Week 1 work: Sept. 4 — Sept. 12
12-hour week
Obligatory problems are marked with [**]
1. **[Gates for universal classical computation.]**

(a) Show that any Boolean function \(f : \{0,1\}^n \rightarrow \{0,1\} \) can be computed by a classical Boolean circuit using the following set of logic gates: 2-bit AND, 2-bit OR, and NOT. (Hint: look up *DNF formula.*)

(b) Show that any Boolean function \(f : \{0,1\}^n \rightarrow \{0,1\} \) can be computed by a classical Boolean circuit using the following single logic gate: 2-bit NAND. Also show this for the following single logic gate: 2-bit NOR.

(c) Show that there are infinitely many Boolean functions \(f : \{0,1\}^n \rightarrow \{0,1\} \) that cannot be computed by a classical Boolean circuit using the following set of logic gates: 2-bit AND, 2-bit OR.

(d) Show that there are infinitely many Boolean functions \(f : \{0,1\}^n \rightarrow \{0,1\} \) that cannot be computed by a classical Boolean circuit using the following set of logic gates: 2-bit XOR, and NOT.
2. [Reviewing big-O.] Review “big-O” notation, e.g., by reading this, or reading the first part of Chapter 6 here, or by watching this.

I will use sometimes one more piece of notation: “O-tilde”, or “soft big-O notation”. Basically, \(\widetilde{O}(g(n)) \) means “big-O of \(g(n) \), ignoring logarithmic factors”. More formally, we say that \(f(n) = \widetilde{O}(g(n)) \) if \(f(n) = O(g(n) \cdot (\log g(n))^c) \) for some constant \(c \). Some exercises for you:

(a) Is \(10n^2 \log n = \widetilde{O}(n^2) \)?
(b) Is \(100n^2(\log n)^3 = \widetilde{O}(n^2) \)?
(c) Is \(5(\log n)^2 = \widetilde{O}(1) \)?
(d) Is \(n^3 = \widetilde{O}(n^2) \)?
(e) Is \(3^n = O(2^n) \)?
(f) Is \(3^n = \widetilde{O}(2^n) \)?
(g) Is \(3^n \cdot n^2 = O(3^n) \)?
(h) Is \(3^n \cdot n^2 = \widetilde{O}(3^n) \)?
(i) Explain why a list of \(n \) numbers can be sorted in \(\widetilde{O}(n) \) time.
3. [Computational arithmetic.]

(a) Watch this lecture on how to multiply two \(n \)-bit numbers in \(\tilde{O}(n) \) steps using the Fast Fourier Transform. (Budget 1 hour at 1.25× or 1.5× speed.)

(b) Consider the “long division algorithm” for integers that you learn in grade school. Given two numbers \(C \) and \(D \), it outputs the (integer) quotient \(Q = \lfloor C/D \rfloor \) and the remainder \(R = C \mod D \). Argue that if \(C \) and \(D \) are both at most \(n \) digits, then this algorithm will compute \(Q \) and \(R \) in at most \(\tilde{O}(n^2) \) operations.

(Remark: in fact, there’s a sophisticated way to efficiently reduce integer division to integer multiplication, meaning that integer division can actually be done in \(\tilde{O}(n) \) operations. The infamous “Pentium bug” was due to messing up this reduction.)

(c) [**] Consider the following task: Given positive integers \(B \) and \(C \), compute the integer \(B^C \). Show that this task is not solvable “in \(P \)”; that is, there is no algorithm that can do this in \(\tilde{O}(n^{\text{constant}}) \) operations when \(B \) and \(C \) are \(n \)-bit numbers. (Hint.)

(d) [**] Consider the following task: Given positive integers \(B, C, \) and \(D \), compute the integer \(B^C \mod D \). This is called the modular exponentiation problem. Show that this task is solvable “in \(P \)”. If \(B, C, \) and \(D \) are all \(n \)-bit numbers, show that it can be done in \(\tilde{O}(n^3) \) steps. (In fact, it can be done in \(\tilde{O}(n^2) \) steps using the sophisticated multiplication and division algorithms.)

(Hint: One key fact to use is

\[
P \cdot Q \mod D = (P \mod D) \cdot (Q \mod D) \mod D.
\]

Given this, first think about computing \(B \mod D, B^2 \mod D, B^4 \mod D, B^8 \mod D, B^{16} \mod D, \) etc. If \(C \) happens to be a power of 2, you should be in good shape. What should you do if \(C \) is, say, 24? What should you do if \(C \) is (when represented in base 2) 1010101010101010?)

\(^1 \) Some evidence...
4. [Simulating a biased coin.] The usual way to obtain a model of probabilistic computation is to take a standard model of deterministic computation (e.g., Turing Machines, Boolean circuits, your favorite programming language) and add a new “FLIP\(_{1/2}\)” operation, which by definition returns 0 with probability 1/2 and returns 1 with probability 1/2.

A more liberal augmentation would be to allow the “FLIP\(_p\)” operation for any rational value 0 < \(p\) < 1, which by definition returns 0 with probability 1 − \(p\) and returns 1 with probability \(p\). This problem is about exploring the difference between the two models.

(a) In one sense, general FLIP\(_p\) operations are more powerful than FLIP\(_{1/2}\) operations. Show that if you only get FLIP\(_{1/2}\) operations, it’s impossible to exactly simulate a FLIP\(_{1/3}\) gate.

(b) [**] However, in another sense, FLIP\(_p\) operations are not fundamentally more powerful than FLIP\(_{1/2}\) operations. Writing in pseudocode, prove that for any \(\epsilon > 0\), there is a simple subroutine using only deterministic computation and FLIP\(_{1/2}\) operations that almost exactly simulates a FLIP\(_{1/3}\) operation, in the following sense: Your subroutine should return a value \(r \in \{0, 1, \text{FAIL}\}\), and it should have the following two properties:
 (i) \(\Pr[r = \text{FAIL}] \leq \epsilon\); and, (ii) \(\Pr[r = 1 \mid r \neq \text{FAIL}] = 1/3\) exactly.

 (Remark: This problem is doable for any rational value of \(p\), not just 1/3; but I expect that once you solve it for 1/3, you’ll get the idea of how to do it for any \(p\).)

(c) Implement and test your solution in your favorite programming language, with \(\epsilon = 2^{-500}\).

(d) (Requires a bit of sophistication in Theoretical Computer Science thinking.) Suppose that you augment deterministic computation by allowing a FLIP\(_p\) operation for any real 0 < \(p\) < 1. Further, the algorithm designer only needs to mathematically specify each \(p\) used; the algorithm itself doesn’t have to “calculate” \(p\) or anything. (Think, e.g., of FLIP\(_{1/\pi}\) operations.) You might imagine the algorithm is given a “magic coin” with bias \(p\), for any \(p\) of the algorithm designer’s choosing. Does this give fundamentally increased power over deterministic computation?
5. [Dealing with error in randomized computation.] Suppose you are trying to write a computer program \(C \) to compute a certain Boolean function \(f : \{0, 1\}^n \to \{0, 1\} \), mapping \(n \) bits to 1 bit. (For example, perhaps \(f \) specifies that \(f(x) = 1 \) if and only if \(x \) represents a prime number written in base 2.) If \(C \) is a deterministic algorithm, then there is an obvious definition for "\(C \) successfully computes \(f \)"; namely, it should be that \(C(x) = f(x) \) for all inputs \(x \in \{0, 1\}^n \). But what if \(C \) is a probabilistic algorithm?

The best thing is if \(C \) is a zero-error algorithm for \(f \), with failure probability \(p \). This means:

- on every input \(x \), the output of \(C(x) \) is either \(f(x) \) or is "?"
- on every input \(x \) we have \(\Pr[C(x) =?] \leq p \)

Important note: The second condition is not about what happens for a random input \(x \). Instead, it demands that for every input \(x \) the probability of failure is at most \(p \), where the probability is only over the internal "coin flips" of \(C \).

(a) [**] If you have a zero-error algorithm \(C \) for \(f \) with failure probability 90% (quite high!), show how to convert it to a zero-error algorithm \(C' \) for \(f \) with failure probability at most \(2^{-500} \). The "slowdown" should only be a factor of a few thousand.

(b) [**] Alternatively, show how to convert \(C \) to an algorithm \(C'' \) for \(f \) which: (i) always outputs the correct answer, meaning \(C''(x) = f(x) \); (ii) has expected running time only a few powers of 2 worse than that of \(C \). (Hint: look up the mean of a geometric random variable.)

The second best thing is if \(C \) is a one-sided error algorithm for \(f \), with failure probability \(p \). There are two kinds of such algorithms, "no-false-positives" and "no-false-negatives". For simplicity, let’s just consider “no false-negatives” (the other case is symmetric); this means:

- on every input \(x \), the output \(C(x) \) is either 0 or 1
- on every input \(x \) such that \(f(x) = 1 \), the output \(C(x) \) is also 1
- on every input \(x \) such that \(f(x) = 0 \), we have \(\Pr[C(x) = 1] \leq p \)

(c) [**] If you have a no-false-negatives algorithm \(C \) for \(f \) with failure probability 90% (quite high!), show how to convert it to a no-false-negatives algorithm \(C' \) for \(f \) with failure probability at most \(2^{-500} \). The “slowdown” should only be a factor of a few thousand.

The third best thing (in fact, the worst thing, but it's still not so bad) is if \(C \) is a two-sided error algorithm for \(f \), with failure probability \(p \). This means:

- on every input \(x \), the output \(C(x) \) is either 0 or 1
- on every input \(x \) we have \(\Pr[C(x) \neq f(x)] \leq p \)

Remark: It is actually very very rare in practice for a probabilistic algorithm to have two-sided error; in almost every natural case, an algorithm you design will have one-sided error at worst.

(d) If you have a two-sided error algorithm \(C \) for \(f \) with failure probability 40%, show how to convert it to a two-sided error algorithm \(C' \) for \(f \) with failure probability at most \(2^{-500} \). The “slowdown” should only be a factor of a few dozen thousand. (Hint: look up the Chernoff bound.)
6. [CMU Probabilistic Experience.]

(a) Play around with the IBM Q Experience.

(b) [**] Write a “coin-flipping experience” program in your favorite programming language. Your program should support a fixed number of coins n (you choice; say, $5 \leq n \leq 10$), each of which can be showing 0 (Heads) or 1 (Tails). It is assumed that all coins are initialized to be 0/Heads. The input to your program should be the description of a “circuit” (in any convenient format of your choice; e.g., a text file). A circuit is just an arbitrary-length sequence of operations from the following set:

- **Flip** i (randomly set coin i to 0 or 1 with probability $1/2$ each)
- **Not** i (turn over the ith coin; i.e., deterministically reverse its 0/1 status)
- **CNot** $i j$ (if coin i is 1 (Tails) then do a Not on coin j, else do nothing)
- **CSwap** $i j k$ (if coin i is 1 (Tails) then swap the values of coins j and k)

In the above, i,j,k stand for distinct coin numbers between 1 and n.

If you like, you can also implement the following operations:

- **CCNot** $i j k$ (if coins i and j are both 1 then do ‘Not k’, else do nothing)
- **GenFlip** $i p$ (set coin i to 0 with probability $1 - p$, to 1 with probability p)
- **Gen1Bit** $i p q$ (if coin i is 0 then make it 1 with probability p, else if coin i is 1 then make it 0 with probability q)

Given the input circuit description, your program should use (pseudo)randomness to simulate one run of the circuit and output the resulting final outcome of the coins (a length-n bitstring). (You should test your program with multiple runs to make sure it works!)

2“Bonus points” if you do it in Scratch.
7. [Abandoning realism.]

(a) [**] Following on from the CMU Probabilistic Experience problem, make a new version of your program that takes as input the description of a circuit, and calculates the probabilities of each possible outcome. Your new program should output these probabilities as a column of 2^n numbers (adding up to 1). E.g., if $n = 5$ then the output should be

\begin{align*}
\Pr[\text{circuit would output 00000}] \\
\Pr[\text{circuit would output 00001}] \\
\Pr[\text{circuit would output 00010}] \\
\cdots \\
\Pr[\text{circuit would output 11111}]
\end{align*}

These numbers should be exactly calculated; they should not be obtained by simulating your previous programming and taking an empirical average.³ (Hint: it might help you if your favorite programming language has built-in support for matrix multiplication.)

(b) Upgrade your program so that instead of assuming all coins are initialized to 0, your program outputs one column of results for each of the 2^n possible initial settings of the coins. (Thus your program should be outputting a $2^n \times 2^n$ matrix, with rows and columns indexed by length-n bitstrings, in which the entry in the xth column and yth row is the probability that the circuit outputs $y \in \{0, 1\}^n$ given that its input is initialized to $x \in \{0, 1\}^n$.)

³“Bonus points” if you implement GenFlip and Gen1Bit and then give the output answers symbolically as a polynomial functions of all the p's and q's.
8. [Miscellaneous.]

- Watch this video by 3B1B on the enormity of the number 2^{256}.
- Read this survey by Pomerance on factoring.
- Watch this surprisingly accurate PBS video on the Many Worlds Interpretation.
- Send an email to the instructor (odonnell@cs.cmu.edu) saying hello, what year and program you’re in, what your interest in the course is, and one of the following: (i) interesting fact about yourself; (ii) your hometown; (iii) your favorite show.