Lecture 25 - The PCP Theorem

[A proof sketch]

A gem in TCS. Circa 1990s
FGLSS/AS/ALMSS early '90s

Dinur '03: A new proof which is very short if you already have a lot of TCS tools in your back pocket. And we do! Didn't plan this for the course, but it recently occurred to me.

PCP Theorem: \(\exists \varepsilon_0 > 0 \) s.t. \((1 - \varepsilon_0)\)-approximating Max-3Sat is NP-hard.

[Handwritten note: \(\varepsilon_0 \) can be any \(\varepsilon \approx 10^{-20} \). Needs many more tools or something]

More precisely, finitely many Cook-Levin-type reductions from Circuit-SAT to Max-3Sat.

\[
\begin{align*}
\text{size } n & \Rightarrow \text{poly}(n) \text{-time alg } r \\
\text{poly}(n) \text{-time alg } r & \Rightarrow y_1, y_2, \ldots, y_{\text{poly}(n)} \text{ s.t. } \sum y_i = \text{poly}(n) \\
\text{poly}(n) \text{-time alg } r & \Rightarrow \text{every asgn to } y_i \text{ falsifies } \geq \varepsilon_0 \text{ frac. of clauses}
\end{align*}
\]

Why cool? "Peys viewpoin": Can verify NP statements w.h.p. while only looking at \(O(1) \) bits of a proof.

Merlin: "Hey Arthur, check out this circuit C. It's satisfiable!"
Arthur: "Oh yeah? Prove it." Merlin: "Sure, here's a sat. asgn for x's"
Arthur: "I'm feeling lazy today. Give me a sat. asgn for y's instead."
Merlin: "Okay, here. I wrote it on this piece of paper."
Arthur: *Picks one of the m cons of C at random* \(y \), say \(y_1 \)
Arthur: "Hmm, I'll read your asgn just to y_2, y_3, y_4" Merlin: "Checks out. I guess C was satisfiable."

"Wait, maybe I was cheated. Well I'll just do \(O(\varepsilon_0) \) more spot checks..."
The $\varepsilon_0 = 0$ ($\varepsilon_0 = \frac{1}{4m} = \frac{1}{4}$) case is just NP-hardness of 3-Sat.

Let its proof: Some of the y's can be x's. \(\Rightarrow \) 3-CNF contains the usual "proof" 1 gate values

= Encode gate consist, "output = 1" as 3Sat consists.

\[x \text{ and } y \text{ and } z \rightarrow (x \vee y \vee z) \]

Nothing special act. 3Sat in PCP Thm. Any NP-hard CSP \(\text{const. arity (domain)} \) is ok. \(\Rightarrow \) changes.

Say \(|x|, |y|, |z| \) PCP Thm. proved with 3-Coloring (3-CNF).

```
   \[ C \rightarrow \text{color}(v_1) + \text{color}(v_2) \]
   \[ \text{color}(v_3) + \text{color}(v_4) \]
```

"gadget" \(e \) code \(v_4 \) with 2 y's

\[e \rightarrow 00 \]
\[e \rightarrow 01 \]
\[e \rightarrow 10 \]

Every coloring blows 4 3CNFs.

\[\text{encode const. w/ at least 4CNFs} \]
\[3 \text{-var. CNFs, } \geq 8 \text{ 3CNFs} \]

\[\Rightarrow \text{in each, at least } \frac{1}{8} \text{ 3CNFs violated} \]

\[\Delta \rightarrow \frac{1}{8} \text{ 3CNFs violated} \]

\[\text{from: And w.w.:} \text{ 3Sat} \rightarrow 3\text{col} \text{!} \]

\[\text{On to proof!} \]

Define: Let x be a CSP. \(\text{unsat}(x) \) = free of costs.

\[\text{on arg.} \rightarrow \text{violated by best argn. to x} \]

"gadget" we'll consider, hence "x" be the graph.
$I \in \mathbb{R}$, $K < \infty$

Direct from $0 → 0$ is poly-time alg mapping $\mathcal{G} \rightarrow \mathcal{G}'$

s.t.: 1. $\text{Size}(\mathcal{G}') \leq k \cdot \text{Size}(\mathcal{G})$ 2. $\text{size} = \# \text{bits}$ 3. if $\text{unsat}(\mathcal{G}) < \varepsilon_0$ then $\text{unsat}(\mathcal{G}') > 2 \cdot \text{unsat}(\mathcal{G})$

PCP Theorem:

- Ck-set
- 3-Coloring
- $\log N$ times
- gadget to Sat if you wish.

Remark: K does not "know" unsat vals. But "spreads out the difficulty."

Proof:

- $\mathcal{G} \rightarrow \mathcal{G}'$

- Side effects: $\text{Size}' \leq K \cdot \text{Size}$

- $|\Omega'| = 3$

- $\text{unsat}(\mathcal{G}') = 0 \Rightarrow \text{unsat}(\mathcal{G}) = 0$

- $\text{unsat}(\mathcal{G}') > \text{unsat}(\mathcal{G})$ 4. [all steps have this poly]

- $C_1 = \text{const.}$

- 8-regular

- Side effects: same
3. Increase \(\Omega \) : \text{unsat}.

For any fixed \(t \):
\[
\text{size}' \leq 2^{2^{2t+1}} \cdot \text{size}
\]
\[
\left| \Omega' \right| \approx 3^{8^t}
\]

\[\text{[enormous domain, weird const.]}\]

(weird \(\Omega \) and costs on huge domain)

\[\text{unsat} \geq \frac{C_t}{\text{unsat}} \text{ if unsat} \leq \varepsilon_0.\]

4.

\[\Box\]

Some reduces domain size.

\[\left| \Omega' \right| = 3, \quad \text{size}' \leq 2^{2^{2t+1}} \cdot \text{size}.
\]

\[\text{unsat}' \geq \frac{\text{unsat}}{c_3} \]

Put together:
\[\text{size}'''' \leq 2^{2^{2t+1}} \cdot \text{size}''''
\]
\[\left| \Omega'''' \right| = 3
\]

\[\text{unsat}'''' \geq 0 \text{ if unsat} \leq \varepsilon_0.
\]

Take \(t = \frac{c_1 c_2 c_3}{c_3} = O(1). \)
(Sketch) Replacement of each vertex by expander I

Let A' be best assign for G'; x' gets $\varepsilon = \text{unsat'} < \text{frac of consns wrong}. \text{ Define } A \text{ for } G \text{ by letting } A(v) = \text{label}(A'(v))$

A must violate $\Omega(\text{unsat}) < \text{frac of consns in } G$

For each constraint c_i in G, either it's violated by A' or v_i or v'_i gets a minority label for its cloud.

$\Rightarrow \Omega(\text{unsat}) < \text{frac of inter-cloud edges in } G'$

$\Rightarrow \Omega(\text{unsat}) \geq \text{frac of intra-cloud equal consns violated by } A'$

Remark: Only reason to use an expander here and not a random graph is so that the overall NP-hardness reduction is dense.

But not a huge deal to me to use a randomized reduction. Implies $(1-\varepsilon, 1)$-approx Max-3 sat $\in P$ $\Rightarrow NP \subseteq \mathbb{R}^P$. Good enough for me, Class I
Expanderize: Slap a d-regular expander on G, put equality constraint on edges.

Becomes an 8-regular, half-as-good expander.
Input:

\[G = \text{parity-2, domain } \{0, 1\} = 3, \text{ } \frac{1}{d} \text{-regular expander.} \]

\[G' : \text{variable/true set: same as } G, \] \[\text{edges/constit in } G' \equiv \text{paths of length } \ell \text{ in } G \]

\[\text{new degree } \geq 8^\ell \]

\[\text{new domain: } \Omega' = \Omega + 8^2 + \ldots + 8^\ell \quad (\text{size } 3 \times 3^\ell) \]

We think of a "label" for \(u \in G' \) as giving an opinion label (red, green, color) to its old distinct nbs

\(\ell = 3 \)

Constraints: between path endpoints:

"test everything"

In particular, for each edge \((v, u) \) on a path \((v, g) \), test that \(a \)'s color opinion for \(u \), together with \(g \)'s color opinion for \(u \) satisfies the old \((u, v)\) constraint in \(G \)
size' = \binom{n}{1} \cdot \text{size } V

\text{unsat} ?? Sketch...

Let \(A' \) be best assignment for \(G' \). Write \(A'(w)_v \) for \(w \) and \(A' \) of \(v \) in color.

Define assign \(A \) for \(G \) as follows:

\[A(v) = \text{plurality of } \{ A'(w)_v \}. \]

A violates \(e : = \min(\text{unsat, } w : \text{dist}(w) = 1) \) frac of \(G \) constr.

Let \(F \) be the edges of \(G \) it violates

Goal: \(A' \) viol about \(\Omega(1) \) frac of all path constrs in \(G' \).

Let \(u \rightarrow v \rightarrow b \) be a path in \(G' \).

If it passes through an \(F \) edge \((uv)\), there is "const. chance that"

\[A'(u)_v = A(a), \quad A'(v)_b = A(b) \]

because \(u \approx_t (1/2) \approx_t \approx_t (1/2) \approx_t \) and \(A \) does plurality vote.

This \(\Rightarrow A' \) violates the path constr. on \(u \rightarrow v \rightarrow b \).

\(\Delta \) unsat \(\approx 1/\alpha \) (frac of paths passing thru \(F \))

\(F \) is an unsat frac of \(G \) edges

path of len \(\alpha t \)

\(G \) is an expander

so edges are \(\approx \) "randomly" distr.

\[\text{Prob path misses } F \approx_{\alpha t \cdot \text{unsat}} \]

\(\Rightarrow \) frac of paths hitting \(F \) \(\approx \text{unsat} \)