisfy every application’s needs. On mobile machines,
where the environment is unpredictable, such unsatisfac-

tory service will be even more evident. Only with the
active participation of applications can scenarios such as
the above be satisfactorily handled. Hence the need for
application-aware adaptation.

5.3. How to Involve Applications

How best can we involve applications in adaptation?
Since applications react to changes around them, we must
define the environment to which applications adapt. We
must then provide mechanism for applications to become
aware of how their environment changes. Finally, we
need a mechanism to allow applications to inform the
system of their desired adaptations; the underlying sys-
tem must then resolve the potentiallyconflictingdemands
of various applications.

We define the environment of an application by the
resources available to the client host on which the appli-
cation runs. The availability of these resources are each
measured by the underlying system in some unit appro-
priate to the resource itself. For example, one resource
might be the network bandwidth on a particular connec-
tion, measured in bytes per second. Another might be bat-
tery power remaining to the client, measured in minutes.
All of the resources together constitute an application’s
environment.

To become aware of changes to the environment, an ap-
plication first registers its interest in particular resources.
It does so by specifying, for each resource in which it is
interested, the acceptable lower and upper bounds on the
availability of that resource. It also registers an upcall
procedure. If a specified resource leaves the stated tol-
erance bounds, the upcall procedure is invoked with the
resource’s new availability. In this way, applications can
track only those facets of the environment in which they
are interested, while amortizing the cost of monitoring
the environment over all interested applications.

When an application is told of a change in resource
availability, it must adapt its access. Adaptation consists
of varying the fidelity of data presented to the user. Since
fidelity is dependent on the kind of data being presented,
the methods of adaptation must also be type-specific. To
support these type-specific methods, we provide a general
mechanism to communicate with a portion of the system
that understands that type.

5.4. Architectural Support

We have designed, and are implementing, an architecture
to support this notion of application-aware adaptation.



There are two main pieces of this architecture. First,
we must add some notion of type to the distributed store.
Second, we must have the mechanism at the mobile client
to provide both type-specific support for each type in the
store as well as a single point of resource arbitration.

Odyssey, like Coda, provides its clients with a single,
global namespace comprised of volumes. Unlike Coda,
these volumes carry with them a notion of type. Each
object within one of these typed volumes, or tomes, is
of the same type. While there may be many tomes of a
given type, each tome has a single type associated with
it, and thus provides a type to each item in the store.

At clients there is a cache manager, much like Coda’s
Venus, which services operations in the Odyssey store on
behalf of applications. The Odyssey cache manager is
structured into two logical pieces: the viceroy, providing
generic support for all objects in the store, and a collection
of wardens, one per type, each providing support for
objects of that particular type.

The viceroy’s most important task is to act as the single
point of resource control in the system; each warden is
subordinate to it. In this role, the viceroy is responsible
for monitoring the availability of resources, and notifying
applications of changes to them as appropriate.

The wardens are responsible for implementing the ac-
cess methods on objects of their type – both the standard
UNIX operations as well as any type-specific ones. The
wardens are also responsible for implementing any type-
specific operations to change the fidelity at which data is
cached and presented to the user.

To date, we have implemented a simple prototype of
the Odyssey architecture, and the wardens, servers, and
appilcations for video and geographical data. This pro-
totype is rudimentary in many respects, but suggests the
approach is valid, both in terms of the overhead in re-
source monitoring as well as the additional complexity
broughton by involvingapplications in adaptation. How-
ever, these questions remain open; we plan on exploring
them more fully through a refined implementation.

6. Conclusion

Mobile clients face many challenges. These challenges
render adaptation the key to mobile data access. There are
two approaches to adaptation: application-transparent,
which we have explored in the Coda File System; and
application-aware, which we are exploring in Odyssey

Our experience with Coda confirms that application-

transparent adaptation is indeed effective in many cases.
Many desktop applications are able to run unmodified in
Coda over a wide range of network quality. The system
has proven effective in actual use by a user community.

In circumstances where the Coda approach is no longer
adequate, we believe that application-aware adaptation is
the correct strategy. Odyssey is our vehicle for exploring
this hypothesis. An early prototype of Odyssey shows
this approach to be promising, and we are currently im-
plementing a more complete system.

7. Acknowledgements

This work builds upon the contributions of many past
and present Coda and Odyssey project members, includ-
ing Jay Kistler, Puneet Kumar, David Steere, Lily Mum-
mert, Maria Ebling, Hank Mashburn, Josh Raiff, Qi Lu,
Morgan Price and Bob Baron. Perhaps the most impor-
tant contribution of all has been made by the Coda user
community, through its bold willingness to use and help
improve an experimental system.

8. Further Reading

This paper provides only the briefest overview of our
work. A detailed annotated guide may be found on the
World Wide Web at this URL:

http://www.cs.cmu.edu/afs/cs.cmu.edu/
project/coda/Web/coda.html

Given below are the highlights from this list:

� Server replication [11]

� Conflict resolution [4, 5]

� Disconnected operation [3, 12]

� Weakly connected operation [8, 7]

� Isolation-only transactions [6]

� Tools and building blocks [9, 2, 13]

� Odyssey design [14, 10].

� Dynamic sets [17, 16]



References

[1] EBLING, M., MUMMERT, L., AND STEERE, D. Overcom-
ing the Network Bottleneck in Mobile Computing. In
Proceedings of the IEEE Workshop on Mobile Comput-
ing Systems and Applications (Santa Cruz, CA, December
1994).

[2] EBLING, M., AND SATYANARAYANAN, M. SynRGen: An
Extensible File Reference Generator. In Proceedings of
the 1994 ACM SIGMETRICS Conference (Nashville, TN,
May 1994).

[3] KISTLER, J. J., AND SATYANARAYANAN, M. Disconnected
Operation in the Coda File System. ACM Transactions
on Computer Systems 10, 1 (February 1992).

[4] KUMAR, P., AND SATYANARAYANAN, M. Log-Based Di-
rectory Resolution in the Coda File System. In Proceed-
ings of the Second International Conference on Parallel
and Distributed Information Systems (San Diego, CA,
January 1993).

[5] KUMAR, P., AND SATYANARAYANAN, M. Flexible and
Safe Resolution of File Conflicts. In Proceedings of the
USENIX Winter 1995 Technical Conference (New Or-
leans, LA, January 1995).

[6] LU, Q., AND SATYANARAYANAN, M. Improving Data
Consistency in Mobile Computing Using Isolation-Only
Transactions. In Proceedings of the Fifth IEEE HotOS
Topics Workshop (Orcas Island, WA, May 1995).

[7] MUMMERT, L. B., EBLING, M. R., AND SATYA-
NARAYANAN, M. Exploiting Weak Connectivity for Mo-
bile File Access. In Proceedings of the 15th Symposium
on Operating System Prinicples (Copper Mountain, CO,
December 1995).

[8] MUMMERT, L. B., AND SATYANARAYANAN, M. Large
Granularity Cache Coherence for Intermittent Connectiv-
ity. In Proceedings of the 1994 Summer USENIX Confer-
ence (Boston, MA, June 1994).

[9] MUMMERT, L. B., AND SATYANARAYANAN, M. Long Term
Distributed File Reference Tracing: Implementation and
Experience. Tech. Rep. CMU-CS-94-213, Carnegie Mel-
lon University, November 1994.

[10] NOBLE, B. D., PRICE, M., AND SATYANARAYANAN, M.
A Programming Interface for Application-Aware Adap-
tation in Mobile Computing. In Proceedings for the
Second USENIX Symposium on Mobile and Location-
Independent Computing (Ann Arbor, Michigan, April
1995). Also as technical report CMU-CS-95-119, School
of Computer Science, Carnegie Mellon University.

[11] SATYANARAYANAN, M., KISTLER, J. J., KUMAR, P.,
OKASAKI, M. E., SIEGEL, E. H., AND STEERE, D. C. Coda:
A Highly Available File System for a Distributed Work-
station Environment. IEEE Transactions on Computers
39, 4 (April 1990).

[12] SATYANARAYANAN, M., KISTLER, J. J., MUMMERT, L. B.,
EBLING, M. R., KUMAR, P., AND LU, Q. Experience with
Disconnected Operation in a Mobile Computing Environ-
ment. In Proceedings of the 1993 USENIX Symposium

on Mobile and Location-Independent Computing (Cam-
bridge, MA, August 1993).

[13] SATYANARAYANAN, M., MASHBURN, H. H., KUMAR, P.,
STEERE, D. C., AND KISTLER, J. J. Lightweight Recov-
erable Virtual Memory. ACM Transactions on Computer
Systems 12, 1 (Februrary 1994), 33–57. Corrigendum:
May 1994, Vol. 12, No. 2, pp. 165-172.

[14] SATYANARAYANAN, M., NOBLE, B., KUMAR, P., AND

PRICE, M. Application-aware Adaptation for Mobile
Computing. Operating Systems Review 29 (January
1995). Also as technical report CMU-CS-95-183, School
of Computer Science, Carnegie Mellon University.

[15] SIDEBOTHAM, R. Volumes: The Andrew File System
Data Structuring Primitive. In EuropeanUnix User Group
Conference Proceedings (August 1986). Also available as
Tech. Rep. CMU-ITC-053, Carnegie Mellon University,
Information Technology Center.

[16] STEERE, D. C., AND SATYANARAYANAN, M. Using Dy-
namic Sets to Overcome High I/O Latencies During
Search. In Proceedings of the Fifth IEEE HotOS Con-
ference (Orcas Island, WA, May 1995).

[17] STEERE, D. C., AND WING, J. Specifying Weak Sets. In
Proceedings of the 15th International Conference on Dis-
tributed Computing Systems (Vancouver, B.C., Canada,
June 1995).


