
I think I can correct #578 and put it together with the Fourier-based calculations.
The following alternate argument for Sperner still feels “wrong” to me (I will say why
at the end), but I can’t see the “right” one yet so I’ll write this one up for now.

Let (x1,y1) be chosen jointly from {0, 1}×{0, 1} as follows (I use boldface to denote
random variables): The bit x1 is 0 or 1 with probability 1/2 each. If x1 = 1 then
y1 = 1. If x1 = 0 then y1 = 0 with probability 1 − ε and y1 = 1 with probability
ε. Finally, let (x,y) be chosen jointly from {0, 1}n × {0, 1}n by using the single-bit
distribution n times independently. Note that x ≤ y always. This distribution is
precisely the one Tim uses, with p = 1/2, q = 1/2 + ε/2.

Let f : {0, 1}n → [−1, 1] and let’s consider E[f(x)f(y)]. (We are eventually interested
in f ’s with range {0, 1} and mean δ, but let’s leave it slightly more general for now.)
As per Tim’s calculations,

E[f(x)f(y)] =
∑
S⊆[n]

f̂(S)f̂ε(S)(1− ε′)|S|,

where f̂ε denotes Fourier coefficients with respect to the (1/2 + ε/2)-biased measure
and ε′ is defined by 1 − ε′ =

√
(1− ε)/(1 + ε) (AKA λ1/2,1/2+ε/2). Separate out the

S = ∅ term here and use Cauchy-Schwarz on the rest to conclude∣∣∣E[f(x)f(y)]− f̂(∅)f̂ε(∅)
∣∣∣ ≤√∑

|S|≥1

f̂(S)2(1− ε′)|S|
√∑
|S|≥1

f̂ε(S)2(1− ε′)|S|. (1)

Let’s compare f̂ε(∅) to f̂(∅). Write π and πε for the density functions of x, y respec-
tively. Then

f̂ε(∅)−f̂(∅) = E[f(y)]−E[f(x)] = E

[
πε(x)

π(x)
f(x)

]
−E[f(x)] = E

[(
πε(x)

π(x)
− 1

)
f(x)

]
.

By Cauchy-Schwarz, the absolute value of this is upper-bounded by√√√√E

[(
πε(x)

π(x)
− 1

)2
]
· ‖f‖2,

where ‖f‖2 denotes
√

E[f(x)2]. One easily checks that

E

[(
πε(x)

π(x)
− 1

)2
]

= E

[
πε(x)2

π(x)2

]
− 1, (2)

and since πε and π are product distributions the RHS of (2) is easy to compute. One
can check explicitly that

E[πε(x1)
2/π(x1)

2] = 1 + ε2
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and therefore (2) is (1 + ε2)n− 1. Naturally we will be considering ε� 1/
√
n, and in

this regime the quantity is bounded by, say, 4ε2n. Hence we have shown

|f̂ε(∅)− f̂(∅)| ≤ 2ε
√
n · ‖f‖2

and in particular if f has range {0, 1} and mean µ (AKA δ) then

|f̂ε(∅)− µ| ≤ 2ε
√
n · √µ. (3)

This is not very interesting unless 2ε
√
n ·√µ ≤ µ, so let’s indeed assume ε ≤ √µ/

√
n

and then we can also use f̂ε(∅) ≤ 2µ.

We now these deductions in (1). Note that the second factor on the RHS in (1) is at
most the square-root of∑

S

f̂ε(S)2 = E[f(y)2] = E[f(y)] = f̂ε(∅) ≤ 2µ ≤ 4µ.

Also, using (3) for the LHS in (1) we conclude

|E[f(x)f(y)]− µ2| ≤ 2µ3/2 · ε
√
n+ 2

√
µ
√

S1−ε′(f)− µ2, (4)

where
S1−ε′(f) =

∑
S

f̂(S)2(1− ε′)|S|.

Let’s simply fix ε = (1/8)
√
µ/
√
n at this point. Doing some arithmetic, it follows

that if we can bound
S1−ε′(f)− µ2 ≤ µ3/64 (?) (5)

(AKA f is “uniform at scale ε′n” as Terry might say) then (4) implies

E[f(x)f(y)] ≥ µ2/2.

So long as P[x = y] < µ2/2 we’ve established existence of a Sperner pair (AKA non-
degenerate combinatorial line). Since this probability is (1 − ε/2)n ≤ exp(−εn/2) =
exp(−Ω(

√
µ
√
n)), we’re done assuming

n ≥ O(log2(1/µ)/µ). (6)

Thus things come down to showing (5). Now in general, there is absolutely no reason
why this should be true. The idea, though, is that if it’s not true then we can do a
density increment. More precisely, it is very easy to show (one might credit this to an
old result of Linial-Mansour-Nisan) that S1−ε′(f) is precisely EV[E[f |V]2], where V is
a “random restriction with wildcard probability ε′” (and the inner E[·] is with respect
to the uniform distribution). In other words, V is a combinatorial subspace formed
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by fixing each coordinate randomly with probability 1− ε′ and leaving it “free” with
probability ε′. Hence if (5) fails then we have

EV[E[f |V]2] ≥ µ2 + µ3/64.

In particular, since f is bounded it follows that E[f |V]2 ≥ µ2+µ3/128 with probability
at least µ3/128 over the choice of V. It’s also very unlikely that V will have fewer
than, say, (ε′/2)n wildcards; a large-deviation bound shows this probability is at most
exp(−Ω(ε′n)). Since ε′ ≈ ε = (1/8)

√
µ/
√
n, by choosing the constant in (6) suitably

large we can make this large-deviation bound strictly less than µ3/128. Thus we
conclude that there is a positive probability of choosing some V = V which both has
at least (ε′/2)n = Ω(

√
µ
√
n) free coordinates and also has

E[f |V ]2 ≥ µ2 + µ3/128⇒ E[f |V ] ≥ µ+ µ2/500.

I.e., we can achieve a density increment.

If I’m not mistaken, this kind of density increment (gaining µ2/C at the expense of
going down to c

√
µ
√
n coordinates, with (6) as the base case) will ultimately show

that we need the initial density to be at least 1/ log log n (up to log log log n factors?)
in order to win. Only a couple of exponentials off the truth :)

The incorrect quantitative aspect here isn’t quite the reason I feel this argument is
“wrong”. Rather, I believe that no density increment should be necessary. (Actually,
we probably know this is the case, by Sperner’s proof of Sperner.) In other words, I
believe that E[f(x)f(y)] ≥ Ω(µ2) for any f , assuming ε� √µ/

√
n.
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